Analisi di Immagini e Video (Computer Vision)

Giuseppe Manco

Outline

- Generative Modeling
 - Motivazioni
 - task
- Approcci
 - Variational Autoencoders
 - Generative Adversarial Networks

Crediti

- Slides adattate da altri corsi:
 - Ettore Ritacco (CS Unical)

Modelli Generativi

"What I cannot create, I do not understand."

—Richard Feynman

Modelli Generativi

- Modelli probabilistici
 - Punto di partenza: *x*
 - Dato ad alta dimensionalità
 - Target: P(x)
 - Cattura la nozione d'incertezza sul dato
 - Densità
 - Obiettivo: generare (simulare) dati realistici
 - $x \sim P$
 - Strumento: parametrizzazione di P
 - $P(x) \approx P_{\theta}(x)$
 - $x \sim P_{\theta}$

Modelli Generativi

• Tre componenti

- Stima di parametri
 - Dati $\{x_1, \dots, x_n\}$ dove $x_i \sim P_{true}$
 - Trovare il θ ottimale
 - Il valore di θ per cui $P_{\theta}(x_i) \approx P_{true}(x_i)$
- Inferenza
 - Calcolare $P(x|\theta)$
- Generazione
 - Campionare $x \sim P(.|\theta)$

Esempio: Dati gaussiani

- $\theta = {\mu, \Sigma}$
- $x \sim \mathcal{N}(. | \mu, \Sigma)$

Esempio: Dati gaussiani

- Stima
 - Dati { x_1, \dots, x_n }, $\theta = {\mu, \sigma}$ • $\mu = \frac{1}{n} \sum_i x_i$ • $\sigma^2 = \frac{1}{n} \sum_i (x_i - \mu)^2$
- Inferenza
 - $p_{\theta}(x) = \mathcal{N}(x|\mu,\sigma)$
- Generazione
 - $x \sim p_{\theta}(.)$

Esempio: immagini

Perché i modelli generativi?

- Generazione di nuovi contenuti
 - Image completion
 - Data augmentation
- Image restoration
- Super-resolution
- Style transfer

Quali modelli generativi?

- Fully-observed models
 - Modellano le relazioni tra i dati
 - Variabili casuali
- Latent-Variable models
 - Variabili latenti associate ad ogni dato osservato
 - Esprimono causalità/correlazione nascosta con i dati osservati

- Modello semplice
 - Assume che x sia generato condizionatamente ad una variabile latente
 - Influisce sul parametro θ

$$P(x) = \int P_{\theta}(x|z)P(z)dz$$

- Generazione facile
- Inferenza difficile...

Esempio: MNIST

8 나 ູ 9923/3328210263345033 \$25/ (301678605654 13/000 ð > 0372. E3622094097243011 TO8136632241408062882521967761 05590/0868870321 J

Generazione

- sorteggia $z \sim P_z$
- campiona $x \sim P_{\theta}(x|z)$

$$P(x) = \int P_{\theta}(x|z)P(z)dz$$

Quali parametri per MNIST?

- Bernoullian model
 - $P_{\theta}(x|z) = \prod_{i,j} \theta_{ij}(z)^{x_{ij}} \left((1 \theta_{ij}(z))^{1 x_{ij}} \right)^{1 x_{ij}}$
 - $\theta_{ij}(z) \in [0,1]$ variabile bernoulliana che modella la probabilità bianco/nero
- Estensione: multinomial distribution
 - $P_{\theta}(x|z) = \prod_{i,j} \theta_{ij,k}(z)$
 - $\theta_{ij,k}(z)$ variabile multinomiale ($\sum_k \theta_{ijk}(z) = 1$) che modella la probabilità del colore k
- Gaussian model
 - $P_{\theta}(x|z) = \prod_{ij} \mathcal{N}(x, \mu(z), \sigma(z)I)$

Inferenza

- Problema
 - Dato *x*, bisogna calcolare

$$P(x) = \int P_{\theta}(x|z)P(z)dz$$

• Intrattabile!

Inferenza

- Approssimazione
- Metodi:
 - Monte Carlo (MC) Sampling
 - Approssimiamo l'integrale campionando dei valori di z e facendo averaging

$$P(x) = \int P_{\theta}(x|z)P(z)dz \approx \sum_{i} P_{\theta}(x|z_{i})P(z_{i})$$

- Variational Inference (VI)
 - Approssimiamo P(x) in forma trattabile computazionalmente

- Una fimaglia di metodi di simulazione per inferire variabili target
- Algoritmo generale
 - Define a set of constraints or desiderata goals related to the target variables
 - Generate data from a suitable probability distribution related to the target variables
 - Check and evaluate how many successful trials you get out of all the experiments
 - Estimate your target variables

- Esempio: Stima di π
 - In uno spazio euclideo 2D, genera valori random (x_i, y_i)_{i∈{1,...,n}} con una distribuzione uniforme su entrambi gli assi
 - Calcola *m*, il numero di punti che si trovano all'interno della circonferenza di raggio 1
 - Devono soddisfare $\sqrt{x^2 + y^2} \le 1$
 - restituisci $4 \cdot \frac{m}{n}$

- Esempio: Stima di π
 - In uno spazio euclideo 2D, genera valori random (x_i, y_i)_{i∈{1,...,n}} con una distribuzione uniforme su entrambi gli assi
 - Calcola m, il numero di punti che si trovano all'interno della circonferenza di raggio 1
 - Devono soddisfare $\sqrt{x^2 + y^2} \le 1$

• restituisci
$$4 \cdot \frac{m}{n}$$

Che stiamo facendo?

Monte Carlo (MC)

- Esempio: Stima di π
 - In uno spazio euclideo 2D, genera valori random (x_i, y_i)_{i∈{1,...,n}} con una distribuzione uniforme su entrambi gli assi
 - Calcola m, il numero di punti che si trovano all'interno della circonferenza di raggio 1
 - Devono soddisfare $\sqrt{x^2 + y^2} \le 1$
 - restituisci $4 \cdot \frac{m}{n}$

Che stiamo facendo?

- stiamo approssimando quest'area

$$A = \frac{A_{sector}}{A_{square}} = A_{sector} = \frac{A_{circle}}{4} = \frac{\pi \cdot r^2}{4} = \frac{\pi}{4}$$

```
import numpy as np
In [1]:
        def compute pi(n trials):
            n successes = 0
            for _ in range(n_trials):
                x = np.random.rand()
                y = np.random.rand()
                 if np.sqrt(x**2 + y**2) <= 1.:</pre>
                     n successes += 1
            return 4 * n successes / n trials
        print(compute_pi(int(1e6)))
        print(np.pi)
        3.14368
```

3.141592653589793

- Limitazioni:
 - Il campionamento deve essere "semplice"
 - Servono molti dati
 - Non c'è convergenza asintotica

Idea

- Utilizziamo una proposal distribution $q_{\lambda}(z|x)$
- Utilizziamo i valori di z campionati da drawn from q_{λ}

Inferenza Variazionale

- Approssimiamo la posterior P(z|x) con una famiglia di distribuzioni "semplici" $q_{\lambda}(z|x)$
- Il parametro λ indicizza la famiglia di distribuzioni
 - Ad esempio, con q Gaussiana, $\lambda = \{\mu, \sigma\}$

$$P(z|x) = \frac{P(x|z) \cdot P(z)}{P(x)} \approx q_{\lambda}(z|x)$$

Inferenza Variazionale

- Due distribuzioni $P \in Q$ sono simili se la divergenza è bassa
- Divergenza di Kullback Leibler:

$$KL(P||Q) = \int_{-\infty}^{+\infty} p(\omega) \cdot \ln \frac{p(\omega)}{q(\omega)} d\omega$$
$$= \int_{-\infty}^{+\infty} p(\omega) \cdot \ln p(\omega) d\omega - \int_{-\infty}^{+\infty} p(\omega) \cdot \ln q(\omega) d\omega$$
$$= \mathbb{E}_{x \sim p}[\ln p(x)] - \mathbb{E}_{x \sim p}[\ln q(x)]$$

Inferenza Variazionale

• Vogliamo una $q_{\lambda}(z|x)$ che sia una buona approssimazione di p(z|x)

$$KL(q_{\lambda}(z|x)||p(z|x)) = \mathbb{E}_{q_{\lambda}(z|x)}[\ln q_{\lambda}(z|x)] - \mathbb{E}_{q_{\lambda}(z|x)}[\ln p(z|x)]$$

$$= \mathbb{E}_{q_{\lambda}(z|x)}[\ln q_{\lambda}(z|x)] - \mathbb{E}_{q_{\lambda}(z|x)}\left[\ln \frac{p(z,x)}{p(x)}\right]$$

$$= \mathbb{E}_{q_{\lambda}(z|x)}[\ln q_{\lambda}(z|x)] - \mathbb{E}_{q_{\lambda}(z|x)}[\ln p(z,x)] + \mathbb{E}_{q_{\lambda}(z|x)}[\ln p(x)]$$

$$= \mathbb{E}_{q_{\lambda}(z|x)}[\ln q_{\lambda}(z|x)] - \mathbb{E}_{q_{\lambda}(z|x)}[\ln p(z,x)] + \ln p(x)$$

$$= -\{\mathbb{E}_{q_{\lambda}(z|x)}[\ln p(z,x)] - \mathbb{E}_{q_{\lambda}(z|x)}[\ln q_{\lambda}(z|x)]\} + \ln p(x)$$

$$\mathsf{LBO} \text{ (evidence lower bound)}$$

$$\begin{split} \log P(x) &= \int q(z|x) \log P(x) dz \\ &= \int q(z|x) \log P(x) \frac{P(z|x)}{P(z|x)} dz \\ &= \int q(z|x) \log P(x) \frac{P(x|z)P(z)}{P(x)P(z|x)} dz \\ &= \int q(z|x) \log P(x|z)P(z) dz + \int q(z|x) \log \frac{q(z|x)}{q(z|x)P(z|x)} dz \\ &= \int q(z|x) \log P(x|z) dz + \int q(z|x) \log \frac{q(z|x)}{P(z|x)} dz \\ &= \int q(z|x) \log P(x|z) dz + \int q(z|x) \log \frac{q(z|x)}{P(z|x)} dz \\ &= \int q(z|x) \log P(x|z) dz + \int q(z|x) \log \frac{q(z|x)}{P(z|x)} dz \\ &= E_{z \sim q} [\log P(x|z)] + KL[q(z|x)||P(z|x)] \\ &- KL[q(z|x)||P(z)] \end{split}$$

Inferenza variazionale

$KL[q_{\lambda}(z|x)||p(z|x)] = -ELBO(q_{\lambda}) + \ln p(x)$

• Scelto q_{λ} , si stimano I parametri λ che minimizzano l'ELBO

$KL[q_{\lambda}(z|x)||p(z|x)] = E_{z \sim q_{\lambda}}[\log q_{\lambda}(z|x) - \log p(x|z)]$

$KL[q_{\lambda}(z|x)||p(z|x)] = E_{z \sim q_{\lambda}}[\log q_{\lambda}(z|x) - \log p(x|z)]$ $= KL[q_{\lambda}(z|x)||P(z)] - E_{z \sim q_{\lambda}}[p(x|z)] + \log P(x)$

Bishop – Pattern Recognition and Machine Learning

Inferenza variazionale

$KL[q_{\lambda}(z|x)||p(z|x)] = -ELBO(\lambda,\theta) + \ln p(x)$

• Scelto q_{λ} , si stimano I parametri λ , θ che minimizzano l'ELBO

Wrap up

- Si definisce una distribuzione q_{λ}
- Troviamo i parametri λ e θ che massimizzano

 $KL[q_{\lambda}(z|x)||P(z)] - E_{z \sim q_{\lambda}}[p(x|z)]$

Wrap up

- Il framework dipende da due funzionali
 - $q_{\lambda}(z|x)$, che codifica x in una variabile latente z
 - p(x|z), che decodifica z in x
- Autoencoder

Autoencoder

- un autoencoder è una rete neurale che produce un output (r) che è un duplicato dell'input (x).
- Due componenti:
 - **encoder** function z = f(x)
 - z è il Codice (dell'input)
 - **decoder** che produce una ricostruzione r = g(z)
 - L'obiettivo è $x \approx r$
 - la loss espressa come L(x, g(f(x)))

Proprietà

- Impara a sommarizzare le caratteristiche dell'input
- Rappresenta I dati originali in uno spazio a bassa dimensionalità

X

Evitando di spezzare La propagazione del gradiente?

X

• Architettura generale

- La sottorete sub-net₁ calcola i parametri di una distribuzione gaussiana
- Il sampler sfrutta I parametri per campionare il codice
- La sub-net₂ genera l'output

• Cosa manca?

• Cosa manca?

 $ELBO(\lambda, \theta) = KL[q_{\lambda}(z|x)||P(z)] - E_{z \sim q_{\lambda}}[\log p(x|z)]$

• Ammette una forma chiusa?

• Cosa manca?

$$ELBO(\lambda, \theta) = KL[q_{\lambda}(z|x)||P(z)] - \frac{E_{z \sim q_{\lambda}}[\log p(x|z)]}{E_{z \sim q_{\lambda}}[\log p(x|z)]}$$

• Log-likelihood

• Cosa manca?

$$ELBO(\lambda,\theta) = \frac{KL[q_{\lambda}(z|x)||P(z)]}{ELBO(\lambda,\theta)} - E_{z \sim q_{\lambda}}[\log p(x|z)]$$

• Se q_{λ} e *P* sono gaussiane ammette una forma chiusa

• Cosa manca?

$$ELBO(\lambda,\theta) = \frac{KL[q_{\lambda}(z|x)||P(z)]}{E_{z \sim q_{\lambda}}[\log p(x|z)]}$$

• Se q_{λ} e P sono gaussiane ammette una forma chiusa

 $KL\left[\mathcal{N}(\boldsymbol{\mu},\boldsymbol{\Sigma}) \| \mathcal{N}(\boldsymbol{m},\boldsymbol{S})\right] = \frac{1}{2} \left(log \frac{|\boldsymbol{S}|}{|\boldsymbol{\Sigma}|} - K + tr\left(\boldsymbol{S}^{-1}\boldsymbol{\Sigma}\right) + (\boldsymbol{m} - \boldsymbol{\mu})^T \boldsymbol{S}^{-1} (\boldsymbol{m} - \boldsymbol{\mu}) \right)$

Recap: MC vs VI

- Assunzioni sulla forma delle distribuzioni
 - MCMC: no
 - VI: **yes**
- Bias (dobbiamo forzare delle assunzioni?)
 - MCMC: low
 - VI: high
- Variance (quanto è grande lo spazio di ricerca?)
 - MCMC: high
 - VI: **low**
- Computational cost
 - MCMC: high (lots of iterations)
 - VI: **low**
- Accuracy
 - MCMC: very good
 - VI: good

