Analisi di Immagini e Video (Computer Vision)

Giuseppe Manco

Outline

- Segmentation
- Approcci classici
- Deep Learning for Segmentation

Crediti

- Slides adattate da vari corsi e libri
 - Computational Visual Recognition (V. Ordonez), CS Virgina Edu
 - Computer Vision (S. Lazebnik), CS Illinois Edu

Approcci supervisionati

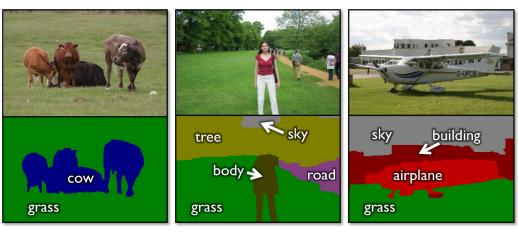
- L'approccio basato su CRF è semi-supervisionato
- Possiamo renderlo supervisionato?
 - Parametrizziamo gli unary e binary potentials

• E.g.,
$$p(y_i|x_i;\theta) = \frac{1}{Z} \exp\left(w_{y_i} \cdot F(x_i)\right)$$

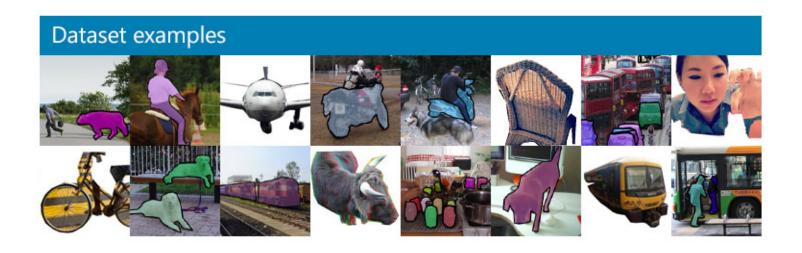
• Apprendiamo i parametri che minimizzano l'energia media su tutti gli esempi

Semantic segmentation, object detection

- Problema
 - Etichettare ogni pixel con una classe
 - Multi-class problem
- Utilizzo di dati già etichettati
 - Pascal VOC
 - MS COCO



MS-COCO



- Large-scale dataset for object detection, segmentation and captioning
 - 330K images (>200K labeled)
 - 1.5 million object instances
 - 80 object categories
 - 91 stuff categories
 - 5 captions per image
 - 250,000 people with keypoints

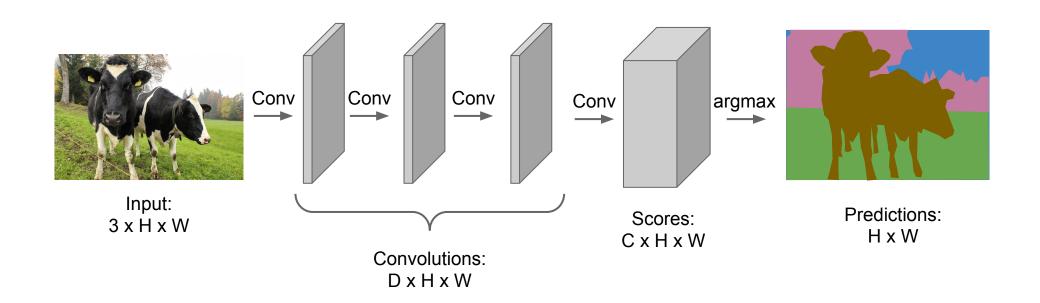
Perché Deep Learning?

- Stesso principio dell'object detection
 - Convolutional features, learned from training data
- Accuratezza
- Velocità

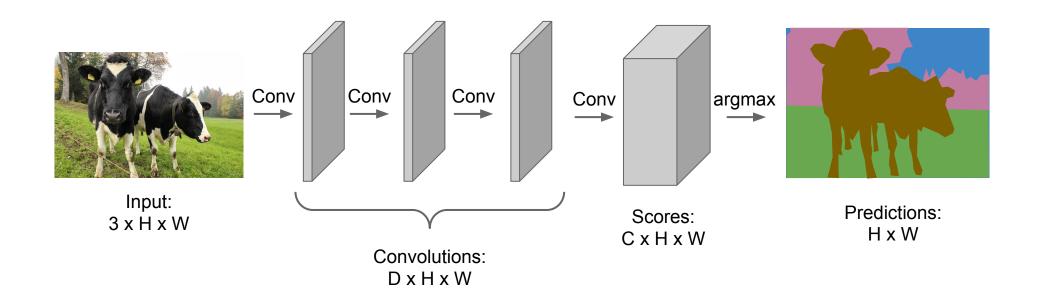
Approcci

- Approcci downsampling-upsampling
- Metodi multi-scala

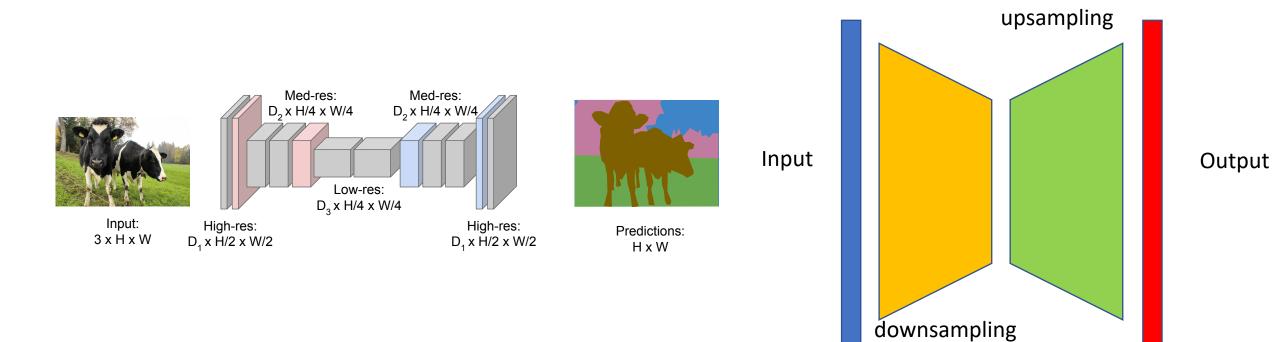
• Utilizziamo i layer convoluzionali per fare le predizioni sui vari pixel



- Utilizziamo i layer convoluzionali per fare le predizioni sui vari pixel
 - Ma fare convoluzioni su feature map grandi è costoso

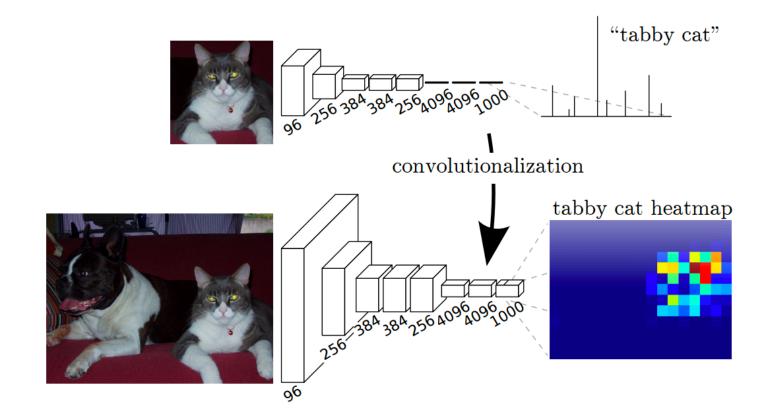


- Soluzione
 - Architettura Encoder-Decoder

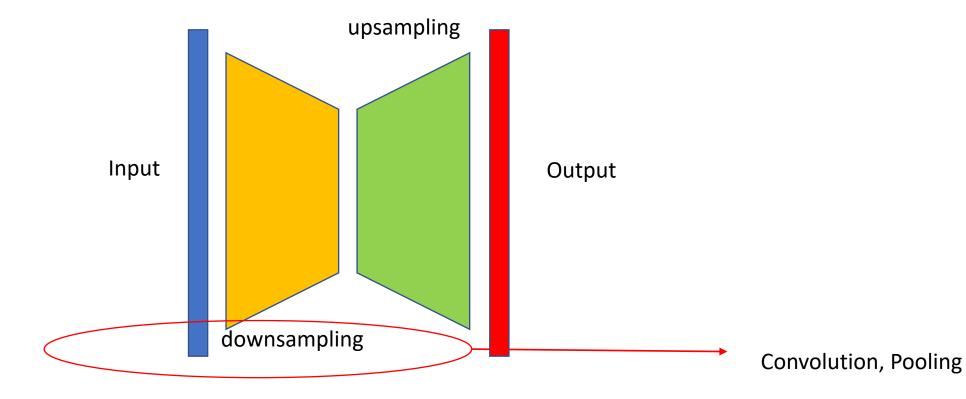


Convolutionalization

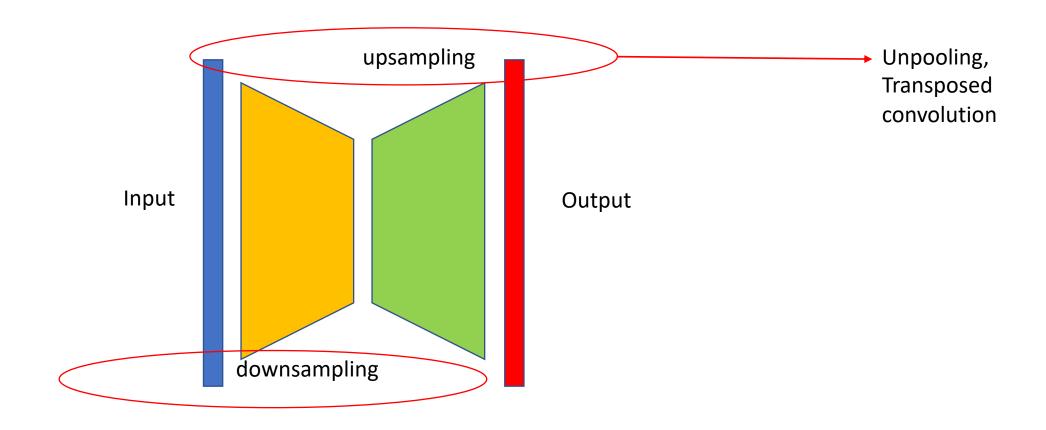
- Fully Convolutional Layers
- Faster-RCNN, SSD



• Architettura Encoder-Decoder

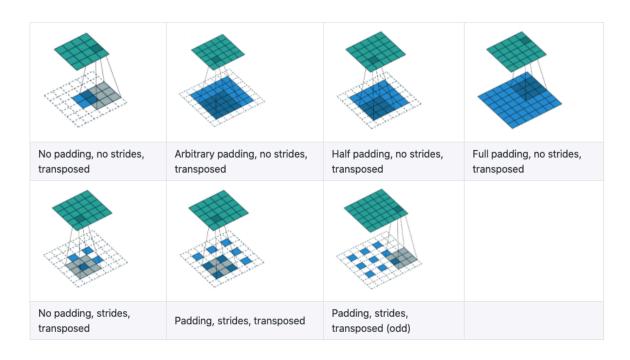


• Architettura Encoder-Decoder

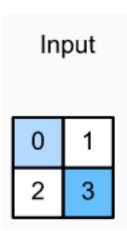


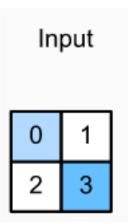
Up-sampling Convolutions

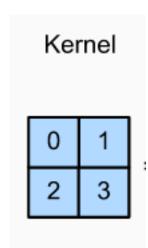
- Upsampling
 - Da un'input a bassa risoluzione si passa ad uno a più alta risoluzione
 - Transposed Convolution
 - Qual è la relazione?
 - Suggerimento: invertiamo le relazioni originarie

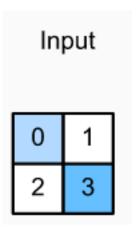


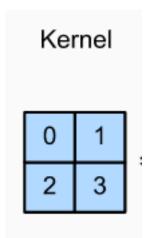
https://github.com/vdumoulin/conv_arithmetic

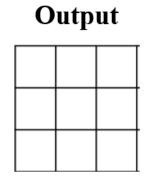




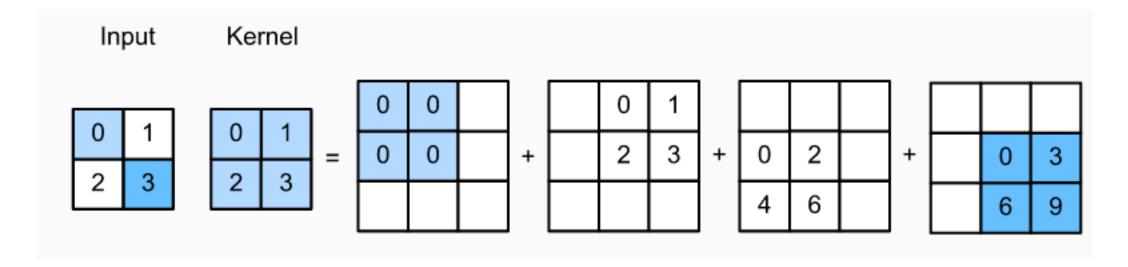








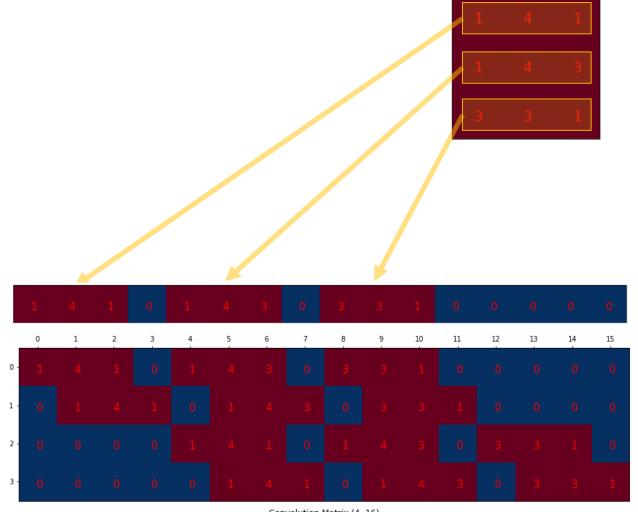
• Ogni valore si distribuisce su un intorno dell'output in base al kernel.



• La distribuzione viene guidata da padding e stride

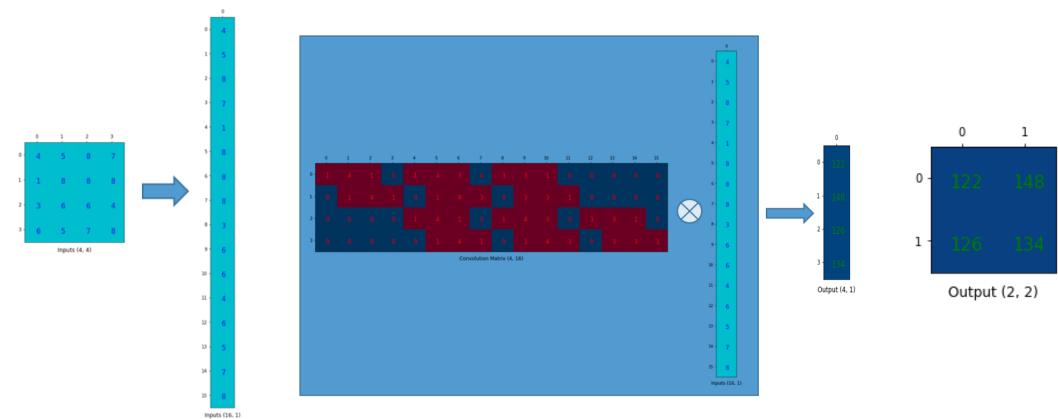
Convolution e transposed convolution

- Ogni riga definisce un'operazione di convoluzione
 - Filtro 3x3, input 4x4
 - No padding, no strides, no dilation



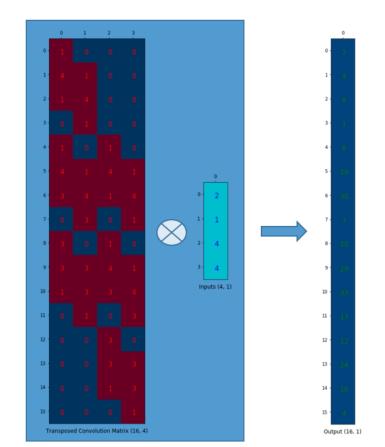
Convolution e transposed convolution

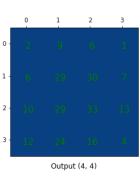
Ogni riga definisce un'operazione di convoluzione



Convolution e transposed convolution

Trasponendo la matrice di convoluzione, otteniamo l'operazione opposta





ConvTranspose, Padding

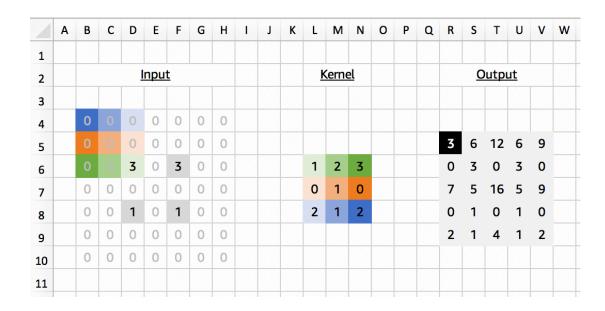
- Decrementa l'output della TD
 - Interpretazione: l'ammontare di padding che l'input richiede per completare l'output
 - Quale sarebbe l'output dell'esempio precedente?

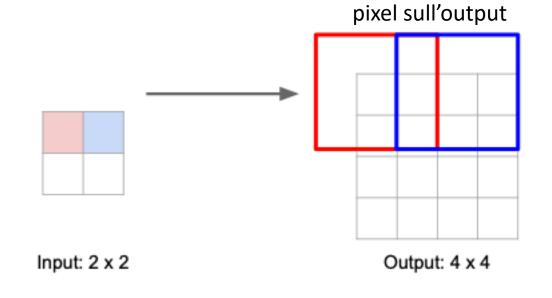
	Α	В	С	D	Ε	F	G	Н	1	J	K	L	M	N	0	Р	Q	R	S	Т	U	٧	W	X	Y
1																									
2					<u>Inp</u>	<u>out</u>							<u>K</u>	erne	<u>el</u>					Out	put				
3																									
4		0			0	0	0	0	0																
5				0	0	0	0	0	0										1	5	11	14	8	3	
6				1	3	2	1	0	0				1	2	3				1	6	15	18	12	3	
7		0	0	1	3	3	1	0	0				0	1	0				4	13	21	21	15	11	
8		0	0	2	1	1	3	0	0				2	1	2				5	17	28	27	25	11	
9		0	0	3	2	3	3	0	0										4	7	9	12	8	6	
10		0	0	0	0	0	0	0	0										6	7	14	13	9	6	
11		0	0	0	0	0	0	0	0																

\angle	Α	В	С	D	E	F	G	Н	ı	J	K	L	М	N	0	Р	Q
1																	
2		Input							<u>K</u>	(erne	<u>el</u>			<u>Output</u>			
3																	
4		1	3	2	1				1	2	3						
5		1	3	3	1				0	1	0				21	21	
6		2	1	1	3				2	1	2				28	27	
7		3	2	3	3												
8																	

ConvTranspose, Stride

- Espande l'output
 - Di conseguenza «fraziona» l'input aggiungendo spazi





Il filtro si muove di 2

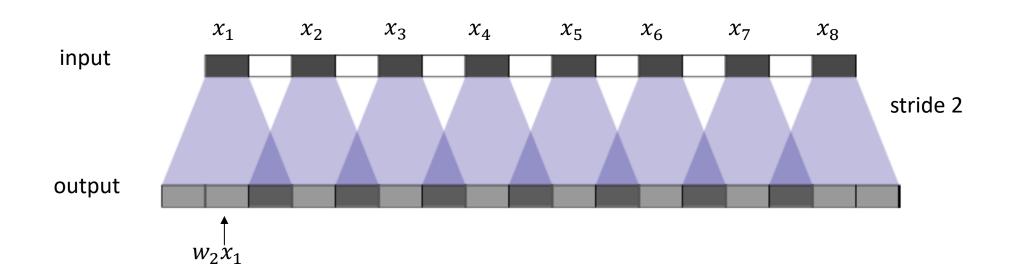
ConvTranspose, checkerboarding

• Filter $[w_1, w_2, w_3]$, output stride = 2

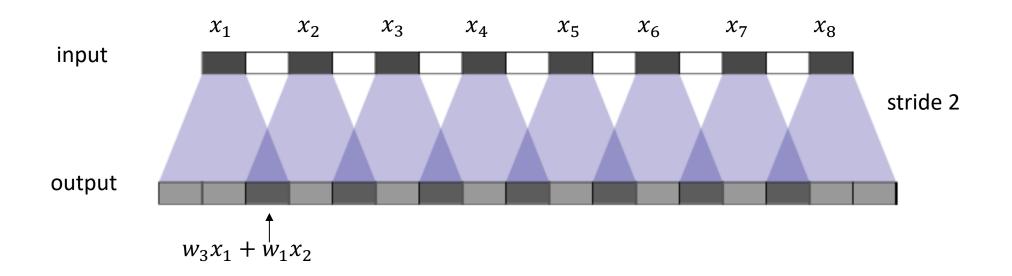


Animation: https://distill.pub/2016/deconv-checkerboard/

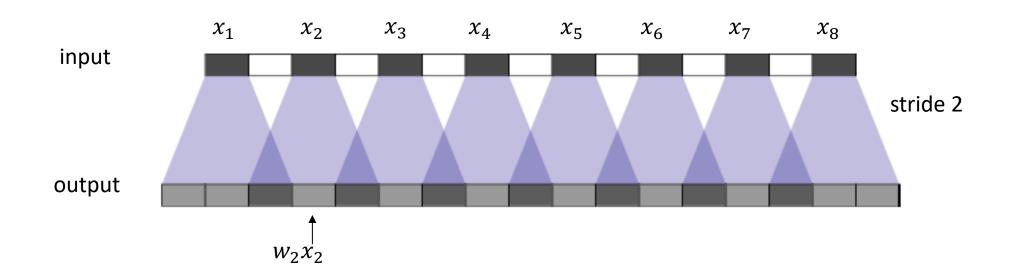
ConvTranspose, checkerboarding



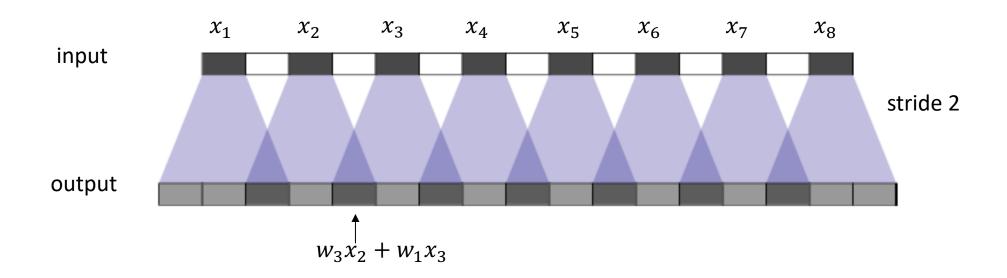
ConvTranspose, checkerboarding



ConvTranspose, Checkerboarding



ConvTranspose, Checkerboarding

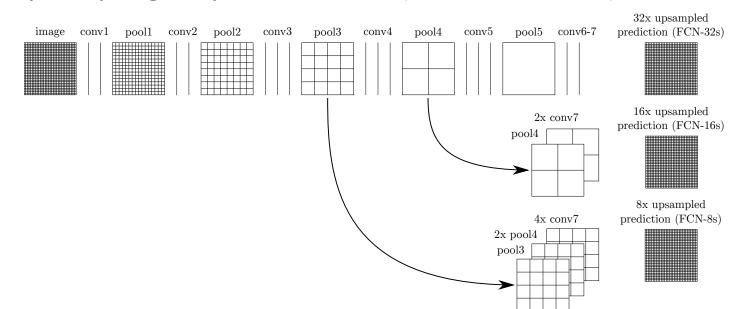


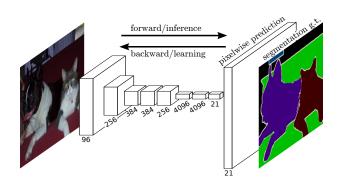
Transposed Convolution in Pytorch

torch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros') kernel_size Input Output out channels x kernel_size in_channels out_channels (equals the number of convolutional filters for this layer) in_channels (e.g. 3 for RGB inputs)

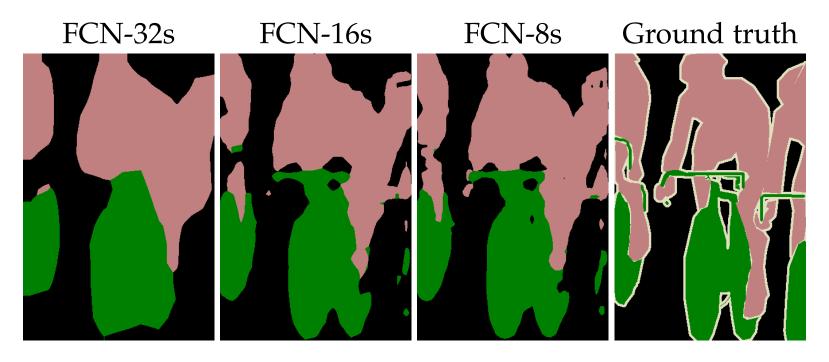
FCN: architettura

- Principio
 - Riduciamo la dimensione, facciamo upsampling
- Tre varianti
 - Coarse upsampling
 - Combined upsampling, skip connections (tramite somma)





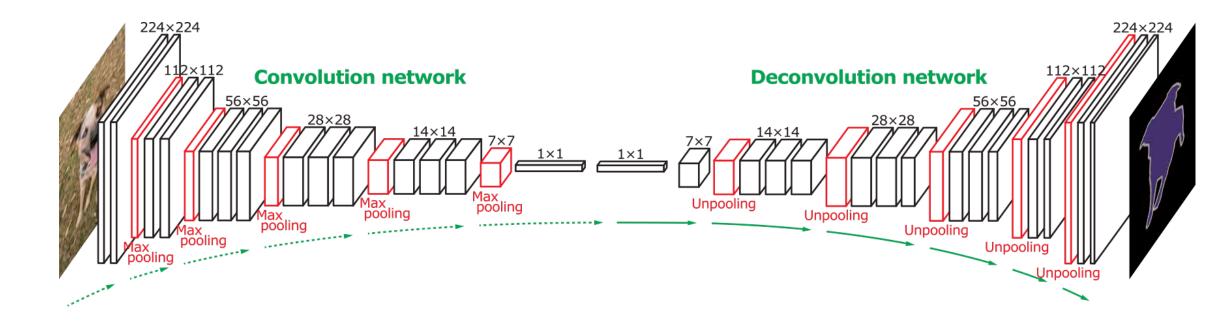
FCN



- L'utilizzo di ConvTranspose con stride di grandi dimensioni causa la presenza di artefatti
- Scarsa risoluzione ai bordi
 - L'encoding causa perdita di informazione

DeconvNet Up-sampling Convolutions or "Deconvolutions"

• Backbone: VGG



http://cvlab.postech.ac.kr/research/deconvnet/

Unpooling

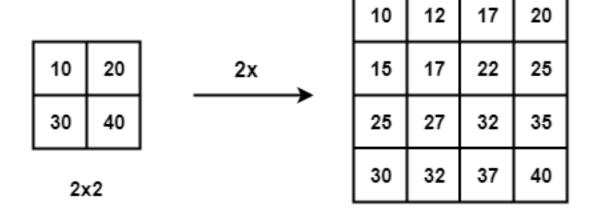
		1	1	2	2
1	2	 1	1	2	2
3	4	3	3	4	4
		3	3	4	4

Output: 4 x 4

Input: 2 x 2

Unpooling

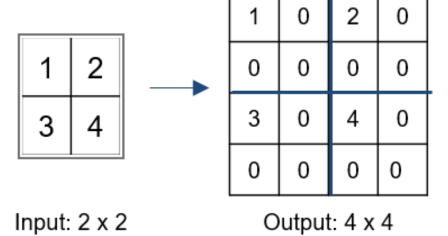
• Bilinear interpolation



4x4

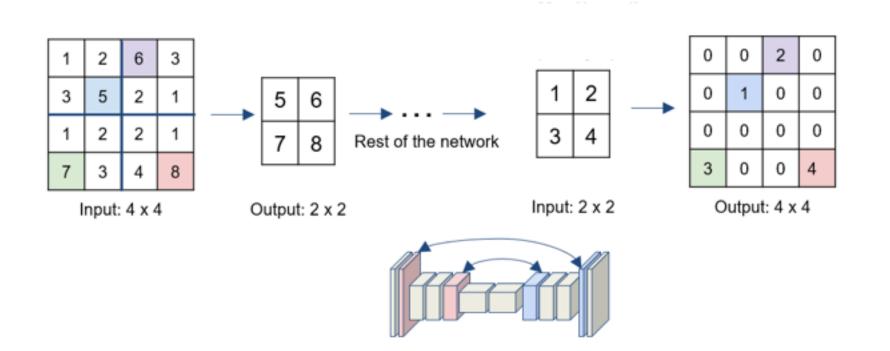
Unpooling

• Bed of nails

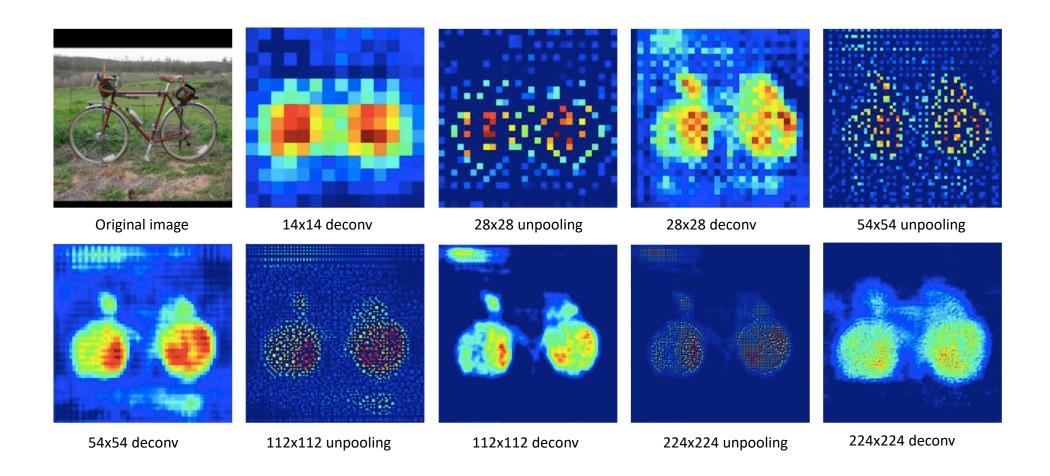


Unpooling

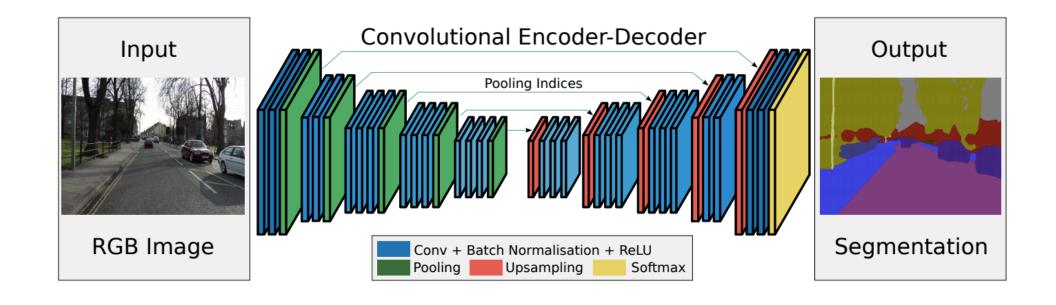
Max unpooling



DeconvNet



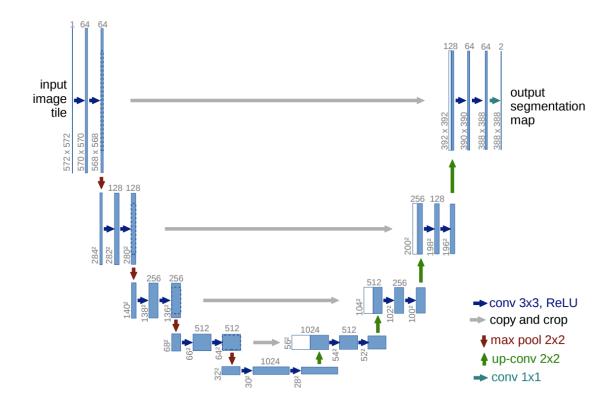
SegNet



Eliminando i FC layer, porta a risultati migliori

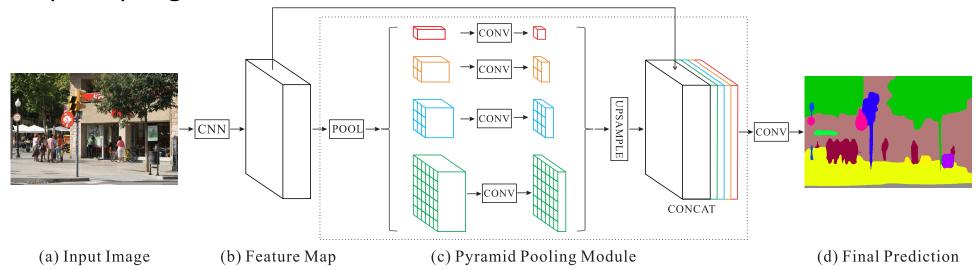
U-Net

- Usa le skip connections per combinare le feature maps
- La combinazione viene effettuata per concatenazione



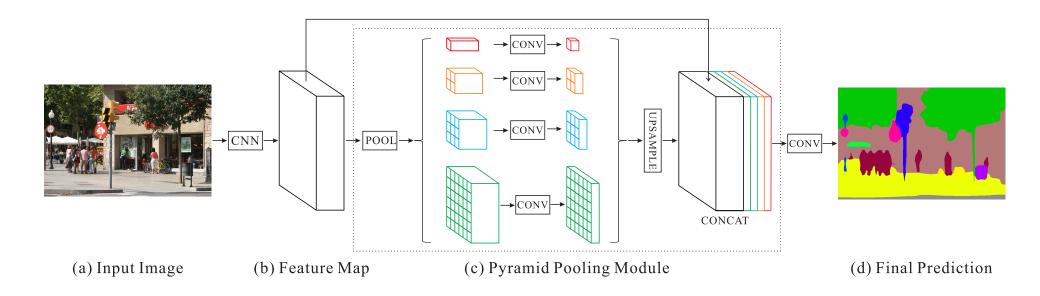
Metodi Multi-scala

- Idea generale
 - Otteniamo una feature map utilizzando un'architettura standard (ResNet)
 - Applichiamo una serie di convoluzioni con filtri di dimensioni diverse per ottenere risoluzioni diverse
 - Encoding delle varie scale
 - Upsampling e combinazione dei risultati



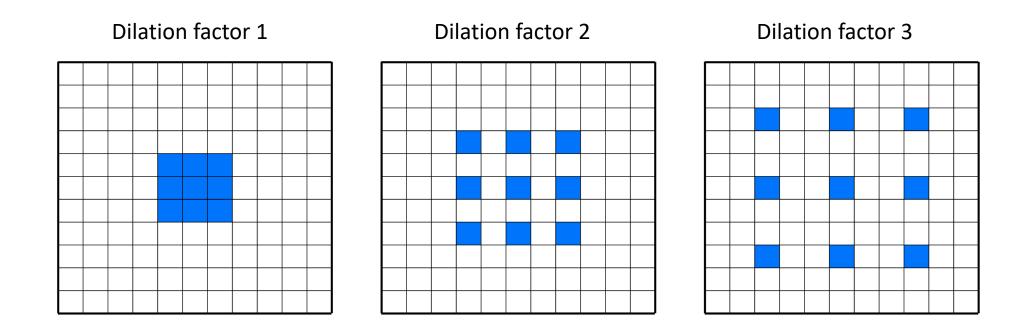
Metodi Multi-scala

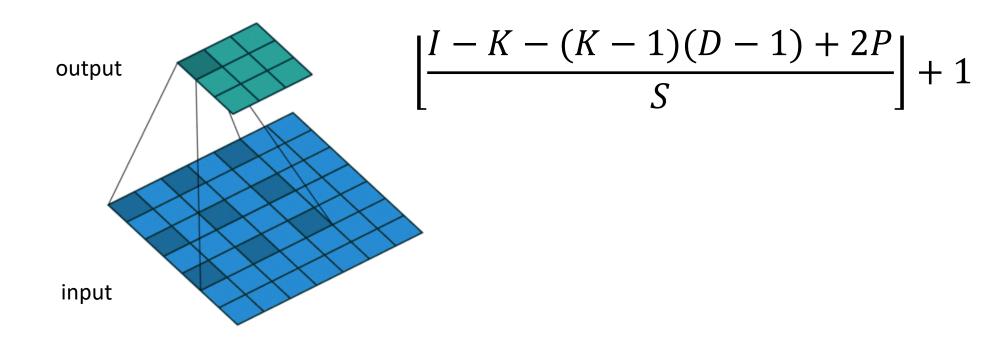
• Esplosione combinatoria del numero di parametri

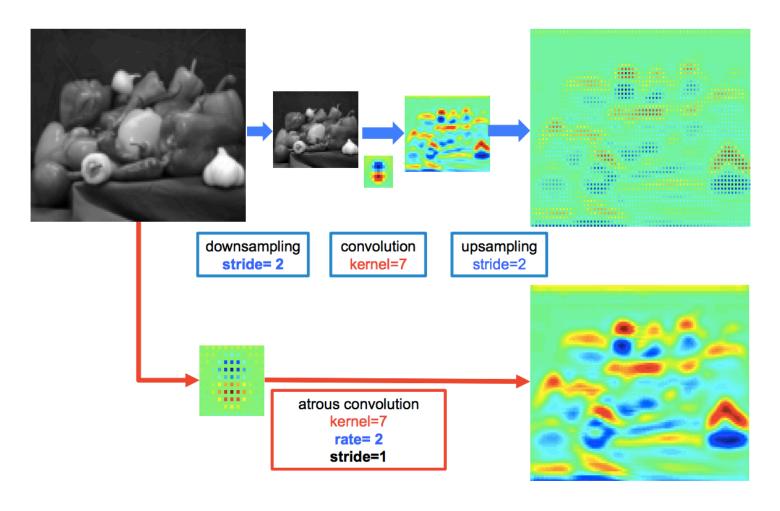


• Soluzione: Dilated convolutions

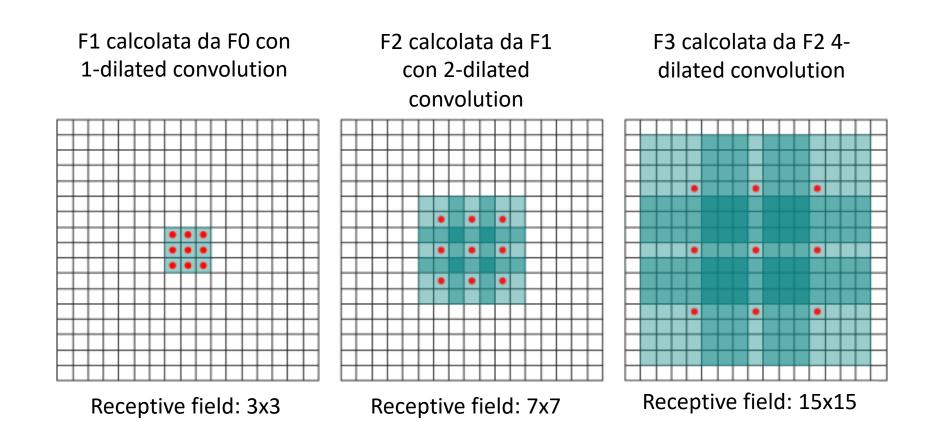
 Invece di ridurre la risoluzione spaziale delle feature maps, utilizziamo un filtro sparso



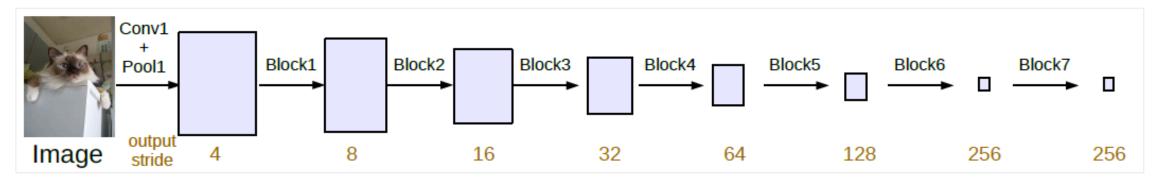




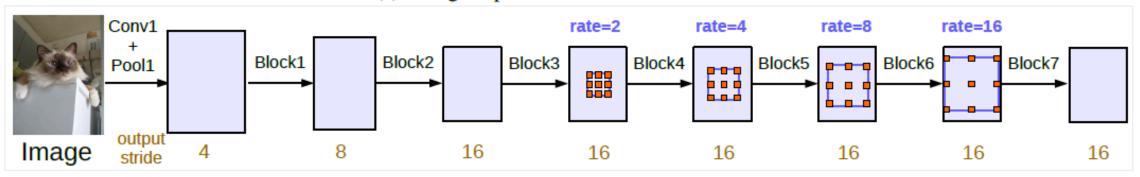
• La dimensione del receptive field cresce esponenzialmente ma il numero di parametri è lineare



Vantaggi

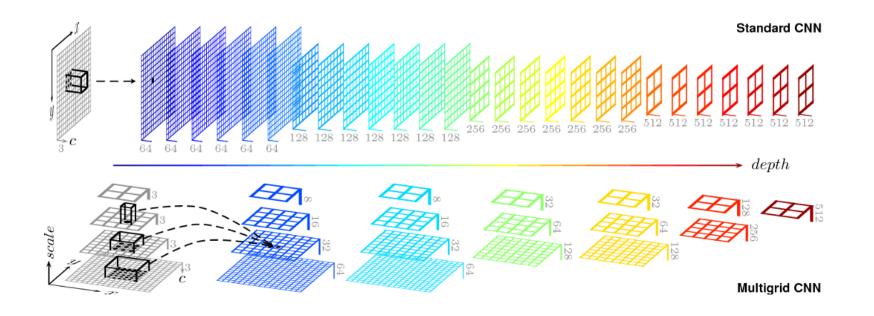


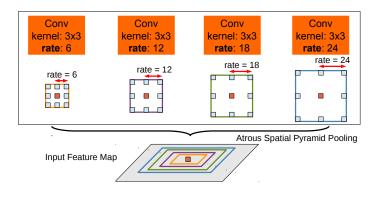
(a) Going deeper without atrous convolution.



(b) Going deeper with atrous convolution. Atrous convolution with rate > 1 is applied after block3 when $output_stride = 16$.

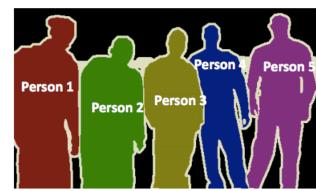
Multigrid CNN





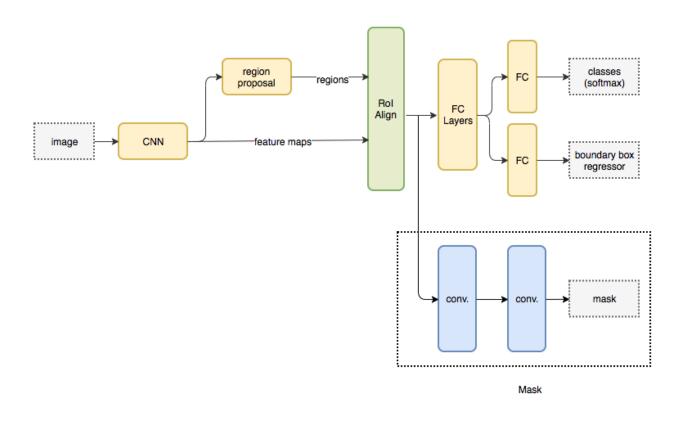
Instance Segmentation

- Obiettivo
 - Individuare non solo la segmentazione, ma anche l'istanza



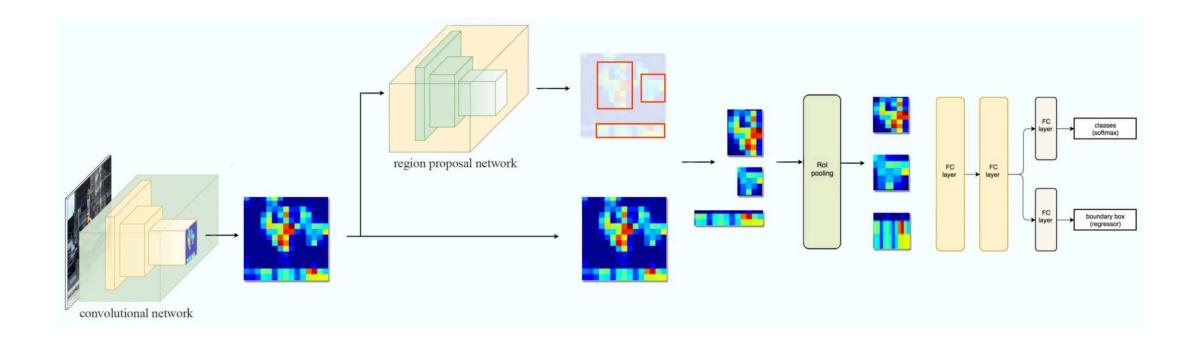
Mask R-CNN

• Mask R-CNN = Faster R-CNN + FCN sui Rols

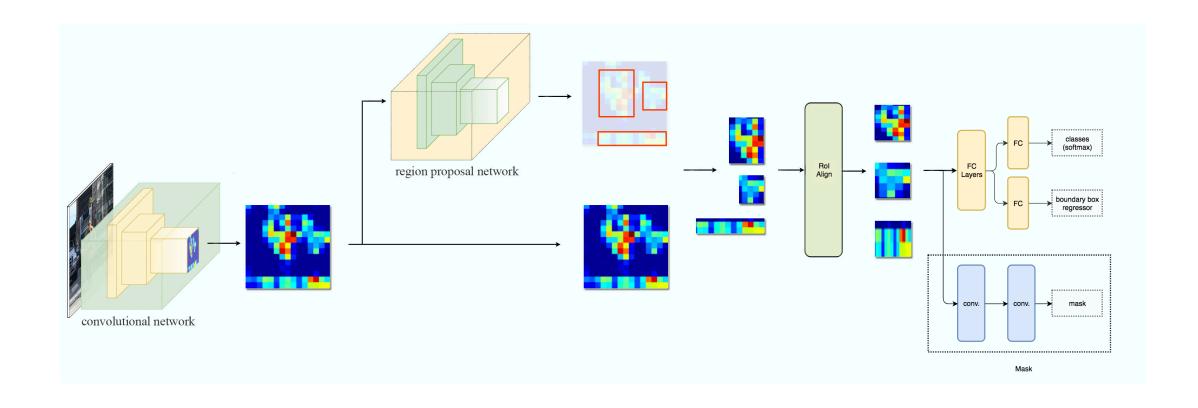


Loss: $L_{cs} + L_{box} + L_{mask}$

Recap: Faster R-CNN

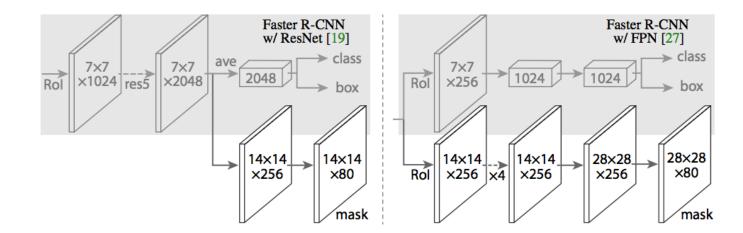


Da Faster R-CNN a Mask R-CNN

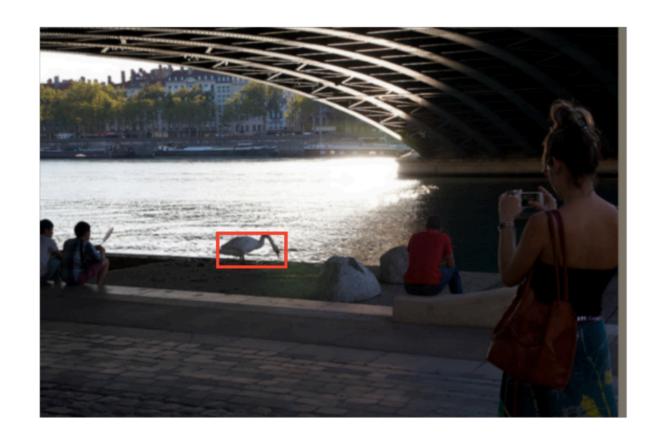


Mask R-CNN: Mask

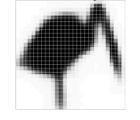
- $K \cdot m \times m$
 - Una maschera di dimensione $m \times m$ per ognuna delle K classi
 - Ogni pixel è regolato da una sigmoide
 - Loss
 - Su una Rol associata alla classe k, L_{mask} è la binary cross-entropy relativa alla maschera m_k associata
 - Le altre maschere non contribuiscono alla loss



Mask R-CNN



28x28 soft prediction

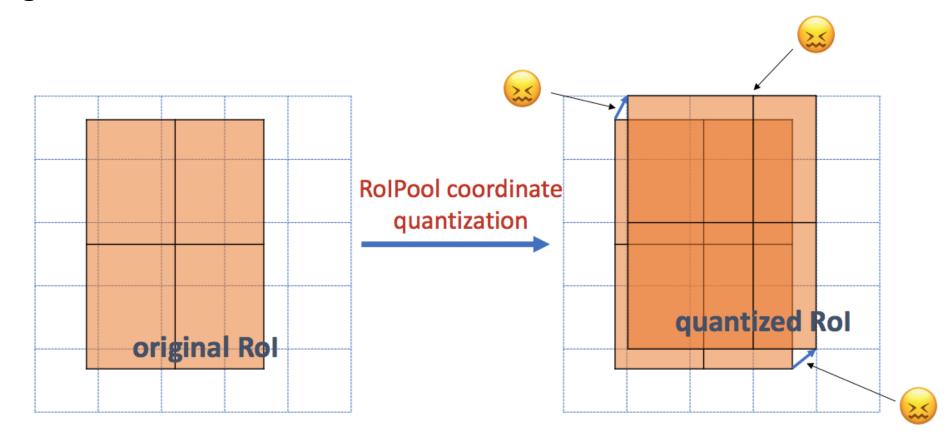


Resized Soft prediction

Final mask

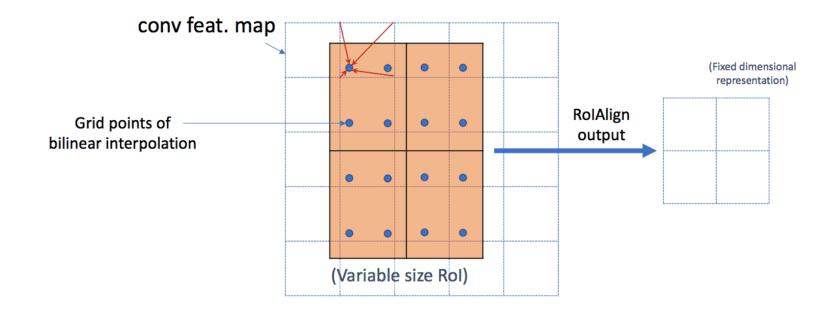
RolAlign

 Il mapping di una regione sulla feature map con RolPooling causa un riallineamento

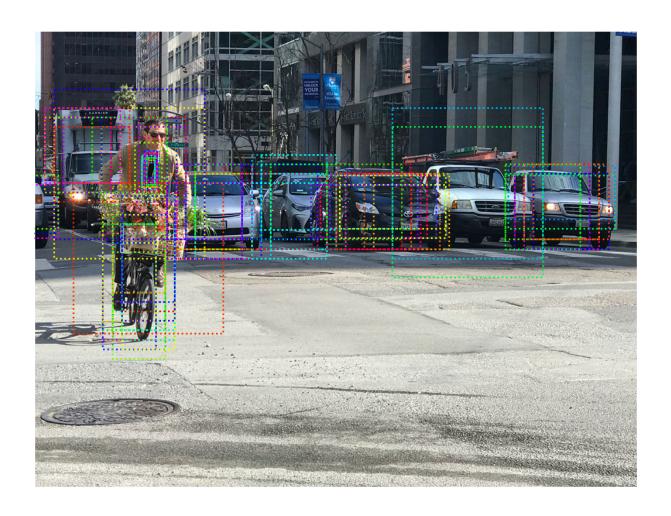


RolAlign

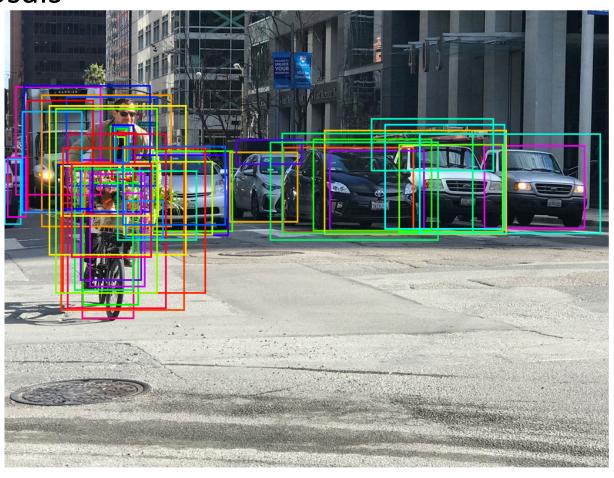
- Con RolAlign, ogni punto viene interpolato
 - Recupera precision nella ricostruzione della maschera



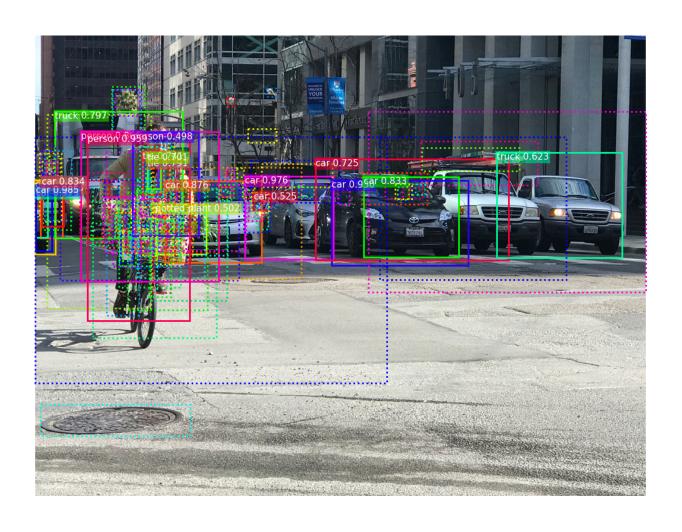
• Priors



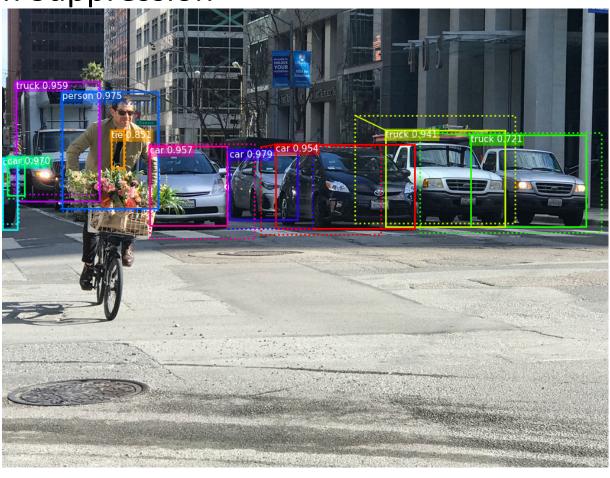
Region Proposals



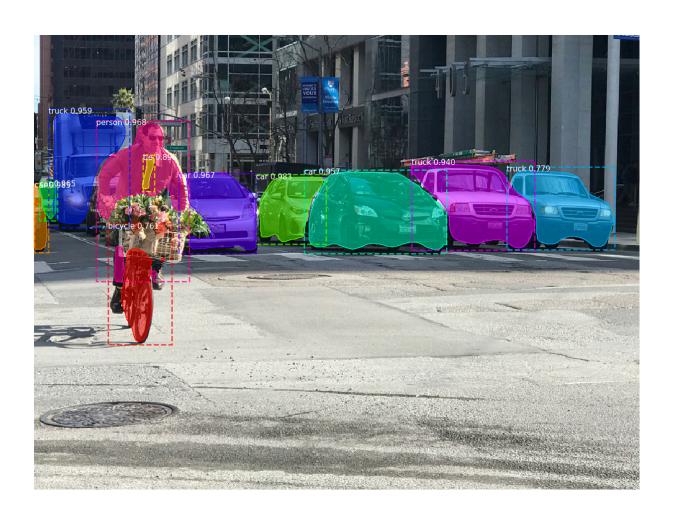
• Predizione



Non-Maximum Suppression



Mask

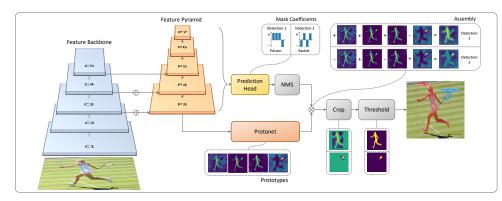


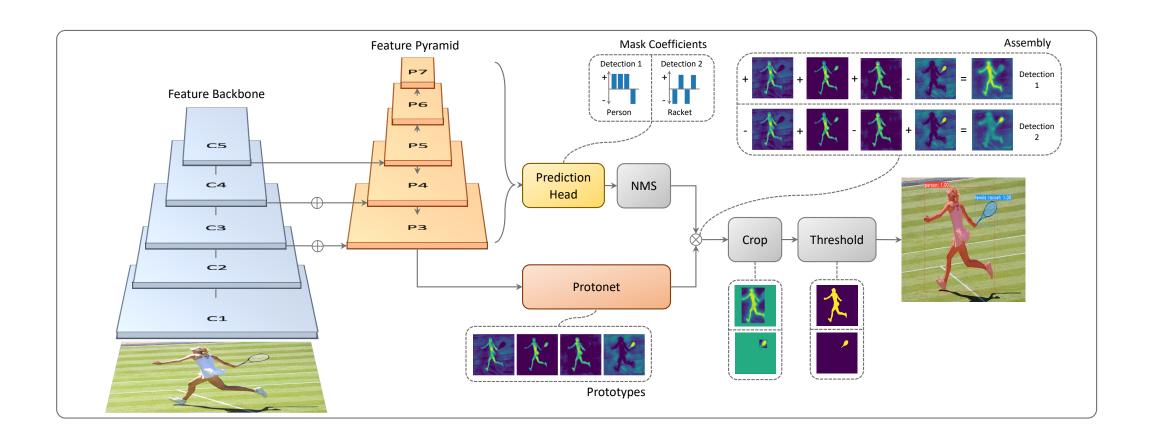
YOLOACT: You Only Look At CoefficienTs

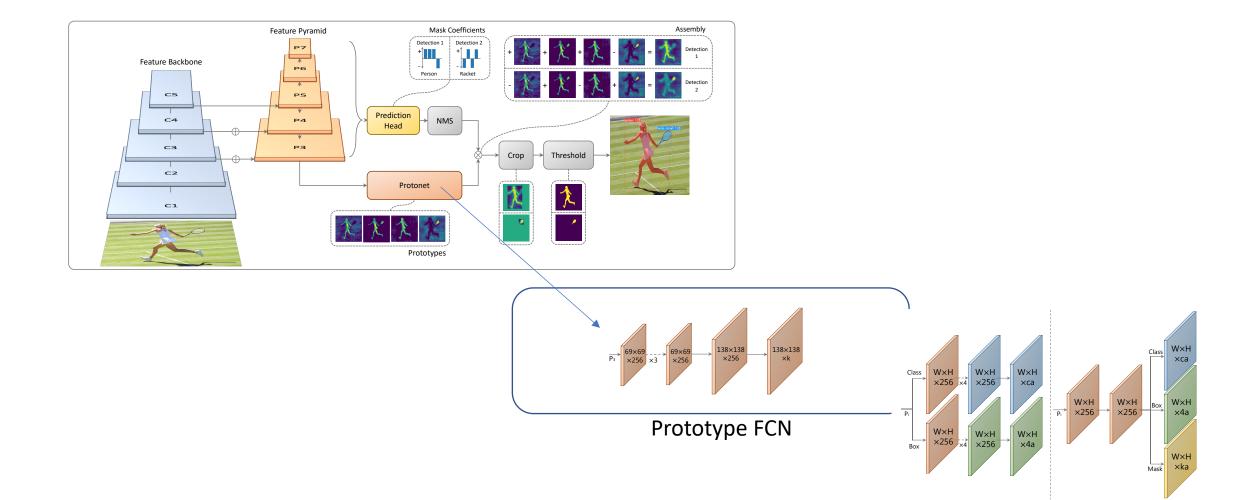
- Due task paralleli:
 - Generazione di un dizionario di non-local prototype masks sull'intera immagine
 - Basato su FCN
 - Predizione di un insieme di coefficienti di combinazione per ogni istanza
 - Aggiunge una componente all'object detection per predire un vettore di "mask coefficients"

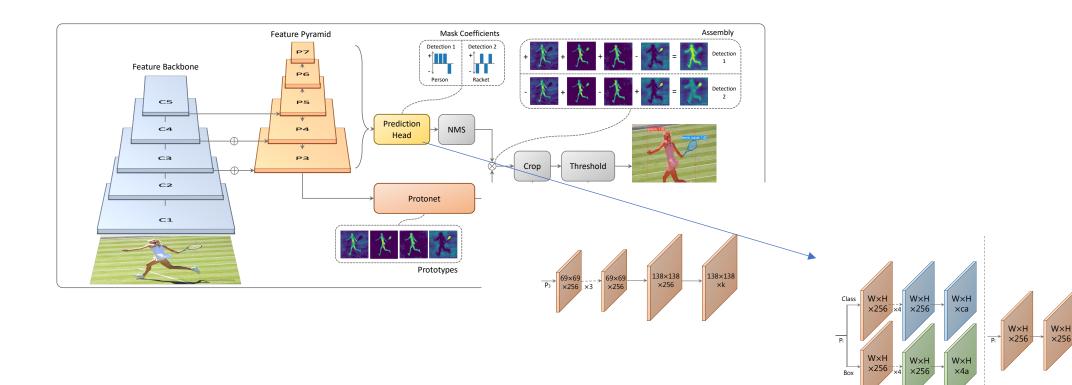
• Per ogni istanza selezionata nel NMS viene costruita una maschera

combinando i risultati dei due task.

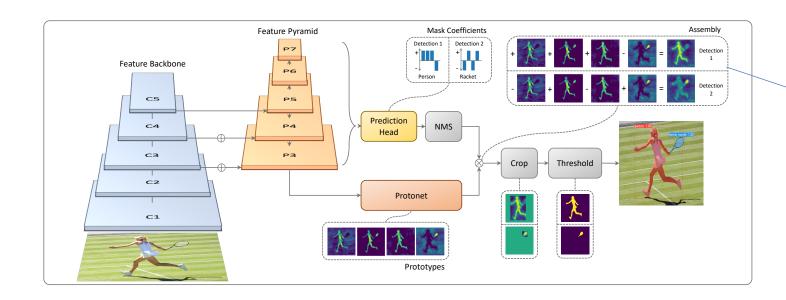








RetinaNet [27] Ours

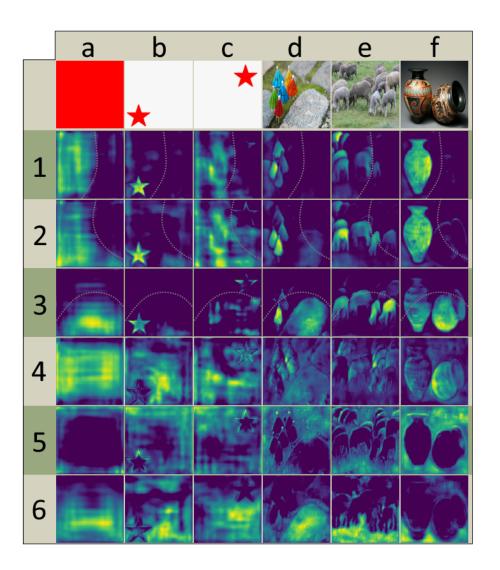


$$M = \sigma(P \cdot C^T)$$

- *P* matrice di maschere
- *C* vettore di coefficienti

Caratteristiche

- Loss
 - $L_{cs} + L_{box} + L_{mask}$
 - $L_{mask} = BCE(M, M_{gt})$
- YOLACT impara a localizzare le istanze



• 29.8mAP, 33FPS

Riassunto

- Semantic vs. Instance segmentation
- Architetture complesse
- Base per learning task simili
 - Depth estimation
 - Surface normal estimation
 - Colorization

