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Activity Recognition

• Gli algoritmi che abbiamo visto finora si applicano al dominio spaziale
• Classificazione
• Segmentazione
• Scene understanding
• …

• Che significa includere il dominio temporale?
• Immagini che fluiscono lungo l’asse temporale
• video

• Desiderata
• Catturare le caratteristiche del «movimento» (motion) e sfruttarle per la 

classificazione
• In maniera computazionalmente gestibile



Esempio

• Sapreste riconoscere da un singolo frame lo stile di nuotata?



Perché è difficile

• Alto costo computazionale
• In un video la quantità di immagini è alta (~25fps)

• Necessità di catturare i contesti short-term (pochi frame) e long-term
(secondi, minuti, …)
• Difficoltà di reperire dati di training



Datasets per activity recognition

• UCF-101
• 10k videos

• HMDB-51
• 5k videos

Brief Recent History of Video
Understanding

UCF 101 (10k videos) / 
HMDB-51 (5k videos):
- classification

2012-2016 ActivityNet, Thumos, UCF101-Det:
- Action localization

Problems studied in 
isolation

Transfer from 
ImageNet



Datasets per activity recognition

• Kinetics-400
• 300k videos
• 10s clips

• Human action classification
• 400 human action classes

Deep learning on videos

Kinetics-400 (300k videos)
- classification

2017 ActivityNet, Charades, AVA
- Action localization

Deep learning video 
models on Kinetics-400

Transfer from Kinetics-
400



Confronto Kinetics has kept growing

Kinetics-600 2018 600 min 450 500,000 500,000

Kinetics-700 20199 700 min 450 650,000 650,000



Youtube8M

• large-scale labeled video dataset
• high-quality machine-generated annotations from a diverse vocabulary of 

3,800+ visual entities
• scale and diversity



Altri datasets

• Sports-1M
• 400 sport classes

• Something-something
• 174 classes

• HACS
• 200 classes, positive/negative samples



2D Convolution non funziona!

• Varie possibilità di combinare i frame
• Accuratezza scarsa
• Non cattura feature spazio-temporali

Figure 1: Explored approaches for fusing information over
temporal dimension through the network. Red, green and
blue boxes indicate convolutional, normalization and pool-
ing layers respectively. In the Slow Fusion model, the de-
picted columns share parameters.

3.1. Time Information Fusion in CNNs
We investigate several approaches to fusing information

across temporal domain (Figure 1): the fusion can be done
early in the network by modifying the first layer convolu-
tional filters to extend in time, or it can be done late by
placing two separate single-frame networks some distance
in time apart and fusing their outputs later in the process-
ing. We first describe a baseline single-frame CNN and then
discuss its extensions in time according to different types of
fusion.

Single-frame. We use a single-frame baseline architec-
ture to understand the contribution of static appearance to
the classification accuracy. This network is similar to the
ImageNet challenge winning model [11], but accepts in-
puts of size 170 ⇥ 170 ⇥ 3 pixels instead of the original
224⇥ 224⇥ 3. Using shorthand notation, the full architec-
ture is C(96, 11, 3)-N -P -C(256, 5, 1)-N -P -C(384, 3, 1)-
C(384, 3, 1)-C(256, 3, 1)-P -FC(4096)-FC(4096), where
C(d, f, s) indicates a convolutional layer with d filters of
spatial size f ⇥f , applied to the input with stride s. FC(n)
is a fully connected layer with n nodes. All pooling layers P
pool spatially in non-overlapping 2⇥ 2 regions and all nor-
malization layers N are defined as described in Krizhevsky
et al. [11] and use the same parameters: k = 2, n = 5,↵ =
10�4,� = 0.5. The final layer is connected to a softmax
classifier with dense connections.

Early Fusion. The Early Fusion extension combines in-
formation across an entire time window immediately on the
pixel level. This is implemented by modifying the filters on
the first convolutional layer in the single-frame model by
extending them to be of size 11⇥ 11⇥ 3⇥ T pixels, where
T is some temporal extent (we use T = 10, or approxi-
mately a third of a second). The early and direct connectiv-
ity to pixel data allows the network to precisely detect local
motion direction and speed.

Late Fusion. The Late Fusion model places two sepa-
rate single-frame networks (as described above, up to last
convolutional layer C(256, 3, 1) with shared parameters a
distance of 15 frames apart and then merges the two streams

in the first fully connected layer. Therefore, neither single-
frame tower alone can detect any motion, but the first fully
connected layer can compute global motion characteristics
by comparing outputs of both towers.

Slow Fusion. The Slow Fusion model is a balanced
mix between the two approaches that slowly fuses temporal
information throughout the network such that higher lay-
ers get access to progressively more global information in
both spatial and temporal dimensions. This is implemented
by extending the connectivity of all convolutional layers
in time and carrying out temporal convolutions in addition
to spatial convolutions to compute activations, as seen in
[1, 10]. In the model we use, the first convolutional layer is
extended to apply every filter of temporal extent T = 4 on
an input clip of 10 frames through valid convolution with
stride 2 and produces 4 responses in time. The second and
third layers above iterate this process with filters of tempo-
ral extent T = 2 and stride 2. Thus, the third convolutional
layer has access to information across all 10 input frames.

3.2. Multiresolution CNNs
Since CNNs normally take on orders of weeks to train on

large-scale datasets even on the fastest available GPUs, the
runtime performance is a critical component to our ability
to experiment with different architecture and hyperparame-
ter settings. This motivates approaches for speeding up the
models while still retaining their performance. There are
multiple fronts to these endeavors, including improvements
in hardware, weight quantization schemes, better optimiza-
tion algorithms and initialization strategies, but in this work
we focus on changes in the architecture that enable faster
running times without sacrificing performance.

One approach to speeding up the networks is to reduce
the number of layers and neurons in each layer, but simi-
lar to [28] we found that this consistently lowers the per-
formance. Instead of reducing the size of the network, we
conducted further experiments on training with images of
lower resolution. However, while this improved the run-
ning time of the network, the high-frequency detail in the
images proved critical to achieving good accuracy.

Fovea and context streams. The proposed multiresolu-
tion architecture aims to strike a compromise by having two
separate streams of processing over two spatial resolutions
(Figure 2). A 178 ⇥ 178 frame video clip forms an input
to the network. The context stream receives the downsam-
pled frames at half the original spatial resolution (89 ⇥ 89
pixels), while the fovea stream receives the center 89 ⇥ 89
region at the original resolution. In this way, the the total
input dimensionality is halved. Notably, this design takes
advantage of the camera bias present in many online videos,
since the object of interest often occupies the center region.

Architecture changes. Both streams are processed by
identical network as the full frame models, but starting at
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3D Convolution
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3D Convolution
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Architetture basate su 3D Convolution
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Figure 3. C3D architecture. C3D net has 8 convolution, 5 max-pooling, and 2 fully connected layers, followed by a softmax output layer.
All 3D convolution kernels are 3⇥ 3⇥ 3 with stride 1 in both spatial and temporal dimensions. Number of filters are denoted in each box.
The 3D pooling layers are denoted from pool1 to pool5. All pooling kernels are 2⇥ 2⇥ 2, except for pool1 is 1⇥ 2⇥ 2. Each fully
connected layer has 4096 output units.

Method Number of Nets Clip hit@1 Video hit@1 Video hit@5

DeepVideo’s Single-Frame + Multires [18] 3 nets 42.4 60.0 78.5
DeepVideo’s Slow Fusion [18] 1 net 41.9 60.9 80.2
Convolution pooling on 120-frame clips [29] 3 net 70.8* 72.4 90.8

C3D (trained from scratch) 1 net 44.9 60.0 84.4
C3D (fine-tuned from I380K pre-trained model) 1 net 46.1 61.1 85.2

Table 2. Sports-1M classification result. C3D outperforms [18] by 5% on top-5 video-level accuracy. (*)We note that the method of [29]
uses long clips, thus its clip-level accuracy is not directly comparable to that of C3D and DeepVideo.

extract C3D feature, a video is split into 16 frame long
clips with a 8-frame overlap between two consecutive clips.
These clips are passed to the C3D network to extract fc6
activations. These clip fc6 activations are averaged to
form a 4096-dim video descriptor which is then followed
by an L2-normalization. We refer to this representation as
C3D video descriptor/feature in all experiments, unless we
clearly specify the difference.

What does C3D learn? We use the deconvolution
method explained in [46] to understand what C3D is learn-
ing internally. We observe that C3D starts by focusing on
appearance in the first few frames and tracks the salient mo-
tion in the subsequent frames. Figure 4 visualizes deconvo-
lution of two C3D conv5b feature maps with highest acti-
vations projected back to the image space. In the first exam-
ple, the feature focuses on the whole person and then tracks
the motion of the pole vault performance over the rest of the
frames. Similarly in the second example it first focuses on
the eyes and then tracks the motion happening around the
eyes while applying the makeup. Thus C3D differs from
standard 2D ConvNets in that it selectively attends to both
motion and appearance. We provide more visualizations in
the supplementary material to give a better insight about the
learned feature.

4. Action recognition

Dataset: We evaluate C3D features on UCF101
dataset [38]. The dataset consists of 13, 320 videos of 101
human action categories. We use the three split setting pro-
vided with this dataset.

Classification model: We extract C3D features and in-
put them to a multi-class linear SVM for training models.
We experiment with C3D descriptor using 3 different nets:
C3D trained on I380K, C3D trained on Sports-1M, and C3D
trained on I380K and fine-tuned on Sports-1M. In the mul-

tiple nets setting, we concatenate the L2-normalized C3D
descriptors of these nets.

Baselines: We compare C3D feature with a few base-
lines: the current best hand-crafted features, namely im-
proved dense trajectories (iDT) [44] and the popular-used
deep image features, namely Imagenet [16], using Caffe’s
Imagenet pre-train model. For iDT, we use the bag-of-word
representation with a codebook size of 5000 for each feature
channel of iDT which are trajectories, HOG, HOF, MBHx,
and MBHy. We normalize histogram of each channel sepa-
rately using L1-norm and concatenate these normalized his-
tograms to form a 25K feature vector for a video. For Im-
agenet baseline, similar to C3D, we extract Imagenet fc6
feature for each frame, average these frame features to make
video descriptor. A multi-class linear SVM is also used for
these two baselines for a fair comparison.

Results: Table 3 presents action recognition accuracy
of C3D compared with the two baselines and current best
methods. The upper part shows results of the two base-
lines. The middle part presents methods that use only RGB
frames as inputs. And the lower part reports all current best
methods using all possible feature combinations (e.g. opti-
cal flows, iDT).

C3D fine-tuned net performs best among three C3D nets
described previously. The performance gap between these
three nets, however, is small (1%). From now on, we refer
to the fine-tuned net as C3D, unless otherwise stated. C3D
using one net which has only 4, 096 dimensions obtains an
accuracy of 82.3%. C3D with 3 nets boosts the accuracy
to 85.2% with the dimension is increased to 12, 288. C3D
when combined with iDT further improves the accuracy to
90.4%, while when it is combined with Imagenet, we ob-
serve only 0.6% improvement. This indicates C3D can well
capture both appearance and motion information, thus there
is no benefit to combining with Imagenet which is an ap-

• C3D architecture
• Simile a VGG
• 8 convolution, 5 pool, 2 fully-connected layers – 3x3x3 convolution kernels, 

2x2x2 pooling kernels



Figure 12. Deconvolutions of a C3D conv5b learned feature map which detects biking-like motions. Note that the last two clips have no
biking but their motion patterns are similar to biking motions. Best viewed in a color screen.



3D ConvNets

• Problema: 
• La lunghezza temporale dell’input 

dev’essere limitata
• Come facciamo a recuperare relazioni long-

term?
3D CNN

Short clip
(2-4 sec)

Action



Recurrent Neural Networks

• Un grafo con cicli
• L’output di un perceptron al tempo 𝑡 è concatenato all’input al tempo 𝑡 + 1

unfold



Perché le RNN?

• Possono modellare conoscenza su sequenze
• Effetto memoria



Backpropagation Through Time

• L’addestramento avviene tramite unfolding
• I loop corrispondono ad una rete very deep
• Variante: l’unfolding viene tagliato ad una certa distanza

• Backpropagation through time (BPTT)



Long Short Term Memory

• Un tipo speciale di RNN, capace di gestire le relazioni long-term 
tramite gating
• Controllo sul vanishing gradien
• L’informazione nel lungo period viene propagate in avanti



LSTM
Neuron (Cell)Neuron (Cell) Neuron (Cell)



LSTM

• La cella ha uno stato interno
• fluisce lungo la catena con interazioni limitate



LSTM

• Il meccanismo di gating permette di rimuovere o aggiungere
informazione allo stato



LSTM

• forget gate
• Determina quanta informazione precedente considerare



LSTM

• Input gate
• Quanto il nuovo input può influenzare la storia corrente



LSTM

• Update state
• Gestione del gradiente evanescente…



LSTM

• Output e nuovo stato



Varianti

• Gated Recurrent Unit (GRU)
• Più rilavanza alla storia, controllando i gate



RNN e action recognition
• Input: encoding dei frames
• Long-term Recurrent Con- volutional Networks (LRCNs) 

CNN

Flusso video



Combinazioni flessibili

1

Long-term Recurrent Convolutional Networks for
Visual Recognition and Description

Jeff Donahue, Lisa Anne Hendricks, Marcus Rohrbach, Subhashini Venugopalan, Sergio Guadarrama,
Kate Saenko, Trevor Darrell

Abstract—
Models based on deep convolutional networks have dominated recent image interpretation tasks; we investigate whether models which
are also recurrent are effective for tasks involving sequences, visual and otherwise. We describe a class of recurrent convolutional
architectures which is end-to-end trainable and suitable for large-scale visual understanding tasks, and demonstrate the value of these
models for activity recognition, image captioning, and video description. In contrast to previous models which assume a fixed visual
representation or perform simple temporal averaging for sequential processing, recurrent convolutional models are “doubly deep” in
that they learn compositional representations in space and time. Learning long-term dependencies is possible when nonlinearities are
incorporated into the network state updates. Differentiable recurrent models are appealing in that they can directly map variable-length
inputs (e.g., videos) to variable-length outputs (e.g., natural language text) and can model complex temporal dynamics; yet they can be
optimized with backpropagation. Our recurrent sequence models are directly connected to modern visual convolutional network
models and can be jointly trained to learn temporal dynamics and convolutional perceptual representations. Our results show that such
models have distinct advantages over state-of-the-art models for recognition or generation which are separately defined or optimized.

F

1 INTRODUCTION

Recognition and description of images and videos is
a fundamental challenge of computer vision. Dramatic
progress has been achieved by supervised convolutional
neural network (CNN) models on image recognition tasks,
and a number of extensions to process video have been
recently proposed. Ideally, a video model should allow pro-
cessing of variable length input sequences, and also provide
for variable length outputs, including generation of full-
length sentence descriptions that go beyond conventional
one-versus-all prediction tasks. In this paper we propose
Long-term Recurrent Convolutional Networks (LRCNs), a class
of architectures for visual recognition and description which
combines convolutional layers and long-range temporal re-
cursion and is end-to-end trainable (Figure 1). We instanti-
ate our architecture for specific video activity recognition,
image caption generation, and video description tasks as
described below.

Research on CNN models for video processing has
considered learning 3D spatio-temporal filters over raw
sequence data [1], [2], and learning of frame-to-frame rep-
resentations which incorporate instantaneous optic flow or
trajectory-based models aggregated over fixed windows
or video shot segments [3], [4]. Such models explore two
extrema of perceptual time-series representation learning:
either learn a fully general time-varying weighting, or apply

• J. Donahue, L. A. Hendricks, M. Rohrbach, S. Guadarrama, and T. Darrell
are with the Department of Electrical Engineering and Computer Science,
UC Berkeley, Berkeley, CA.

• M. Rohrbach and T. Darrell are additionally affiliated with the Interna-
tional Computer Science Institute, Berkeley, CA.

• S. Venugopalan is with the Department of Computer Science, UT Austin,
Austin, TX.

• K. Saenko is with the Department of Computer Science, UMass Lowell,
Lowell, MA.

Manuscript received November 30, 2015.
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Fig. 1. We propose Long-term Recurrent Convolutional Networks (LR-
CNs), a class of architectures leveraging the strengths of rapid progress
in CNNs for visual recognition problems, and the growing desire to
apply such models to time-varying inputs and outputs. LRCN processes
the (possibly) variable-length visual input (left) with a CNN (middle-
left), whose outputs are fed into a stack of recurrent sequence models
(LSTMs, middle-right), which finally produce a variable-length prediction
(right). Both the CNN and LSTM weights are shared across time, result-
ing in a representation that scales to arbitrarily long sequences.

simple temporal pooling. Following the same inspiration
that motivates current deep convolutional models, we ad-
vocate for video recognition and description models which
are also deep over temporal dimensions; i.e., have temporal
recurrence of latent variables. Recurrent Neural Network
(RNN) models are “deep in time” – explicitly so when
unrolled – and form implicit compositional representations
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Fig. 3. Task-specific instantiations of our LRCN model for activity recognition, image description, and video description.

input and output time steps may differ (i.e., we may
have T 6= T 0). In video description, for example, the
number of frames in the video should not constrain
the length of (number of words in) the natural
language description.

In the previously described generic formulation of re-
current models, each instance has T inputs hx1, x2, ..., xT i

and T outputs hy1, y2, ..., yT i. Note that this formulation
does not align cleanly with any of the three problem classes
described above – in the first two classes, either the input
or output is static, and in the third class, the input length
T need not match the output length T 0. Hence, we describe
how we adapt this formulation in our hybrid model to each
of the above three problem settings.

With sequential inputs and static outputs (class 1), we
take a late-fusion approach to merging the per-time step
predictions hy1, y2, ..., yT i into a single prediction y for the
full sequence. With static inputs x and sequential outputs
(class 2), we simply duplicate the input x at all T time
steps: 8t 2 {1, 2, ..., T} : xt := x. Finally, for a sequence-
to-sequence problem with (in general) different input and
output lengths (class 3), we take an “encoder-decoder”
approach, as proposed for machine translation by [9], [20].
In this approach, one sequence model, the encoder, maps
the input sequence to a fixed-length vector, and another se-
quence model, the decoder, unrolls this vector to a sequential
output of arbitrary length. Under this type of model, a run
of the full system on one instance occurs over T+T 0

�1 time
steps. For the first T time steps, the encoder processes the
input x1, x2, ..., xT , and the decoder is inactive until time
step T , when the encoder’s output is passed to the decoder,
which in turn predicts the first output y1. For the latter T 0

�1
time steps, the decoder predicts the remainder of the out-
put y2, y3, ..., yT 0 with the encoder inactive. This encoder-
decoder approach, as applied to the video description task,
is depicted in Section 6, Figure 5 (left).

Under the proposed system, the parameters (V,W )
of the model’s visual and sequential components can
be jointly optimized by maximizing the likelihood of
the ground truth outputs yt at each time step t, con-
ditioned on the input data and labels up to that point
(x1:t, y1:t�1). In particular, for a training set D of labeled
sequences (xt, yt)Tt=1 2 D, we optimize parameters (V,W )
to minimize the expected negative log likelihood of a

sequence sampled from the training set L(V,W,D) =
�

1
|D|

P
(xt,yt)Tt=12D

PT
t=1 logP (yt|x1:t, y1:t�1, V,W ).

One of the most appealing aspects of the described sys-
tem is the ability to learn the parameters “end-to-end,” such
that the parameters V of the visual feature extractor learn
to pick out the aspects of the visual input that are relevant
to the sequential classification problem. We train our LRCN
models using stochastic gradient descent, with backprop-
agation used to compute the gradient rV,WL(V,W, D̃) of
the objective L with respect to all parameters (V,W ) over
minibatches D̃ ⇢ D sampled from the training dataset D.

We next demonstrate the power of end-to-end trainable
hybrid convolutional and recurrent networks by exploring
three applications: activity recognition, image captioning,
and video description.

4 ACTIVITY RECOGNITION

Activity recognition is an instance of the first class of se-
quential learning tasks described above: each frame in a
length T sequence is the input to a single convolutional
network (i.e., the convnet weights are tied across time). We
consider both RGB and flow as inputs to our recognition
system. Flow is computed with [21] and transformed into a
“flow image” by scaling and shifting x and y flow values to
a range of [�128,+128]. A third channel for the flow image
is created by calculating the flow magnitude.

During training, videos are resized to 240⇥ 320 and we
augment our data by using 227 ⇥ 227 crops and mirroring.
Additionally, we train the LRCN networks with video clips
of 16 frames, even though the UCF101 videos are generally
much longer (on the order of 100 frames when extracting
frames at 30 FPS). Training on shorter video clips can be
seen as analogous to training on image crops and is a useful
method of data augmentation. LRCN is trained to predict
the video’s activity class at each time step. To produce a
single label prediction for an entire video clip, we average
the label probabilities – the outputs of the network’s softmax
layer – across all frames and choose the most probable label.
At test time, we extract 16 frame clips with a stride of 8
frames from each video and average across all clips from a
single video.

The CNN base of LRCN in our activity recognition
experiments is a hybrid of the CaffeNet [12] reference model
(a minor variant of AlexNet [17]) and the network used



RNN + Attention

• I pesi sulle features sono distribuiti in base allo storico
Workshop track - ICLR 2016

(a) The soft attention mechanism (b) Our recurrent model

Figure 2: (2a) The CNN takes the video frame as its input and produces a feature cube. The model computes
the current input xt as an average of the feature slices weighted according to the location softmax lt (2b) At each
time-step t, our recurrent network takes a feature slice xt, generated as in (2a), as the input. It then propagates
xt through three layers of LSTMs and predicts the next location probabilities lt+1 and the class label yt.

3.2 THE LSTM AND THE ATTENTION MECHANISM

We use the LSTM implementation discussed in Zaremba et al. (2014) and Xu et al. (2015):
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ct = ft � ct�1 + it � gt, (2)
ht = ot � tanh(ct), (3)

where it is the input gate, ft is the forget gate, ot is the output gate, and gt is calculated as shown
in Eq. 1. ct is the cell state, ht is the hidden state, and xt (see Eqs. 4, 5) represents the input to the
LSTM at time-step t. M : Ra ! Rb is an affine transformation consisting of trainable parameters
with a = d+D and b = 4d, where d is the dimensionality of all of it, ft, ot, gt, ct, and ht.

At each time-step t, our model predicts lt+1, a softmax over K⇥K locations, and yt, a softmax over
the label classes with an additional hidden layer with tanh activations (see Fig. 2b). The location
softmax is defined as follows:

lt,i = p(Lt = i|ht�1) =
exp(W>

i ht�1)PK⇥K
j=1 exp(W>

j ht�1)
i 2 1 . . .K2, (4)

where Wi are the weights mapping to the ith element of the location softmax and Lt is a random
variable which can take 1-of-K2 values. This softmax can be thought of as the probability with
which our model believes the corresponding region in the input frame is important. After calculating
these probabilities, the soft attention mechanism (Bahdanau et al., 2015) computes the expected
value of the input at the next time-step xt by taking expectation over the feature slices at different
regions (see Fig. 2a):

xt = Ep(Lt|ht�1)[Xt] =
K2X

i=1

lt,iXt,i, (5)

where Xt is the feature cube and Xt,i is the ith slice of the feature cube at time-step t. Note that
in the hard attention based models, we would sample Lt from a softmax distribution of Eq. 4. The
input xt would then be the feature slice at the sampled location instead of taking expectation over
all the slices. Thus, hard attention based models are not differentiable and have to resort to some
form of sampling.
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Optical Flow

• Idea:
• Catturiamo la nozione di movimento in termini vettoriali

• Lo spostamento dei pixel all’interno dell’immagine col tempo



Optical Flow: i pixel si muovonoMotion estimation: Optical flow

Will start by estimating motion of each pixel separately
Then will consider motion of entire image 



A cosa serve?
Motion Estimation Object Tracking



Matematica del flusso ottico

• Corrispondenza di pixel
• Dato un pixel in H, trova il pixel corrispondente in I

• Assunzioni
• Le intensità non cambiano
• I punti si spostano di poco

Problem definition:  optical flow

How to estimate pixel motion from image H to image I?
• Solve pixel correspondence problem

– given a pixel in H, look for nearby pixels of the same color in I

Key assumptions
• color constancy:  a point in H looks the same in I

– For grayscale images, this is brightness constancy
• small motion:  points do not move very far

This is called the optical flow problem



Idea

• 𝑢, 𝑣 vettore di spostamento

(𝑥, 𝑦)

(𝑥 + 𝑢, 𝑦 + 𝑣)

𝐼(⋅,⋅, 𝑡) 𝐼(⋅,⋅, 𝑡 + 1)



Idea

• 𝑢, 𝑣 vettore di spostamento

(𝑥, 𝑦)

(𝑥 + 𝑢, 𝑦 + 𝑣)

𝐼 𝑥 + 𝑢, 𝑦 + 𝑣, 𝑡 = 𝐼(𝑥, 𝑦, 𝑡 + 1)

𝐼(⋅,⋅, 𝑡) 𝐼(⋅,⋅, 𝑡 + 1)



Idea

• 𝑢, 𝑣 vettore di spostamento
• Approssimando in serie di Taylor al primo ordine

(𝑥, 𝑦)

(𝑥 + 𝑢, 𝑦 + 𝑣)

𝐼 𝑥 + 𝑢, 𝑦 + 𝑣, 𝑡 = 𝐼(𝑥, 𝑦, 𝑡 + 1)

𝑓 𝑥 + 𝑢, 𝑦 + 𝑣 ≈ 𝑓 𝑥, 𝑦 + 𝑢
𝜕𝑓(𝑥, 𝑦)
𝜕𝑥 + 𝑣

𝜕𝑓(𝑥, 𝑦)
𝜕𝑣

𝐼(⋅,⋅, 𝑡) 𝐼(⋅,⋅, 𝑡 + 1)



Idea

• 𝑢, 𝑣 vettore di spostamento
• Approssimando in serie di Taylor al primo ordine

(𝑥, 𝑦)

(𝑥 + 𝑢, 𝑦 + 𝑣)

𝐼 𝑥, 𝑦, 𝑡 + 𝑢
𝜕𝐼(𝑥, 𝑦, 𝑡)

𝜕𝑥
+ 𝑣

𝜕𝐼(𝑥, 𝑦, 𝑡)
𝜕𝑦

≈ 𝐼(𝑥, 𝑦, 𝑡 + 1)

𝑓 𝑥 + 𝑢, 𝑦 + 𝑣 ≈ 𝑓 𝑥, 𝑦 + 𝑢
𝜕𝑓(𝑥, 𝑦)
𝜕𝑥 + 𝑣

𝜕𝑓(𝑥, 𝑦)
𝜕𝑦

𝐼(⋅,⋅, 𝑡) 𝐼(⋅,⋅, 𝑡 + 1)



Idea

• 𝑢, 𝑣 vettore di spostamento
• Approssimando in serie di Taylor al primo ordine

(𝑥, 𝑦)

(𝑥 + 𝑢, 𝑦 + 𝑣)

𝑢
𝜕𝐼(𝑥, 𝑦, 𝑡)
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≈ 𝐼 𝑥, 𝑦, 𝑡 + 1 − 𝐼 𝑥, 𝑦, 𝑡

𝑓 𝑥 + 𝑢, 𝑦 + 𝑣 ≈ 𝑓 𝑥, 𝑦 + 𝑢
𝜕𝑓(𝑥, 𝑦)
𝜕𝑥 + 𝑣

𝜕𝑓(𝑥, 𝑦)
𝜕𝑦

𝐼(⋅,⋅, 𝑡) 𝐼(⋅,⋅, 𝑡 + 1)



Idea

• 𝑢, 𝑣 vettore di spostamento
• Approssimando in serie di Taylor al primo ordine

(𝑥, 𝑦)

(𝑥 + 𝑢, 𝑦 + 𝑣)

𝑢𝐼:(𝑥, 𝑦, 𝑡) + 𝑣𝐼;(𝑥, 𝑦, 𝑡) ≈ 𝐼< 𝑥, 𝑦

𝑓 𝑥 + 𝑢, 𝑦 + 𝑣 ≈ 𝑓 𝑥, 𝑦 + 𝑢
𝜕𝑓(𝑥, 𝑦)
𝜕𝑥 + 𝑣

𝜕𝑓(𝑥, 𝑦)
𝜕𝑦

𝐼(⋅,⋅, 𝑡) 𝐼(⋅,⋅, 𝑡 + 1)



Optical Flow

• Risolvendo l’equazione troviamo 𝑢, 𝑣

• Sovraspecificato

𝑢𝐼:(𝑥, 𝑦, 𝑡) + 𝑣𝐼;(𝑥, 𝑦, 𝑡) ≈ 𝐼< 𝑥, 𝑦



Optical Flow

• Risolvendo l’equazione troviamo 𝑢, 𝑣

• Idea: prendiamo un intorno di (𝑥, 𝑦)

𝑢𝐼:(𝑥, 𝑦, 𝑡) + 𝑣𝐼;(𝑥, 𝑦, 𝑡) ≈ 𝐼< 𝑥, 𝑦

(𝑥, 𝑦)

𝐼(⋅,⋅, 𝑡)



Optical Flow

• Risolvendo l’equazione troviamo 𝑢, 𝑣

• Idea: prendiamo un intorno di (𝑥, 𝑦)
• Lo spostamento è simile localmente

𝑢𝐼:(𝑥, 𝑦, 𝑡) + 𝑣𝐼;(𝑥, 𝑦, 𝑡) ≈ 𝐼< 𝑥, 𝑦

(𝑥, 𝑦)

𝐼(⋅,⋅, 𝑡)



Optical Flow

• Risolvendo l’equazione troviamo 𝑢, 𝑣

• Idea: prendiamo un intorno di (𝑥, 𝑦)
• Lo spostamento è simile localmente

𝑢𝐼:(𝑥, 𝑦, 𝑡) + 𝑣𝐼;(𝑥, 𝑦, 𝑡) ≈ 𝐼< 𝑥, 𝑦

(𝑥, 𝑦)

𝐼(⋅,⋅, 𝑡)

𝐼:(𝑥=, 𝑦=) 𝐼;(𝑥=, 𝑦=)
… …

𝐼:(𝑥>, 𝑦>) 𝐼;(𝑥>, 𝑦>)

𝑢
𝑣 =

𝐼<(𝑥=, 𝑦=)
…

𝐼;(𝑥>, 𝑦>)



Optical Flow

• Risolvendo l’equazione troviamo 𝑢, 𝑣

• Idea: prendiamo un intorno di (𝑥, 𝑦)
• Lo spostamento è simile localmente

𝑢𝐼:(𝑥, 𝑦, 𝑡) + 𝑣𝐼;(𝑥, 𝑦, 𝑡) ≈ 𝐼< 𝑥, 𝑦

(𝑥, 𝑦)

𝐼(⋅,⋅, 𝑡)

𝐼:(𝑥=, 𝑦=) 𝐼;(𝑥=, 𝑦=)
… …
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𝑢
𝑣 =

𝐼<(𝑥=, 𝑦=)
…

𝐼;(𝑥>, 𝑦>)

𝐴 𝑏



Optical Flow

• Risolvendo l’equazione troviamo 𝑢, 𝑣

• Idea: prendiamo un intorno di (𝑥, 𝑦)
• Lo spostamento è simile localmente

𝑢𝐼:(𝑥, 𝑦, 𝑡) + 𝑣𝐼;(𝑥, 𝑦, 𝑡) ≈ 𝐼< 𝑥, 𝑦

(𝑥, 𝑦)

𝐼(⋅,⋅, 𝑡)

𝐴 𝑢
𝑣 = 𝑏



Optical Flow

• Risolvendo l’equazione troviamo 𝑢, 𝑣

• Idea: prendiamo un intorno di (𝑥, 𝑦)
• Lo spostamento è simile localmente

𝑢𝐼:(𝑥, 𝑦, 𝑡) + 𝑣𝐼;(𝑥, 𝑦, 𝑡) ≈ 𝐼< 𝑥, 𝑦

(𝑥, 𝑦)

𝐼(⋅,⋅, 𝑡)

𝑢
𝑣 = 𝐴A𝐴 +(𝐴A𝑏



Estensioni

• Apertura
• Pyramids
• Calcolo denso
• Approssimazione al secondo ordine
• Trasformazioni affini

• Learning optical Flow
• FlowNet

Figure 2. The two network architectures: FlowNetSimple (top) and FlowNetCorr (bottom).

nate the ‘upconvolution’ results with the features from the
‘contractive’ part of the network.

Convolutional neural networks are known to be very
good at learning input–output relations given enough la-
beled data. We therefore take an end-to-end learning ap-
proach to predicting optical flow: given a dataset consisting
of image pairs and ground truth flows, we train a network
to predict the x–y flow fields directly from the images. But
what is a good architecture for this purpose?

A simple choice is to stack both input images together
and feed them through a rather generic network, allowing
the network to decide itself how to process the image pair to
extract the motion information. This is illustrated in Fig. 2
(top). We call this architecture consisting only of convolu-
tional layers ‘FlowNetSimple’.

In principle, if this network is large enough, it could learn
to predict optical flow. However, we can never be sure that a
local gradient optimization like stochastic gradient descent
can get the network to this point. Therefore, it could be ben-
eficial to hand-design an architecture which is less generic,
but may perform better with the given data and optimization
techniques.

A straightforward step is to create two separate, yet iden-
tical processing streams for the two images and to combine
them at a later stage as shown in Fig. 2 (bottom). With
this architecture the network is constrained to first produce
meaningful representations of the two images separately
and then combine them on a higher level. This roughly

resembles the standard matching approach when one first
extracts features from patches of both images and then com-
pares those feature vectors. However, given feature repre-
sentations of two images, how would the network find cor-
respondences?

To aid the network in this matching process, we intro-
duce a ‘correlation layer’ that performs multiplicative patch
comparisons between two feature maps. An illustration
of the network architecture ‘FlowNetCorr’ containing this
layer is shown in Fig. 2 (bottom). Given two multi-channel
feature maps f1, f2 : R2 ! Rc, with w, h, and c being their
width, height and number of channels, our correlation layer
lets the network compare each patch from f1 with each path
from f2.

For now we consider only a single comparison of two
patches. The ’correlation’ of two patches centered at x1 in
the first map and x2 in the second map is then defined as

c(x1,x2) =
X

o2[�k,k]⇥[�k,k]

hf1(x1 + o), f2(x2 + o)i (1)

for a square patch of size K := 2k + 1. Note that Eq. 1
is identical to one step of a convolution in neural networks,
but instead of convolving data with a filter, it convolves data
with other data. For this reason, it has no trainable weights.

Computing c(x1,x2) involves c · K2 multiplications.
Comparing all patch combinations involves w2 · h2 such
computations, yields a large result and makes efficient for-
ward and backward passes intractable. Thus, for computa-



Perché ci interessa il flusso ottico?

• Two-Stream Networks



Optical Flow ConvNets

• Dati L frames consecutivi, lo stream temporale consiste di 2L canali di 
input
• 𝐼 𝑥, 𝑦, 𝑐 = 𝑑: 𝑥, 𝑦
• 𝐼 𝑥, 𝑦, 𝑐 + 1 = 𝑑;(𝑥, 𝑦)
• (𝑑: 𝑥, 𝑦 , 𝑑_𝑦(𝑥, 𝑦)) rappresenta il displacement vector

Figure 1: Two-stream architecture for video classification.
Spatial stream ConvNet operates on individual video frames, effectively performing action recog-
nition from still images. The static appearance by itself is a useful clue, since some actions are
strongly associated with particular objects. In fact, as will be shown in Sect. 6, action classification
from still frames (the spatial recognition stream) is fairly competitive on its own. Since a spatial
ConvNet is essentially an image classification architecture, we can build upon the recent advances
in large-scale image recognition methods [15], and pre-train the network on a large image classifica-
tion dataset, such as the ImageNet challenge dataset. The details are presented in Sect. 5. Next, we
describe the temporal stream ConvNet, which exploits motion and significantly improves accuracy.

3 Optical flow ConvNets
In this section, we describe a ConvNet model, which forms the temporal recognition stream of our
architecture (Sect. 2). Unlike the ConvNet models, reviewed in Sect. 1.1, the input to our model is
formed by stacking optical flow displacement fields between several consecutive frames. Such input
explicitly describes the motion between video frames, which makes the recognition easier, as the
network does not need to estimate motion implicitly. We consider several variations of the optical
flow-based input, which we describe below.

(a) (b) (c) (d) (e)

Figure 2: Optical flow. (a),(b): a pair of consecutive video frames with the area around a mov-
ing hand outlined with a cyan rectangle. (c): a close-up of dense optical flow in the outlined area;
(d): horizontal component dx of the displacement vector field (higher intensity corresponds to pos-
itive values, lower intensity to negative values). (e): vertical component dy . Note how (d) and (e)
highlight the moving hand and bow. The input to a ConvNet contains multiple flows (Sect. 3.1).

3.1 ConvNet input configurations
Optical flow stacking. A dense optical flow can be seen as a set of displacement vector fields dt

between the pairs of consecutive frames t and t+ 1. By dt(u, v) we denote the displacement vector
at the point (u, v) in frame t, which moves the point to the corresponding point in the following
frame t + 1. The horizontal and vertical components of the vector field, dxt and dyt , can be seen
as image channels (shown in Fig. 2), well suited to recognition using a convolutional network. To
represent the motion across a sequence of frames, we stack the flow channels dx,yt of L consecutive
frames to form a total of 2L input channels. More formally, let w and h be the width and height
of a video; a ConvNet input volume I⌧ 2 Rw⇥h⇥2L for an arbitrary frame ⌧ is then constructed as
follows:

I⌧ (u, v, 2k � 1) = dx⌧+k�1(u, v), (1)
I⌧ (u, v, 2k) = dy⌧+k�1(u, v), u = [1;w], v = [1;h], k = [1;L].

For an arbitrary point (u, v), the channels I⌧ (u, v, c), c = [1; 2L] encode the motion at that point
over a sequence of L frames (as illustrated in Fig. 3-left).

3



Riassunto: Una pletora di alternative

Figure 2. Video architectures considered in this paper. K stands for the total number of frames in a video, whereas N stands for a subset of
neighboring frames of the video.

this makes them harder to train. Also, they seem to preclude
the benefits of ImageNet pre-training, and consequently
previous work has defined relatively shallow custom archi-
tectures and trained them from scratch [14, 15, 30, 31]. Re-
sults on benchmarks have shown promise but have not been
competitive with state-of-the-art, making this type of mod-
els a good candidate for evaluation on our larger dataset.

For this paper we implemented a small variation of C3D
[31], which has 8 convolutional layers, 5 pooling layers and
2 fully connected layers at the top. The inputs to the model
are short 16-frame clips with 112 ⇥ 112-pixel crops as in
the original implementation. Differently from [31] we used
batch normalization after all convolutional and fully con-
nected layers. Another difference to the original model is
in the first pooling layer, we use a temporal stride of 2 in-
stead of 1, which reduces the memory footprint and allows
for bigger batches – this was important for batch normal-
ization (especially after the fully connected layers, where
there is no weight tying). Using this stride we were able to
train with 15 videos per batch per GPU using standard K40
GPUs.

2.3. The Old III: Two-Stream Networks
LSTMs on features from the last layers of ConvNets can

model high-level variation, but may not be able to capture
fine low-level motion which is critical in many cases. It is
also expensive to train as it requires unrolling the network
through multiple frames for backpropagation-through-time.

A different, very practical approach, introduced by Si-
monyan and Zisserman [27], models short temporal snap-
shots of videos by averaging the predictions from a single
RGB frame and a stack of 10 externally computed optical

flow frames, after passing them through two replicas of an
ImageNet pre-trained ConvNet. The flow stream has an
adapted input convolutional layer with twice as many input
channels as flow frames (because flow has two channels,
horizontal and vertical), and at test time multiple snapshots
are sampled from the video and the action prediction is av-
eraged. This was shown to get very high performance on
existing benchmarks, while being very efficient to train and
test.

A recent extension [8] fuses the spatial and flow streams
after the last network convolutional layer, showing some
improvement on HMDB while requiring less test time aug-
mentation (snapshot sampling). Our implementation fol-
lows this paper approximately using Inception-V1. The in-
puts to the network are 5 consecutive RGB frames sam-
pled 10 frames apart, as well as the corresponding optical
flow snippets. The spatial and motion features before the
last average pooling layer of Inception-V1 (5 ⇥ 7 ⇥ 7 fea-
ture grids, corresponding to time, x and y dimensions) are
passed through a 3⇥ 3⇥ 3 3D convolutional layer with 512
output channels, followed by a 3 ⇥ 3 ⇥ 3 3D max-pooling
layer and through a final fully connected layer. The weights
of these new layers are initialized with Gaussian noise.

Both models, the original two-stream and the 3D fused
version, are trained end-to-end (including the two-stream
averaging process in the original model).

2.4. The New: Two-Stream Inflated 3D ConvNets
With this architecture, we show how 3D ConvNets can

benefit from ImageNet 2D ConvNet designs and, option-
ally, from their learned parameters. We also adopt a two-
stream configuration here – it will be shown in section 4


