Analisi di Immagini e Video (Computer Vision)

Giuseppe Manco

Outline

- Activity Recognition
 - Task
 - Datasets
- Approcci
 - 3D-CNN
 - RNN-CNN
 - Optical Flow

Crediti

- Slides adattate da altri corsi:
 - Ettore Ritacco (CS Unical)
 - Joseph Redmon (CS Washington EDU)
 - Rob Fergus (CS NYU EDU

Activity Recognition

- Gli algoritmi che abbiamo visto finora si applicano al dominio spaziale
 - Classificazione
 - Segmentazione
 - Scene understanding
 - ...
- Che significa includere il dominio temporale?
 - Immagini che fluiscono lungo l'asse temporale
 - video
- Desiderata
 - Catturare le caratteristiche del «movimento» (motion) e sfruttarle per la classificazione
 - In maniera computazionalmente gestibile

Esempio

• Sapreste riconoscere da un singolo frame lo stile di nuotata?

Perché è difficile

- Alto costo computazionale
 - In un video la quantità di immagini è alta (~25fps)
- Necessità di catturare i contesti short-term (pochi frame) e long-term (secondi, minuti, ...)
- Difficoltà di reperire dati di training

Datasets per activity recognition

- UCF-101
 - 10k videos
- HMDB-51
 - 5k videos

Datasets per activity recognition

- Kinetics-400
 - 300k videos
 - 10s clips
- Human action classification
 - 400 human action classes

Confronto

			_		
Dataset	Year	Actions	Clips	Total	Videos
HMDB-51 [15]	2011	51	min 102	6,766	3,312
UCF-101 [20]	2012	101	min 101	13,320	2,500
ActivityNet-200 [3]	2015	200	avg 141	28,108	19,994
Kinetics	2017	400	min 400	306,245	306,245
Kinetics-600	2018	600	min 450	500,000	500,000

Youtube8M

- large-scale labeled video dataset
 - high-quality machine-generated annotations from a diverse vocabulary of 3,800+ visual entities
 - scale and diversity

Altri datasets

- Sports-1M
 - 400 sport classes
- Something-something
 - 174 classes
- HACS
 - 200 classes, positive/negative samples

2D Convolution non funziona!

- Varie possibilità di combinare i frame
- Accuratezza scarsa
 - Non cattura feature spazio-temporali

0	0	0	0	0
0	0	1	0	0
0	0	1	0	0
0	0	1	0	0
0	0	0	0	0

1	1	1
1	-8	1
1	1	1

0	1	1	1	0
0	2	-7	2	0
0	3	-6	3	0
0	2	-7	2	0
0	1	1	1	0

0	0	0	0	0
0	1	0	0	0
0	0	1	0	0
0	0	0	1	0
0	0	0	0	0

1	1	1
1	-8	1
1	1	1

1	1	1	0	0
1	-7	2	1	0
1	2	-6	2	1
0	1	2	-7	1
0	0	1	1	1

0	0	0	0	0
0	0	0	0	0
0	1	1	1	0
0	0	0	0	0
0	0	0	0	0

1	1	1
1	-8	1
1	1	1

0	0	0	0	0
1	2	3	2	1
1	-7	-6	-7	1
1	2	3	2	1
0	0	0	0	0

0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	1	0	0	0
0	0	0	0	0

1	1	1
1	-8	1
1	1	1

0	0	1	1	1
0	1	2	-7	1
1	2	-6	2	1
1	-7	2	1	0
1	1	1	0	0

1			С		С		1			Λ		_
	1		-)	<u> </u>	ว		1			1	
		1		1			ว		1		1	
			0		0		1			1		1
			1		3		5		-	-5		2
			2		-5		-12		-	-5		2
			2		-5		5			3		1
			1		1		1			0		0

0	0	0	0	0
0	0	1	0	0
0	0	1	0	0
0	0	1	0	0
0	0	0	0	0
0	0	0	0	0
0	1	0	0	0
0	0	1	0	0
0	0	0	1	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	1	1	1	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	1	0	0	0
0	0	0	0	0

1	1	1
1	1	1
1	1	1

1	1	1
1	-26	1
1	1	1

1	1	1
1	1	1
1	1	1

$$O_{i,j,k,c_j^{out}} = \sum_{h=1}^{c^{out}} \sum_{a,b,c,} w_{a,b,c}^k I_{i-a,j-b,k-c,h}$$

0	0	Q	0	0
0	٥	1	0	0
Q	Q	1	0	0
0	0	1	0	0
0	0	0	0	0
Q	٥	Q	0	0
Q	- 1 6	0	0	0
Q	Q	1	0	0
0	0	0	1	0
0	0	0	0	0
٥	Ō	Ō	0	0
٥	٥	٥	0	0
0	1	1	1	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	1	0	0	0
0	0	0	0	0

-21	

$$O_{i,j,k,c_j^{out}} = \sum_{h=1}^{c^{out}} \sum_{a,b,c,} w_{a,b,c}^k I_{i-a,j-b,k-c,h}$$

0	٥	٥	0	0
0	٥	1	0	0
0	Q	1	Q	0
0	0	1	0	0
0	0	0	0	0
0	0	٥	0	0
0	1	-206	0	0
0	٥	1	0	0
0	0	0	1	0
0	0	0	0	0
0	D	D	D	0
0	0	Q	0	0
0	1	1	1	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	1	0	0	0
0	0	0	0	0

$$O_{i,j,k,c_j^{out}} = \sum_{h=1}^{c^{out}} \sum_{a,b,c,} w_{a,b,c}^k I_{i-a,j-b,k-c,h}$$

00000001000010000100000000000000000000000000001000 <th></th> <th></th> <th></th> <th></th> <th></th>					
00100001000010000000000000100001000001000001000	0	0	Q	Q	Ø
0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 1 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	1	Q	Ø
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -05 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	1	Q	Q
0 0 0 0 0 0 0 0 0 0 0 0 1 0 -205 0 0 1 0 -205 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </td <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td>	0	0	1	0	0
0 0 0 0 0 0 1 0 -205 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	0	0
0 1 0 -205 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	٥	٥	0
0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	1	0	-206	10
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0	0	0	1	0	0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	1	0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	0	0
0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	D	D	D
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	0	0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	0	1	1	1	0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0	0	0	0	0	0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0	0	0	0	0	0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0	0	0	0	0	0
0 1 0 0 0 1 0 0 0 0 0 0 0 0	0	0	0	1	0
0 1 0 0 0 0 0 0 0 0	0	0	1	0	0
0 0 0 0	0	1	0	0	0
	0	0	0	0	0

$$O_{i,j,k,c_j^{out}} = \sum_{h=1}^{c^{out}} \sum_{a,b,c,} w_{a,b,c}^k I_{i-a,j-b,k-c,h}$$

0	0	0	0	0
٥	0	1	0	0
0	0	1	0	0
0	Q	1	0	0
0	0	0	0	0
0	0	0	0	0
0	1	0	0	0
0	-106	1	0	0
Q	Q	Q	1	0
0	0	0	0	0
0	0	0	0	0
Ō	Ô	Õ	0	0
0	1	1	1	0
0	Ø	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	1	0	0	0
0	0	0	0	0

-21	7	5
7		

$$O_{i,j,k,c_j^{out}} = \sum_{h=1}^{c^{out}} \sum_{a,b,c,} w_{a,b,c}^k I_{i-a,j-b,k-c,h}$$

0	0	0	0	0
0	0	1	D	0
0	0	1	0	0
0	Q	1	0	0
0	0	0	0	0
0	0	0	0	0
0	1	D	D	0
0	D	-216	D	0
0	0	0	1	0
0	0	0	0	0
0	0	0	0	0
0	Ð	D	D	0
0	1	1	1	0
0	10	10	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	1	0	0	0
0	0	0	0	0

1	1	1
1	1	1
1	1	1
1	1	1
1	-26	1
1	1	1
1	1	1
1	1	1
1	1	1

-21	7	5
7	-18	

$$O_{i,j,k,c_j^{out}} = \sum_{h=1}^{c^{out}} \sum_{a,b,c,} w_{a,b,c}^k I_{i-a,j-b,k-c,h}$$

0	0	0	0	0
0	0	1	0	0
0	0	1	۵	0
0	0	1	Q	Q
0	0	0	0	0
0	0	0	0	0
0	1	Û	Ď	D
0	0	1	-206	D
0	0	Q	1	Ø
0	0	0	0	0
0	0	0	0	0
0	0	Ô	Ô	Ô
0	1	1	1	۵
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	1	0	0	0
0	0	0	0	0

-21	7	5
7	-18	7

 $O_{i,j,k,c_j^{out}} = \sum_{h=1}^{c^{out}} \sum_{a,b,c,} w_{a,b,c}^k I_{i-a,j-b,k-c,h}$

0	0	0	0	0
0	0	1	0	0
0	0	1	0	٥
0	0	1	0.	0
0	0	Q	0	0
0	0	0	0	0
0	1	0	0	0
0	0	1	0	0
0	0	0	- 1 6	0
0	0	0	0	٥
0	0	0	0	0
0	0	0	0	0
0	1	1	1	Ó
0	0	۵	0	٥
0	0	٥	٥	٥
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	1	0	0	0
0	0	0	0	0

1	1	1
1	1	1
1	1	1
1	1	1
1	-26	1
1	1	1
1	1	1
1	1	1
1	1	1

-21	7	5
7	-18	7
5	7	-21

$$O_{i,j,k,c_j^{out}} = \sum_{h=1}^{c^{out}} \sum_{a,b,c,} w_{a,b,c}^k I_{i-a,j-b,k-c,h}$$

0	0	0	0	0
0	0	1	0	0
0	0	1	0	0
0	0	1	0	0
0	0	0	0	0
0	٥	Q	0	0
0	1	Q	0	0
Q	Q	1	0	0
0	0	0	1	0
0	0	0	0	0
٥	Ø	Ø	0	0
Q	- 10 6	Q	0	0
0	1	1	1	0
0	0	0	0	0
0	0	0	0	0
٥	0	0	0	0
0	٥	٥	1	0
Q	Q	1	0	0
0	1	0	0	0
0	0	0	0	0

1	1	1
1	1	1
1	1	1
1	1	1
1	-26	1
1	1	1
1	1	1
1	1	1
1	1	1

-21	7	5
7	-18	7
5	7	-21
_		
5		

$$O_{i,j,k,c_{j}^{out}} = \sum_{h=1}^{c^{out}} \sum_{a,b,c,} w_{a,b,c}^{k} I_{i-a,j-b,k-c,h}$$

0	0	0	0	0
0	0	1	0	0
0	0	1	0	0
0	0	1	0	0
0	0	0	0	0
0	٥	0	0	0
0	1	0	0	0
0	Q	1	Q	0
0	0	0	1	0
0	0	0	0	0
0	0	0	0	0
0	Q	-106	Q	0
0	1	1	1	0
0	0	0	0	0
0	0	0	0	0
0	0	٥	0	0
0	0	٥	1	0
0	Q	1	Q	0
0	1	0	0	0
0	0	0	0	0

-21	7	5
7	-18	7
5	7	-21
5	7	

$$O_{i,j,k,c_j^{out}} = \sum_{h=1}^{c^{out}} \sum_{a,b,c,} w_{a,b,c}^k I_{i-a,j-b,k-c,h}$$

0	0	0	0	0
0	0	1	0	0
0	0	1	0	0
0	0	1	0	0
0	0	0	0	0
0	0	0	0	0
0	1	0	0	0
0	0	1	0	Ō
0	0	0	1	0
0	0	٥	0	0
0	0	0	0	0
0	0	0	0	0
0	1	1	1	D
0	0	٥	-206	D
0	0	٥	0	0
0	0	0	0	0
0	0	0	1	0
0	0	1	Ô	Ō
0	1	0	0	Ô

-21	7	5
7	-18	7
5	7	-21
5	7	5
-21	-18	-21
5	7	5

$$O_{i,j,k,c_j^{out}} = \sum_{h=1}^{c^{out}} \sum_{a,b,c,} w_{a,b,c}^k I_{i-a,j-b,k-c,h}$$

Architetture basate su 3D Convolution

- C3D architecture
 - Simile a VGG
 - 8 convolution, 5 pool, 2 fully-connected layers 3x3x3 convolution kernels, 2x2x2 pooling kernels

Conv1a Conv2a Conv3a Conv3a 64 128 256 256	/3b Conv4a Conv4b 6 512 512	Conv5a C 512	Conv5b 512 fc6 fc7 4096 fc7	softmax
--	---	-----------------	-----------------------------	---------

3D ConvNets

- Problema:
 - La lunghezza temporale dell'input dev'essere limitata
 - Come facciamo a recuperare relazioni longterm?

Recurrent Neural Networks

- Un grafo con cicli
 - L'output di un perceptron al tempo t è concatenato all'input al tempo t + 1

Perché le RNN?

- Possono modellare conoscenza su sequenze
- Effetto memoria

Backpropagation Through Time

- L'addestramento avviene tramite unfolding
 - I loop corrispondono ad una rete very deep
 - Variante: l'unfolding viene tagliato ad una certa distanza
 - Backpropagation through time (BPTT)

Long Short Term Memory

- Un tipo speciale di RNN, capace di gestire le relazioni long-term tramite gating
 - Controllo sul vanishing gradien
 - L'informazione nel lungo period viene propagate in avanti

- La cella ha uno stato interno
 - fluisce lungo la catena con interazioni limitate

• Il meccanismo di gating permette di rimuovere o aggiungere informazione allo stato

• forget gate

• Determina quanta informazione precedente considerare

 $f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$

- Input gate
 - Quanto il nuovo input può influenzare la storia corrente

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

• Update state

• Gestione del gradiente evanescente...

 $C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$

• Output e nuovo stato

$$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$$
$$h_t = o_t * \tanh \left(C_t \right)$$

Varianti

- Gated Recurrent Unit (GRU)
 - Più rilavanza alla storia, controllando i gate

RNN e action recognition

- Input: encoding dei frames
 - Long-term Recurrent Con- volutional Networks (LRCNs)

Combinazioni flessibili

RNN + Attention

• I pesi sulle features sono distribuiti in base allo storico

- Idea:
 - Catturiamo la nozione di movimento in termini vettoriali
 - Lo spostamento dei pixel all'interno dell'immagine col tempo

Optical Flow: i pixel si muovono

A cosa serve? Motion Estimation

Object Tracking

Matematica del flusso ottico

- Corrispondenza di pixel
 - Dato un pixel in H, trova il pixel corrispondente in I
- Assunzioni
 - Le intensità non cambiano
 - I punti si spostano di poco

• (*u*, *v*) vettore di spostamento

• (*u*, *v*) vettore di spostamento

$$I(x + u, y + v, t) = I(x, y, t + 1)$$

• (*u*, *v*) vettore di spostamento

$$f(x+u, y+v) \approx f(x, y) + u \frac{\partial f(x, y)}{\partial x} + v \frac{\partial f(x, y)}{\partial v}$$

• Approssimando in serie di Taylor al primo ordine

$$I(x + u, y + v, t) = I(x, y, t + 1)$$

• (*u*, *v*) vettore di spostamento

$$f(x+u, y+v) \approx f(x, y) + u \frac{\partial f(x, y)}{\partial x} + v \frac{\partial f(x, y)}{\partial y}$$

• Approssimando in serie di Taylor al primo ordine

• (*u*, *v*) vettore di spostamento

$$f(x + u, y + v) \approx f(x, y) + u \frac{\partial f(x, y)}{\partial x} + v \frac{\partial f(x, y)}{\partial y}$$

• Approssimando in serie di Taylor al primo ordine

• (*u*, *v*) vettore di spostamento

$$f(x + u, y + v) \approx f(x, y) + u \frac{\partial f(x, y)}{\partial x} + v \frac{\partial f(x, y)}{\partial y}$$

• Approssimando in serie di Taylor al primo ordine

 $uI_x(x, y, t) + vI_y(x, y, t) \approx I_t(x, y)$

• Risolvendo l'equazione troviamo (u, v)

 $uI_x(x, y, t) + vI_y(x, y, t) \approx I_t(x, y)$

• Sovraspecificato

• Risolvendo l'equazione troviamo (u, v)

 $uI_x(x, y, t) + vI_y(x, y, t) \approx I_t(x, y)$

• Idea: prendiamo un intorno di (x, y)

• Risolvendo l'equazione troviamo (u, v)

 $uI_x(x, y, t) + vI_y(x, y, t) \approx I_t(x, y)$

- Idea: prendiamo un intorno di (x, y)
 - Lo spostamento è simile localmente

• Risolvendo l'equazione troviamo (u, v)

 $uI_x(x, y, t) + vI_y(x, y, t) \approx I_t(x, y)$

- Idea: prendiamo un intorno di (x, y)
 - Lo spostamento è simile localmente

$$\begin{bmatrix} I_x(x_0, y_0) & I_y(x_0, y_0) \\ \dots & \dots \\ I_x(x_n, y_n) & I_y(x_n, y_n) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} I_t(x_0, y_0) \\ \dots \\ I_y(x_n, y_n) \end{bmatrix}$$

A

• Risolvendo l'equazione troviamo (u, v)

 $uI_x(x,y,t) + vI_y(x,y,t) \approx I_t(x,y)$

b

- Idea: prendiamo un intorno di (x, y)
 - Lo spostamento è simile localmente

$$\begin{bmatrix} I_x(x_0, y_0) & I_y(x_0, y_0) \\ \dots & \dots \\ I_x(x_n, y_n) & I_y(x_n, y_n) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} I_t(x_0, y_0) \\ \dots \\ I_y(x_n, y_n) \end{bmatrix}$$

• Risolvendo l'equazione troviamo (u, v)

 $uI_x(x,y,t) + vI_y(x,y,t) \approx I_t(x,y)$

- Idea: prendiamo un intorno di (x, y)
 - Lo spostamento è simile localmente

$$A\begin{bmatrix}u\\\nu\end{bmatrix} = b$$

• Risolvendo l'equazione troviamo (u, v)

 $uI_x(x, y, t) + vI_y(x, y, t) \approx I_t(x, y)$

- Idea: prendiamo un intorno di (x, y)
 - Lo spostamento è simile localmente

$$\begin{bmatrix} u \\ v \end{bmatrix} = (A^T A)^{-1} A^T b$$

Estensioni

- Apertura
- Pyramids
- Calcolo denso
 - Approssimazione al secondo ordine
 - Trasformazioni affini
- Learning optical Flow
 - FlowNet

Perché ci interessa il flusso ottico?

• Two-Stream Networks

Optical Flow ConvNets

- Dati L frames consecutivi, lo stream temporale consiste di 2L canali di input
 - $I(x, y, c) = d_x(x, y)$
 - $I(x, y, c + 1) = d_y(x, y)$
 - $(d_x(x, y), d_y(x, y))$ rappresenta il displacement vector

Riassunto: Una pletora di alternative

