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• Segmentation
• Approcci classici
• Deep Learning for Segmentation
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Approcci supervisionati

• L’approccio basato su CRF è semi-supervisionato
• Possiamo renderlo supervisionato?
• Parametrizziamo gli unary e binary potentials

• E.g.,  𝑝 𝑦! 𝑥!; 𝜃 = "
#
exp 𝑤$! ⋅ 𝐹 𝑥!

• Apprendiamo i parametri che minimizzano l’energia media su tutti gli esempi



Semantic segmentation, object detection

• Problema
• Etichettare ogni pixel con una classe
• Multi-class problem

• Utilizzo di dati già etichettati
• Pascal VOC
• MS COCO



MS-COCO

• Large-scale dataset for object detection, segmentation and captioning
• 330K images (>200K labeled)
• 1.5 million object instances
• 80 object categories
• 91 stuff categories
• 5 captions per image
• 250,000 people with keypoints



Perché Deep Learning?

• Stesso principio dell’object detection
• Convolutional features, learned from training data

• Accuratezza
• Velocità



Approcci

• Approcci downsampling-upsampling
• Metodi multi-scala



Fully Convolutional Networks

• Utilizziamo i layer convoluzionali per fare le predizioni sui vari pixel
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Fully Convolutional Networks

• Utilizziamo i layer convoluzionali per fare le predizioni sui vari pixel
• Ma fare convoluzioni su feature map grandi è costoso
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Fully Convolutional Networks

• Soluzione
• Architettura Encoder-Decoder

Input

downsampling

upsampling

Output
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Convolutionalization

• Fully Convolutional Layers
• Faster-RCNN, SSD



Fully Convolutional Networks

• Architettura Encoder-Decoder

Input

downsampling

upsampling

Output

Convolution, Pooling



Fully Convolutional Networks

• Architettura Encoder-Decoder

Input

downsampling

upsampling

Output

Unpooling,
Transposed
convolution



Up-sampling Convolutions

• Upsampling
• Da un’input a bassa risoluzione si 

passa ad uno a più alta 
risoluzione
• Transposed Convolution

• Qual è la relazione?
• Suggerimento: invertiamo le 

relazioni originarie

https://github.com/vdumoulin/conv_arithmetic

https://github.com/vdumoulin/conv_arithmetic


Transposed Convolution



Transposed Convolution



Transposed Convolution



Transposed Convolution

• Ogni valore si distribuisce su un intorno dell’output in base al kernel. 

• La distribuzione viene guidata da padding e stride 



Convolution e transposed convolution

• Ogni riga definisce 
un’operazione di 
convoluzione
• Filtro 3x3, input 4x4

• No padding, no strides, no 
dilation



Convolution e transposed convolution

• Ogni riga definisce un’operazione di convoluzione



Convolution e transposed convolution

• Trasponendo la matrice di convoluzione, otteniamo l’operazione 
opposta



ConvTranspose, Padding

• Decrementa l’output della TD
• Interpretazione: l’ammontare di padding che l’input richiede per completare 

l’output
• Quale sarebbe l’output dell’esempio precedente?



ConvTranspose, Stride

• Espande l’output
• Di conseguenza «fraziona» l’input aggiungendo spazi

Il filtro si muove di 2 
pixel sull’output



ConvTranspose, checkerboarding
• Filter [𝑤-, 𝑤., 𝑤/], output stride = 2

Animation: https://distill.pub/2016/deconv-checkerboard/

stride 2

input

output
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ConvTranspose, checkerboarding

stride 2

input

output
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• Filter [𝑤-, 𝑤., 𝑤/], output stride = 2



ConvTranspose, checkerboarding

stride 2

input

output
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• Filter [𝑤-, 𝑤., 𝑤/], output stride = 2



ConvTranspose, Checkerboarding

stride 2

input

output
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• Filter [𝑤-, 𝑤., 𝑤/], output stride = 2



ConvTranspose, Checkerboarding

stride 2

input

output

𝑥! 𝑥" 𝑥#

𝑤#𝑥" + 𝑤!𝑥#

𝑥$ 𝑥% 𝑥& 𝑥' 𝑥(

• Filter [𝑤-, 𝑤., 𝑤/], output stride = 2



Transposed Convolution in Pytorch

in_channels (e.g. 3 for RGB inputs)

out_channels (equals the number of 
convolutional filters for this layer)

out_channels x

in_channels

kernel_size

kernel_size

Input Output



FCN: architettura

• Principio
• Riduciamo la dimensione, facciamo upsampling

• Tre varianti
• Coarse upsampling
• Combined upsampling, skip connections (tramite somma) 6

image pool4 pool5pool1 pool2 pool3conv1 conv2 conv3 conv4 conv5 conv6-7
32x upsampled

prediction (FCN-32s)

16x upsampled
prediction (FCN-16s)

8x upsampled
prediction (FCN-8s)

pool4
2x conv7

pool3
2x pool4

4x conv7

Fig. 3. Our DAG nets learn to combine coarse, high layer information with fine, low layer information. Pooling and prediction layers are shown
as grids that reveal relative spatial coarseness, while intermediate layers are shown as vertical lines. First row (FCN-32s): Our single-stream net,
described in Section 4.1, upsamples stride 32 predictions back to pixels in a single step. Second row (FCN-16s): Combining predictions from both
the final layer and the pool4 layer, at stride 16, lets our net predict finer details, while retaining high-level semantic information. Third row (FCN-8s):
Additional predictions from pool3, at stride 8, provide further precision.

Once augmented with skips, the network makes and fuses
predictions from several streams that are learned jointly and
end-to-end.

Combining fine layers and coarse layers lets the model
make local predictions that respect global structure. This
crossing of layers and resolutions is a learned, nonlinear
counterpart to the multi-scale representation of the Lapla-
cian pyramid [26]. By analogy to the jet of Koenderick and
van Doorn [27], we call our feature hierarchy the deep jet.

Layer fusion is essentially an elementwise operation.
However, the correspondence of elements across layers is
complicated by resampling and padding. Thus, in general,
layers to be fused must be aligned by scaling and cropping.
We bring two layers into scale agreement by upsampling the
lower-resolution layer, doing so in-network as explained in
Section 3.3. Cropping removes any portion of the upsam-
pled layer which extends beyond the other layer due to
padding. This results in layers of equal dimensions in exact
alignment. The offset of the cropped region depends on
the resampling and padding parameters of all intermediate
layers. Determining the crop that results in exact correspon-
dence can be intricate, but it follows automatically from the
network definition (and we include code for it in Caffe).

Having spatially aligned the layers, we next pick a fusion
operation. We fuse features by concatenation, and immedi-
ately follow with classification by a “score layer” consisting
of a 1 ⇥ 1 convolution. Rather than storing concatenated
features in memory, we commute the concatenation and
subsequent classification (as both are linear). Thus, our skips
are implemented by first scoring each layer to be fused by
1⇥ 1 convolution, carrying out any necessary interpolation
and alignment, and then summing the scores. We also con-
sidered max fusion, but found learning to be difficult due
to gradient switching. The score layer parameters are zero-
initialized when a skip is added, so that they do not interfere

with existing predictions of other streams. Once all layers
have been fused, the final prediction is then upsampled back
to image resolution.

Skip Architectures for Segmentation We define a skip
architecture to extend FCN-VGG16 to a three-stream net
with eight pixel stride shown in Figure 3. Adding a skip
from pool4 halves the stride by scoring from this stride
sixteen layer. The 2⇥ interpolation layer of the skip is
initialized to bilinear interpolation, but is not fixed so that it
can be learned as described in Section 3.3. We call this two-
stream net FCN-16s, and likewise define FCN-8s by adding
a further skip from pool3 to make stride eight predictions.
(Note that predicting at stride eight does not significantly
limit the maximum achievable mean IU; see Section 6.3.)

We experiment with both staged training and all-at-once
training. In the staged version, we learn the single-stream
FCN-32s, then upgrade to the two-stream FCN-16s and
continue learning, and finally upgrade to the three-stream
FCN-8s and finish learning. At each stage the net is learned
end-to-end, initialized with the parameters of the earlier net.
The learning rate is dropped 100⇥ from FCN-32s to FCN-
16s and 100⇥ more from FCN-16s to FCN-8s, which we
found to be necessary for continued improvements.

Learning all-at-once rather than in stages gives nearly
equivalent results, while training is faster and less tedious.
However, disparate feature scales make naı̈ve training prone
to divergence. To remedy this we scale each stream by a
fixed constant, for a similar in-network effect to the staged
learning rate adjustments. These constants are picked to ap-
proximately equalize average feature norms across streams.
(Other normalization schemes should have similar effect.)

With FCN-16s validation score improves to 65.0 mean
IU, and FCN-8s brings a minor improvement to 65.5. At
this point our fusion improvements have met diminishing
returns, so we do not continue fusing even shallower layers.
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Fig. 1. Fully convolutional networks can efficiently learn to make dense
predictions for per-pixel tasks like semantic segmentation.

lowing sections explain FCN design, introduce our architec-
ture with in-network upsampling and skip layers, and de-
scribe our experimental framework. Next, we demonstrate
improved accuracy on PASCAL VOC 2011-2, NYUDv2,
SIFT Flow, and PASCAL-Context. Finally, we analyze design
choices, examine what cues can be learned by an FCN, and
calculate recognition bounds for semantic segmentation.

2 RELATED WORK

Our approach draws on recent successes of deep nets for
image classification [1], [2], [3] and transfer learning [18],
[19]. Transfer was first demonstrated on various visual
recognition tasks [18], [19], then on detection, and on both
instance and semantic segmentation in hybrid proposal-
classifier models [5], [14], [15]. We now re-architect and
fine-tune classification nets to direct, dense prediction of
semantic segmentation. We chart the space of FCNs and
relate prior models both historical and recent.

Fully convolutional networks To our knowledge, the
idea of extending a convnet to arbitrary-sized inputs first
appeared in Matan et al. [20], which extended the classic
LeNet [21] to recognize strings of digits. Because their net
was limited to one-dimensional input strings, Matan et al.
used Viterbi decoding to obtain their outputs. Wolf and
Platt [22] expand convnet outputs to 2-dimensional maps
of detection scores for the four corners of postal address
blocks. Both of these historical works do inference and
learning fully convolutionally for detection. Ning et al. [10]
define a convnet for coarse multiclass segmentation of C.
elegans tissues with fully convolutional inference.

Fully convolutional computation has also been exploited
in the present era of many-layered nets. Sliding window
detection by Sermanet et al. [4], semantic segmentation by
Pinheiro and Collobert [13], and image restoration by Eigen
et al. [23] do fully convolutional inference. Fully convolu-
tional training is rare, but used effectively by Tompson et al.
[24] to learn an end-to-end part detector and spatial model
for pose estimation, although they do not exposit on or
analyze this method.

Dense prediction with convnets Several recent works
have applied convnets to dense prediction problems, includ-
ing semantic segmentation by Ning et al. [10], Farabet et al.
[12], and Pinheiro and Collobert [13]; boundary prediction
for electron microscopy by Ciresan et al. [11] and for natural
images by a hybrid convnet/nearest neighbor model by

Ganin and Lempitsky [16]; and image restoration and depth
estimation by Eigen et al. [23], [25]. Common elements of
these approaches include
• small models restricting capacity and receptive fields;
• patchwise training [10], [11], [12], [13], [16];
• refinement by superpixel projection, random field regu-

larization, filtering, or local classification [11], [12], [16];
• “interlacing” to obtain dense output [4], [13], [16];
• multi-scale pyramid processing [12], [13], [16];
• saturating tanh nonlinearities [12], [13], [23]; and
• ensembles [11], [16],
whereas our method does without this machinery. However,
we do study patchwise training (Section 3.4) and “shift-and-
stitch” dense output (Section 3.2) from the perspective of
FCNs. We also discuss in-network upsampling (Section 3.3),
of which the fully connected prediction by Eigen et al. [25]
is a special case.

Unlike these existing methods, we adapt and extend
deep classification architectures, using image classification
as supervised pre-training, and fine-tune fully convolution-
ally to learn simply and efficiently from whole image inputs
and whole image ground thruths.

Hariharan et al. [14] and Gupta et al. [15] likewise adapt
deep classification nets to semantic segmentation, but do so
in hybrid proposal-classifier models. These approaches fine-
tune an R-CNN system [5] by sampling bounding boxes
and/or region proposals for detection, semantic segmenta-
tion, and instance segmentation. Neither method is learned
end-to-end. They achieve the previous best segmentation
results on PASCAL VOC and NYUDv2 respectively, so we
directly compare our standalone, end-to-end FCN to their
semantic segmentation results in Section 5.

Combining feature hierarchies We fuse features across
layers to define a nonlinear local-to-global representation
that we tune end-to-end. The Laplacian pyramid [26] is a
classic multi-scale representation made of fixed smoothing
and differencing. The jet of Koenderink and van Doorn [27]
is a rich, local feature defined by compositions of partial
derivatives. In the context of deep networks, Sermanet et
al. [28] fuse intermediate layers but discard resolution in
doing so. In contemporary work Hariharan et al. [29] and
Mostajabi et al. [30] also fuse multiple layers but do not learn
end-to-end and rely on fixed bottom-up grouping.

FCN extensions Following the conference version of
this paper [17], FCNs have been extended to new tasks and
data. Tasks include region proposals [31], contour detection
[32], depth regression [33], optical flow [34], and weakly-
supervised semantic segmentation [35], [36], [37], [38].

In addition, new works have improved the FCNs pre-
sented here to further advance the state-of-the-art in se-
mantic segmentation. The DeepLab models [39] raise output
resolution by dilated convolution and dense CRF inference.
The joint CRFasRNN [40] model is an end-to-end integra-
tion of the CRF for further improvement. ParseNet [41]
normalizes features for fusion and captures context with
global pooling. The “deconvolutional network” approach
of [42] restores resolution by proposals, stacks of learned
deconvolution, and unpooling. U-Net [43] combines skip
layers and learned deconvolution for pixel labeling of mi-
croscopy images. The dilation architecture of [44] makes



FCN

• L’utilizzo di ConvTranspose con stride di grandi dimensioni causa la 
presenza di artefatti
• Scarsa risoluzione ai bordi

• L’encoding causa perdita di informazione

7

FCN-32s FCN-16s FCN-8s Ground truth

Fig. 4. Refining fully convolutional networks by fusing information from
layers with different strides improves spatial detail. The first three images
show the output from our 32, 16, and 8 pixel stride nets (see Figure 3).

To identify the contribution of the skips we compare
scoring from the intermediate layers in isolation, which
results in poor performance, or dropping the learning rate
without adding skips, which gives negligible improvement
in score without refining the visual quality of output. All
skip comparisons are reported in Table 3. Figure 4 shows
the progressively finer structure of the output.

TABLE 3
Comparison of FCNs on a subset5 of PASCAL VOC 2011 segval.

Learning is end-to-end with batch size one and high momentum, with
the exception of the fixed variant that fixes all features. Note that

FCN-32s is FCN-VGG16, renamed to highlight stride, and the
FCN-poolX are truncated nets with the same strides as FCN-32/16/8s.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

FCN-32s 90.5 76.5 63.6 83.5
FCN-16s 91.0 78.1 65.0 84.3
FCN-8s at-once 91.1 78.5 65.4 84.4
FCN-8s staged 91.2 77.6 65.5 84.5

FCN-32s fixed 82.9 64.6 46.6 72.3

FCN-pool5 87.4 60.5 50.0 78.5
FCN-pool4 78.7 31.7 22.4 67.0
FCN-pool3 70.9 13.7 9.2 57.6

4.4 Experimental framework
Fine-tuning We fine-tune all layers by backpropagation
through the whole net. Fine-tuning the output classifier
alone yields only 73% of the full fine-tuning performance
as compared in Table 3. Fine-tuning in stages takes 36 hours
on a single GPU. Learning FCN-8s all-at-once takes half the
time to reach comparable accuracy. Training from scratch
gives substantially lower accuracy.

More training data The PASCAL VOC 2011 segmen-
tation training set labels 1,112 images. Hariharan et al. [52]
collected labels for a larger set of 8,498 PASCAL training
images, which was used to train the previous best system,
SDS [14]. This training data improves the FCN-32s valida-
tion score5 from 57.7 to 63.6 mean IU and improves the FCN-
AlexNet score from 39.8 to 48.0 mean IU.

Loss The per-pixel, unnormalized softmax loss is a nat-
ural choice for segmenting images of any size into disjoint
classes, so we train our nets with it. The softmax operation

5. There are training images from [52] included in the PASCAL VOC
2011 val set, so we validate on the non-intersecting set of 736 images.

Fig. 5. Training on whole images is just as effective as sampling
patches, but results in faster (wall clock time) convergence by making
more efficient use of data. Left shows the effect of sampling on conver-
gence rate for a fixed expected batch size, while right plots the same by
relative wall clock time.

induces competition between classes and promotes the most
confident prediction, but it is not clear that this is necessary
or helpful. For comparison, we train with the sigmoid cross-
entropy loss and find that it gives similar results, even
though it normalizes each class prediction independently.

Patch sampling As explained in Section 3.4, our whole
image training effectively batches each image into a regular
grid of large, overlapping patches. By contrast, prior work
randomly samples patches over a full dataset [10], [11], [12],
[13], [16], potentially resulting in higher variance batches
that may accelerate convergence [53]. We study this tradeoff
by spatially sampling the loss in the manner described
earlier, making an independent choice to ignore each final
layer cell with some probability 1�p. To avoid changing the
effective batch size, we simultaneously increase the number
of images per batch by a factor 1/p. Note that due to the
efficiency of convolution, this form of rejection sampling is
still faster than patchwise training for large enough values
of p (e.g., at least for p > 0.2 according to the numbers
in Section 3.1). Figure 5 shows the effect of this form of
sampling on convergence. We find that sampling does not
have a significant effect on convergence rate compared to
whole image training, but takes significantly more time due
to the larger number of images that need to be considered
per batch. We therefore choose unsampled, whole image
training in our other experiments.

Class balancing Fully convolutional training can bal-
ance classes by weighting or sampling the loss. Although
our labels are mildly unbalanced (about 3/4 are back-
ground), we find class balancing unnecessary.

Dense Prediction The scores are upsampled to the input
dimensions by backward convolution layers within the net.
Final layer backward convolution weights are fixed to bilin-
ear interpolation, while intermediate upsampling layers are
initialized to bilinear interpolation, and then learned. This
simple, end-to-end method is accurate and fast.

Augmentation We tried augmenting the training data
by randomly mirroring and “jittering” the images by trans-
lating them up to 32 pixels (the coarsest scale of prediction)
in each direction. This yielded no noticeable improvement.

Implementation All models are trained and tested with
Caffe [54] on a single NVIDIA Titan X. Our models and code
are publicly available at http://fcn.berkeleyvision.org.



DeconvNet
Up-sampling Convolutions or ”Deconvolutions”

• Backbone: VGG

http://cvlab.postech.ac.kr/research/deconvnet/

http://cvlab.postech.ac.kr/research/deconvnet/


Unpooling



Unpooling

• Bilinear interpolation



Unpooling
• Bed of nails



Unpooling

• Max unpooling



DeconvNet

Original image 14x14 deconv 28x28 unpooling 28x28 deconv 54x54 unpooling

54x54 deconv 112x112 unpooling 112x112 deconv 224x224 unpooling 224x224 deconv



SegNet

Eliminando i FC layer, porta a risultati
migliori



• Usa le skip connections per combinare le feature maps
• La combinazione viene effettuata per concatenazione

U-Net



Metodi Multi-scala

• Idea generale
• Otteniamo una feature map utilizzando un’architettura standard (ResNet)
• Applichiamo una serie di convoluzioni con filtri di dimensioni diverse per 

ottenere risoluzioni diverse
• Encoding delle varie scale
• Upsampling e combinazione  dei risultati

Figure 3. Overview of our proposed PSPNet. Given an input image (a), we first use CNN to get the feature map of the last convolutional
layer (b), then a pyramid parsing module is applied to harvest different sub-region representations, followed by upsampling and concatena-
tion layers to form the final feature representation, which carries both local and global context information in (c). Finally, the representation
is fed into a convolution layer to get the final per-pixel prediction (d).

call it pyramid pooling module for global scene prior con-
struction upon the final-layer-feature-map of the deep neu-
ral network, as illustrated in part (c) of Fig. 3.

The pyramid pooling module fuses features under four
different pyramid scales. The coarsest level highlighted in
red is global pooling to generate a single bin output. The
following pyramid level separates the feature map into dif-
ferent sub-regions and forms pooled representation for dif-
ferent locations. The output of different levels in the pyra-
mid pooling module contains the feature map with varied
sizes. To maintain the weight of global feature, we use 1⇥1
convolution layer after each pyramid level to reduce the di-
mension of context representation to 1/N of the original
one if the level size of pyramid is N . Then we directly up-
sample the low-dimension feature maps to get the same size
feature as the original feature map via bilinear interpolation.
Finally, different levels of features are concatenated as the
final pyramid pooling global feature.

Noted that the number of pyramid levels and size of each
level can be modified. They are related to the size of feature
map that is fed into the pyramid pooling layer. The struc-
ture abstracts different sub-regions by adopting varying-size
pooling kernels in a few strides. Thus the multi-stage ker-
nels should maintain a reasonable gap in representation.
Our pyramid pooling module is a four-level one with bin
sizes of 1⇥1, 2⇥2, 3⇥3 and 6⇥6 respectively. For the type
of pooling operation between max and average, we perform
extensive experiments to show the difference in Section 5.2.

3.3. Network Architecture

With the pyramid pooling module, we propose our pyra-

mid scene parsing network (PSPNet) as illustrated in Fig. 3.
Given an input image in Fig. 3(a), we use a pretrained
ResNet [13] model with the dilated network strategy [3, 40]
to extract the feature map. The final feature map size is 1/8
of the input image, as shown in Fig. 3(b). On top of the

Figure 4. Illustration of auxiliary loss in ResNet101. Each blue
box denotes a residue block. The auxiliary loss is added after the
res4b22 residue block.

map, we use the pyramid pooling module shown in (c) to
gather context information. Using our 4-level pyramid, the
pooling kernels cover the whole, half of, and small portions
of the image. They are fused as the global prior. Then we
concatenate the prior with the original feature map in the
final part of (c). It is followed by a convolution layer to
generate the final prediction map in (d).

To explain our structure, PSPNet provides an effective
global contextual prior for pixel-level scene parsing. The
pyramid pooling module can collect levels of information,
more representative than global pooling [24]. In terms of
computational cost, our PSPNet does not much increase it
compared to the original dilated FCN network. In end-to-
end learning, the global pyramid pooling module and the
local FCN feature can be optimized simultaneously.

4. Deep Supervision for ResNet-Based FCN

Deep pretrained networks lead to good performance
[17, 33, 13]. However, increasing depth of the network
may introduce additional optimization difficulty as shown
in [32, 19] for image classification. ResNet solves this prob-
lem with skip connection in each block. Latter layers of
deep ResNet mainly learn residues based on previous ones.
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Figure 3. Overview of our proposed PSPNet. Given an input image (a), we first use CNN to get the feature map of the last convolutional
layer (b), then a pyramid parsing module is applied to harvest different sub-region representations, followed by upsampling and concatena-
tion layers to form the final feature representation, which carries both local and global context information in (c). Finally, the representation
is fed into a convolution layer to get the final per-pixel prediction (d).

call it pyramid pooling module for global scene prior con-
struction upon the final-layer-feature-map of the deep neu-
ral network, as illustrated in part (c) of Fig. 3.

The pyramid pooling module fuses features under four
different pyramid scales. The coarsest level highlighted in
red is global pooling to generate a single bin output. The
following pyramid level separates the feature map into dif-
ferent sub-regions and forms pooled representation for dif-
ferent locations. The output of different levels in the pyra-
mid pooling module contains the feature map with varied
sizes. To maintain the weight of global feature, we use 1⇥1
convolution layer after each pyramid level to reduce the di-
mension of context representation to 1/N of the original
one if the level size of pyramid is N . Then we directly up-
sample the low-dimension feature maps to get the same size
feature as the original feature map via bilinear interpolation.
Finally, different levels of features are concatenated as the
final pyramid pooling global feature.

Noted that the number of pyramid levels and size of each
level can be modified. They are related to the size of feature
map that is fed into the pyramid pooling layer. The struc-
ture abstracts different sub-regions by adopting varying-size
pooling kernels in a few strides. Thus the multi-stage ker-
nels should maintain a reasonable gap in representation.
Our pyramid pooling module is a four-level one with bin
sizes of 1⇥1, 2⇥2, 3⇥3 and 6⇥6 respectively. For the type
of pooling operation between max and average, we perform
extensive experiments to show the difference in Section 5.2.

3.3. Network Architecture

With the pyramid pooling module, we propose our pyra-

mid scene parsing network (PSPNet) as illustrated in Fig. 3.
Given an input image in Fig. 3(a), we use a pretrained
ResNet [13] model with the dilated network strategy [3, 40]
to extract the feature map. The final feature map size is 1/8
of the input image, as shown in Fig. 3(b). On top of the

Figure 4. Illustration of auxiliary loss in ResNet101. Each blue
box denotes a residue block. The auxiliary loss is added after the
res4b22 residue block.

map, we use the pyramid pooling module shown in (c) to
gather context information. Using our 4-level pyramid, the
pooling kernels cover the whole, half of, and small portions
of the image. They are fused as the global prior. Then we
concatenate the prior with the original feature map in the
final part of (c). It is followed by a convolution layer to
generate the final prediction map in (d).

To explain our structure, PSPNet provides an effective
global contextual prior for pixel-level scene parsing. The
pyramid pooling module can collect levels of information,
more representative than global pooling [24]. In terms of
computational cost, our PSPNet does not much increase it
compared to the original dilated FCN network. In end-to-
end learning, the global pyramid pooling module and the
local FCN feature can be optimized simultaneously.

4. Deep Supervision for ResNet-Based FCN

Deep pretrained networks lead to good performance
[17, 33, 13]. However, increasing depth of the network
may introduce additional optimization difficulty as shown
in [32, 19] for image classification. ResNet solves this prob-
lem with skip connection in each block. Latter layers of
deep ResNet mainly learn residues based on previous ones.
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final DCNN network responses at an arbitrarily high resolu-
tion. For example, in order to double the spatial density of
computed feature responses in the VGG-16 or ResNet-101
networks, we find the last pooling or convolutional layer
that decreases resolution (’pool5’ or ’conv5 1’ respectively),
set its stride to 1 to avoid signal decimation, and replace all
subsequent convolutional layers with atrous convolutional
layers having rate r = 2. Pushing this approach all the way
through the network could allow us to compute feature
responses at the original image resolution, but this ends
up being too costly. We have adopted instead a hybrid
approach that strikes a good efficiency/accuracy trade-off,
using atrous convolution to increase by a factor of 4 the
density of computed feature maps, followed by fast bilinear
interpolation by an additional factor of 8 to recover feature
maps at the original image resolution. Bilinear interpolation
is sufficient in this setting because the class score maps
(corresponding to log-probabilities) are quite smooth, as
illustrated in Fig. 5. Unlike the deconvolutional approach
adopted by [14], the proposed approach converts image
classification networks into dense feature extractors without
requiring learning any extra parameters, leading to faster
DCNN training in practice.

Atrous convolution also allows us to arbitrarily enlarge
the field-of-view of filters at any DCNN layer. State-of-the-
art DCNNs typically employ spatially small convolution
kernels (typically 3⇥3) in order to keep both computation
and number of parameters contained. Atrous convolution
with rate r introduces r� 1 zeros between consecutive filter
values, effectively enlarging the kernel size of a k⇥k filter
to ke = k + (k � 1)(r � 1) without increasing the number
of parameters or the amount of computation. It thus offers
an efficient mechanism to control the field-of-view and
finds the best trade-off between accurate localization (small
field-of-view) and context assimilation (large field-of-view).
We have successfully experimented with this technique:
Our DeepLab-LargeFOV model variant [38] employs atrous
convolution with rate r = 12 in VGG-16 ‘fc6’ layer with
significant performance gains, as detailed in Section 4.

Turning to implementation aspects, there are two effi-
cient ways to perform atrous convolution. The first is to
implicitly upsample the filters by inserting holes (zeros), or
equivalently sparsely sample the input feature maps [15].
We implemented this in our earlier work [6], [38], followed
by [76], within the Caffe framework [41] by adding to the
im2col function (it extracts vectorized patches from multi-
channel feature maps) the option to sparsely sample the
underlying feature maps. The second method, originally
proposed by [82] and used in [3], [16] is to subsample the
input feature map by a factor equal to the atrous convolu-
tion rate r, deinterlacing it to produce r2 reduced resolution
maps, one for each of the r⇥r possible shifts. This is followed
by applying standard convolution to these intermediate
feature maps and reinterlacing them to the original image
resolution. By reducing atrous convolution into regular con-
volution, it allows us to use off-the-shelf highly optimized
convolution routines. We have implemented the second
approach into the TensorFlow framework [83].

rate = 6
rate = 12

rate = 18
rate = 24

Atrous Spatial Pyramid Pooling

Input Feature Map

Conv

kernel: 3x3

rate: 6

Conv

kernel: 3x3

rate: 12
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kernel: 3x3

rate: 18

Conv

kernel: 3x3

rate: 24

Fig. 4: Atrous Spatial Pyramid Pooling (ASPP). To classify
the center pixel (orange), ASPP exploits multi-scale features
by employing multiple parallel filters with different rates.
The effective Field-Of-Views are shown in different colors.

3.2 Multiscale Image Representations using Atrous
Spatial Pyramid Pooling
DCNNs have shown a remarkable ability to implicitly repre-
sent scale, simply by being trained on datasets that contain
objects of varying size. Still, explicitly accounting for object
scale can improve the DCNN’s ability to successfully handle
both large and small objects [6].

We have experimented with two approaches to han-
dling scale variability in semantic segmentation. The first
approach amounts to standard multiscale processing [17],
[18]. We extract DCNN score maps from multiple (three
in our experiments) rescaled versions of the original image
using parallel DCNN branches that share the same param-
eters. To produce the final result, we bilinearly interpolate
the feature maps from the parallel DCNN branches to the
original image resolution and fuse them, by taking at each
position the maximum response across the different scales.
We do this both during training and testing. Multiscale
processing significantly improves performance, but at the
cost of computing feature responses at all DCNN layers for
multiple scales of input.

The second approach is inspired by the success of the
R-CNN spatial pyramid pooling method of [20], which
showed that regions of an arbitrary scale can be accurately
and efficiently classified by resampling convolutional fea-
tures extracted at a single scale. We have implemented a
variant of their scheme which uses multiple parallel atrous
convolutional layers with different sampling rates. The fea-
tures extracted for each sampling rate are further processed
in separate branches and fused to generate the final result.
The proposed “atrous spatial pyramid pooling” (DeepLab-
ASPP) approach generalizes our DeepLab-LargeFOV vari-
ant and is illustrated in Fig. 4.

3.3 Structured Prediction with Fully-Connected Condi-
tional Random Fields for Accurate Boundary Recovery
A trade-off between localization accuracy and classifica-
tion performance seems to be inherent in DCNNs: deeper
models with multiple max-pooling layers have proven most
successful in classification tasks, however the increased in-
variance and the large receptive fields of top-level nodes can
only yield smooth responses. As illustrated in Fig. 5, DCNN
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Figure 2: (a) ENet initial block. MaxPooling is performed with non-overlapping 2 ⇥ 2 windows,
and the convolution has 13 filters, which sums up to 16 feature maps after concatenation. This
is heavily inspired by [28]. (b) ENet bottleneck module. conv is either a regular, dilated, or full
convolution (also known as deconvolution) with 3⇥ 3 filters, or a 5⇥ 5 convolution decomposed
into two asymmetric ones.

and then merge back with an element-wise addition, as shown in Figure 2b. Each block consists
of three convolutional layers: a 1 ⇥ 1 projection that reduces the dimensionality, a main convolu-
tional layer (conv in Figure 2b), and a 1 ⇥ 1 expansion. We place Batch Normalization [25] and
PReLU [26] between all convolutions. Just as in the original paper, we refer to these as bottleneck
modules. If the bottleneck is downsampling, a max pooling layer is added to the main branch.

Table 1: ENet architecture. Output sizes are given
for an example input of 512⇥ 512.

Name Type Output size

initial 16⇥ 256⇥ 256

bottleneck1.0 downsampling 64⇥ 128⇥ 128
4⇥ bottleneck1.x 64⇥ 128⇥ 128

bottleneck2.0 downsampling 128⇥ 64⇥ 64
bottleneck2.1 128⇥ 64⇥ 64
bottleneck2.2 dilated 2 128⇥ 64⇥ 64
bottleneck2.3 asymmetric 5 128⇥ 64⇥ 64
bottleneck2.4 dilated 4 128⇥ 64⇥ 64
bottleneck2.5 128⇥ 64⇥ 64
bottleneck2.6 dilated 8 128⇥ 64⇥ 64
bottleneck2.7 asymmetric 5 128⇥ 64⇥ 64
bottleneck2.8 dilated 16 128⇥ 64⇥ 64

Repeat section 2, without bottleneck2.0

bottleneck4.0 upsampling 64⇥ 128⇥ 128
bottleneck4.1 64⇥ 128⇥ 128
bottleneck4.2 64⇥ 128⇥ 128

bottleneck5.0 upsampling 16⇥ 256⇥ 256
bottleneck5.1 16⇥ 256⇥ 256

fullconv C ⇥ 512⇥ 512

Also, the first 1⇥ 1 projection is replaced with
a 2⇥ 2 convolution with stride 2 in both dimen-
sions. We zero pad the activations, to match
the number of feature maps. conv is either a
regular, dilated or full convolution (also known
as deconvolution or fractionally strided convolu-
tion) with 3⇥ 3 filters. Sometimes we replace it
with asymmetric convolution i.e. a sequence of
5 ⇥ 1 and 1 ⇥ 5 convolutions. For the regular-
izer, we use Spatial Dropout [27], with p = 0.01
before bottleneck2.0, and p = 0.1 afterwards.

The initial stage contains a single block, that is
presented in Figure 2a. Stage 1 consists of 5
bottleneck blocks, while stage 2 and 3 have the
same structure, with the exception that stage 3
does not downsample the input at the beginning
(we omit the 0th bottleneck). These three first
stages are the encoder. Stage 4 and 5 belong to
the decoder.

We did not use bias terms in any of the projec-
tions, in order to reduce the number of kernel
calls and overall memory operations, as cuDNN
[29] uses separate kernels for convolution and
bias addition. This choice didn’t have any im-
pact on the accuracy. Between each convolu-
tional layer and following non-linearity we use
Batch Normalization [25]. In the decoder max
pooling is replaced with max unpooling, and padding is replaced with spatial convolution without
bias. We did not use pooling indices in the last upsampling module, because the initial block operated
on the 3 channels of the input frame, while the final output has C feature maps (the number of object
classes). Also, for performance reasons, we decided to place only a bare full convolution as the last
module of the network, which alone takes up a sizeable portion of the decoder processing time.
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Figure 2: (a) ENet initial block. MaxPooling is performed with non-overlapping 2 ⇥ 2 windows,
and the convolution has 13 filters, which sums up to 16 feature maps after concatenation. This
is heavily inspired by [28]. (b) ENet bottleneck module. conv is either a regular, dilated, or full
convolution (also known as deconvolution) with 3⇥ 3 filters, or a 5⇥ 5 convolution decomposed
into two asymmetric ones.

and then merge back with an element-wise addition, as shown in Figure 2b. Each block consists
of three convolutional layers: a 1 ⇥ 1 projection that reduces the dimensionality, a main convolu-
tional layer (conv in Figure 2b), and a 1 ⇥ 1 expansion. We place Batch Normalization [25] and
PReLU [26] between all convolutions. Just as in the original paper, we refer to these as bottleneck
modules. If the bottleneck is downsampling, a max pooling layer is added to the main branch.

Table 1: ENet architecture. Output sizes are given
for an example input of 512⇥ 512.

Name Type Output size

initial 16⇥ 256⇥ 256

bottleneck1.0 downsampling 64⇥ 128⇥ 128
4⇥ bottleneck1.x 64⇥ 128⇥ 128

bottleneck2.0 downsampling 128⇥ 64⇥ 64
bottleneck2.1 128⇥ 64⇥ 64
bottleneck2.2 dilated 2 128⇥ 64⇥ 64
bottleneck2.3 asymmetric 5 128⇥ 64⇥ 64
bottleneck2.4 dilated 4 128⇥ 64⇥ 64
bottleneck2.5 128⇥ 64⇥ 64
bottleneck2.6 dilated 8 128⇥ 64⇥ 64
bottleneck2.7 asymmetric 5 128⇥ 64⇥ 64
bottleneck2.8 dilated 16 128⇥ 64⇥ 64

Repeat section 2, without bottleneck2.0

bottleneck4.0 upsampling 64⇥ 128⇥ 128
bottleneck4.1 64⇥ 128⇥ 128
bottleneck4.2 64⇥ 128⇥ 128

bottleneck5.0 upsampling 16⇥ 256⇥ 256
bottleneck5.1 16⇥ 256⇥ 256

fullconv C ⇥ 512⇥ 512

Also, the first 1⇥ 1 projection is replaced with
a 2⇥ 2 convolution with stride 2 in both dimen-
sions. We zero pad the activations, to match
the number of feature maps. conv is either a
regular, dilated or full convolution (also known
as deconvolution or fractionally strided convolu-
tion) with 3⇥ 3 filters. Sometimes we replace it
with asymmetric convolution i.e. a sequence of
5 ⇥ 1 and 1 ⇥ 5 convolutions. For the regular-
izer, we use Spatial Dropout [27], with p = 0.01
before bottleneck2.0, and p = 0.1 afterwards.

The initial stage contains a single block, that is
presented in Figure 2a. Stage 1 consists of 5
bottleneck blocks, while stage 2 and 3 have the
same structure, with the exception that stage 3
does not downsample the input at the beginning
(we omit the 0th bottleneck). These three first
stages are the encoder. Stage 4 and 5 belong to
the decoder.

We did not use bias terms in any of the projec-
tions, in order to reduce the number of kernel
calls and overall memory operations, as cuDNN
[29] uses separate kernels for convolution and
bias addition. This choice didn’t have any im-
pact on the accuracy. Between each convolu-
tional layer and following non-linearity we use
Batch Normalization [25]. In the decoder max
pooling is replaced with max unpooling, and padding is replaced with spatial convolution without
bias. We did not use pooling indices in the last upsampling module, because the initial block operated
on the 3 channels of the input frame, while the final output has C feature maps (the number of object
classes). Also, for performance reasons, we decided to place only a bare full convolution as the last
module of the network, which alone takes up a sizeable portion of the decoder processing time.
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Figure 2: (a) ENet initial block. MaxPooling is performed with non-overlapping 2 ⇥ 2 windows,
and the convolution has 13 filters, which sums up to 16 feature maps after concatenation. This
is heavily inspired by [28]. (b) ENet bottleneck module. conv is either a regular, dilated, or full
convolution (also known as deconvolution) with 3⇥ 3 filters, or a 5⇥ 5 convolution decomposed
into two asymmetric ones.

and then merge back with an element-wise addition, as shown in Figure 2b. Each block consists
of three convolutional layers: a 1 ⇥ 1 projection that reduces the dimensionality, a main convolu-
tional layer (conv in Figure 2b), and a 1 ⇥ 1 expansion. We place Batch Normalization [25] and
PReLU [26] between all convolutions. Just as in the original paper, we refer to these as bottleneck
modules. If the bottleneck is downsampling, a max pooling layer is added to the main branch.

Table 1: ENet architecture. Output sizes are given
for an example input of 512⇥ 512.

Name Type Output size

initial 16⇥ 256⇥ 256

bottleneck1.0 downsampling 64⇥ 128⇥ 128
4⇥ bottleneck1.x 64⇥ 128⇥ 128

bottleneck2.0 downsampling 128⇥ 64⇥ 64
bottleneck2.1 128⇥ 64⇥ 64
bottleneck2.2 dilated 2 128⇥ 64⇥ 64
bottleneck2.3 asymmetric 5 128⇥ 64⇥ 64
bottleneck2.4 dilated 4 128⇥ 64⇥ 64
bottleneck2.5 128⇥ 64⇥ 64
bottleneck2.6 dilated 8 128⇥ 64⇥ 64
bottleneck2.7 asymmetric 5 128⇥ 64⇥ 64
bottleneck2.8 dilated 16 128⇥ 64⇥ 64

Repeat section 2, without bottleneck2.0

bottleneck4.0 upsampling 64⇥ 128⇥ 128
bottleneck4.1 64⇥ 128⇥ 128
bottleneck4.2 64⇥ 128⇥ 128

bottleneck5.0 upsampling 16⇥ 256⇥ 256
bottleneck5.1 16⇥ 256⇥ 256

fullconv C ⇥ 512⇥ 512

Also, the first 1⇥ 1 projection is replaced with
a 2⇥ 2 convolution with stride 2 in both dimen-
sions. We zero pad the activations, to match
the number of feature maps. conv is either a
regular, dilated or full convolution (also known
as deconvolution or fractionally strided convolu-
tion) with 3⇥ 3 filters. Sometimes we replace it
with asymmetric convolution i.e. a sequence of
5 ⇥ 1 and 1 ⇥ 5 convolutions. For the regular-
izer, we use Spatial Dropout [27], with p = 0.01
before bottleneck2.0, and p = 0.1 afterwards.

The initial stage contains a single block, that is
presented in Figure 2a. Stage 1 consists of 5
bottleneck blocks, while stage 2 and 3 have the
same structure, with the exception that stage 3
does not downsample the input at the beginning
(we omit the 0th bottleneck). These three first
stages are the encoder. Stage 4 and 5 belong to
the decoder.

We did not use bias terms in any of the projec-
tions, in order to reduce the number of kernel
calls and overall memory operations, as cuDNN
[29] uses separate kernels for convolution and
bias addition. This choice didn’t have any im-
pact on the accuracy. Between each convolu-
tional layer and following non-linearity we use
Batch Normalization [25]. In the decoder max
pooling is replaced with max unpooling, and padding is replaced with spatial convolution without
bias. We did not use pooling indices in the last upsampling module, because the initial block operated
on the 3 channels of the input frame, while the final output has C feature maps (the number of object
classes). Also, for performance reasons, we decided to place only a bare full convolution as the last
module of the network, which alone takes up a sizeable portion of the decoder processing time.
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Figure 4: ENet predictions on Cityscapes validation set [14]
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Figure 5: ENet predictions on CamVid test set [15]
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Figure 6: ENet predictions on SUN RGB-D test set [16]
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when we interleaved them with other bottleneck modules (both regular and asymmetric), instead of
arranging them in sequence, as has been done in [30].

Regularization Most pixel-wise segmentation datasets are relatively small (on order of 103 images),
so such expressive models as neural networks quickly begin to overfit them. In initial experiments,
we used L2 weight decay with little success. Then, inspired by [33], we have tried stochastic depth,
which increased accuracy. However it became apparent that dropping whole branches (i.e. setting
their output to 0) is in fact a special case of applying Spatial Dropout [27], where either all of the
channels, or none of them are ignored, instead of selecting a random subset. We placed Spatial
Dropout at the end of convolutional branches, right before the addition, and it turned out to work
much better than stochastic depth.

5 Results

We benchmarked the performance of ENet on three different datasets to demonstrate real-time and
accurate for practical applications. We tested on CamVid and Cityscapes datasets of road scenes,
and SUN RGB-D dataset of indoor scenes. We set SegNet [11] as a baseline since it is one of the
fastest segmentation models, that also has way fewer parameters and requires less memory to operate
than FCN. All our models, training, testing and performance evaluation scripts were using the Torch7
machine-learning library, with cuDNN backend. To compare results, we use class average accuracy
and intersection-over-union (IoU) metrics.

5.1 Performance Analysis

We report results on inference speed on widely used NVIDIA Titan X GPU as well as on NVIDIA
TX1 embedded system module. ENet was designed to achieve more than 10 fps on the NVIDIA
TX1 board with an input image size 640⇥ 360, which is adequate for practical road scene parsing
applications. For inference we merge batch normalization and dropout layers into the convolutional
filters, to speed up all networks.

Table 2: Performance comparison.

Model
NVIDIA TX1 NVIDIA Titan X

480⇥320 640⇥360 1280⇥720 640⇥360 1280⇥720 1920⇥1080
ms fps ms fps ms fps ms fps ms fps ms fps

SegNet 757 1.3 1251 0.8 - - 69 14.6 289 3.5 637 1.6
ENet 47 21.1 69 14.6 262 3.8 7 135.4 21 46.8 46 21.6

Inference time Table 2 compares inference time for a single input frame of varying resolution. We
also report the number of frames per second that can be processed. Dashes indicate that we could not
obtain a measurement, due to lack of memory. ENet is significantly faster than SegNet, providing
high frame rates for real-time applications and allowing for practical use of very deep neural network
models with encoder-decoder architecture.

Table 3: Hardware requirements. FLOPs are estimated for an input of 3⇥ 640⇥ 360.

GFLOPs Parameters Model size (fp16)

SegNet 286.03 29.46M 56.2 MB
ENet 3.83 0.37M 0.7 MB

Hardware requirements Table 3 reports a comparison of number of floating point operations and
parameters used by different models. ENet efficiency is evident, as its requirements are on two orders
of magnitude smaller. Please note that we report storage required to save model parameters in half
precision floating point format. ENet has so few parameters, that the required space is only 0.7MB,
which makes it possible to fit the whole network in an extremely fast on-chip memory in embedded
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processors. Also, this alleviates the need for model compression [34], making it possible to use
general purpose neural network libraries. However, if one needs to operate under incredibly strict
memory constraints, these techniques can still be applied to ENet as well.

Software limitations One of the most important techniques that has allowed us to reach these
levels of performance is convolutional layer factorization. However, we have found one surprising
drawback. Although applying this method allowed us to greatly reduce the number of floating point
operations and parameters, it also increased the number of individual kernels calls, making each of
them smaller.

We have found that some of these operations can become so cheap, that the cost of GPU kernel
launch starts to outweigh the cost of the actual computation. Also, because kernels do not have
access to values that have been kept in registers by previous ones, they have to load all data from
global memory at launch, and save it when their work is finished. This means that using a higher
number of kernels, increases the number of memory transactions, because feature maps have to be
constantly saved and reloaded. This becomes especially apparent in case of non-linear operations. In
ENet, PReLUs consume more than a quarter of inference time. Since they are only simple point-wise
operations and are very easy to parallelize, we hypothesize it is caused by the aforementioned data
movement.

These are serious limitations, however they could be resolved by performing kernel fusion in existing
software i.e. create kernels that apply non-linearities to results of convolutions directly, or perform a
number of smaller convolutions in one call. This improvement in GPU libraries, such as cuDNN,
could increase the speed and efficiency of our network even further.

5.2 Benchmarks

We have used the Adam optimization algorithm [35] to train the network. It allowed ENet to converge
very quickly and on every dataset we have used training took only 3-6 hours, using four Titan X GPUs.
It was performed in two stages: first we trained only the encoder to categorize downsampled regions
of the input image, then we appended the decoder and trained the network to perform upsampling and
pixel-wise classification. Learning rate of 5e�4 and L2 weight decay of 2e�4, along with batch size
of 10 consistently provided the best results. We have used a custom class weighing scheme defined as
wclass =

1
ln(c+pclass)

. In contrast to the inverse class probability weighing, the weights are bounded
as the probability approaches 0. c is an additional hyper-parameter, which we set to 1.02 (i.e. we
restrict the class weights to be in the interval of [1, 50]).

Table 4: Cityscapes test set results

Model Class IoU Class iIoU Category IoU Category iIoU

SegNet 56.1 34.2 79.8 66.4

ENet 58.3 34.4 80.4 64.0

Cityscapes This dataset consists of 5000 fine-annotated images, out of which 2975 are available
for training, 500 for validation, and the remaining 1525 have been selected as test set [14]. Cityscapes
was the most important benchmark for us, because of its outstanding quality and highly varying
road scenarios, often featuring many pedestrians and cyclists. We trained on 19 classes that have
been selected in the official evaluation scripts [14]. It makes use of an additional metric called
instance-level intersection over union metric (iIoU), which is IoU weighed by the average object size.
As reported in Table 4, ENet outperforms SegNet in class IoU and iIoU, as well as in category IoU.
ENet is currently the fastest model in the Cityscapes benchmark. Example predictions for images
from validation set are presented in Figure 4.

CamVid Another automotive dataset, on which we have tested ENet, was CamVid. It contains 367
training and 233 testing images [15]. There are eleven different classes such as building, tree, sky, car,
road, etc. while the twelfth class contains unlabeled data, which we ignore while training. The original
frame resolution for this dataset is 960⇥720 but we downsampled the images to 480⇥360 before
training. In Table 5 we compare the performance of ENet with existing state-of-the-art algorithms.
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(a) Inference speed and mIoU (b) Time in each layer of PSPNet50

Fig. 1. (a)1: Inference speed and mIoU performance on Cityscapes [7] test set. Meth-
ods involved are PSPNet [5], ResNet38 [6], DUC [10], RefineNet [11], FRRN [12],
DeepLabv2-CRF[13], Dilation10 [14], DPN [15], FCN-8s [1], DeepLab [2], CRF-
RNN [16], SQ [9], ENet [8], SegNet [3], and our ICNet. (b): Time spent on PSPNet50
with dilation 8 for two input images. Roughly running time is proportional to the pixel
number and kernel number.

Our experiments show that high-accuracy methods of ResNet38 [6] and PSP-
Net [5] take around 1 second to predict a 1024⇥ 2048 high-resolution image on
one Nvidia TitanX GPU card during testing. These methods fall into the area
illustrated in Fig. 1(a) with high accuracy and low speed. Recent fast semantic
segmentation methods of ENet [8] and SQ [9], contrarily, take quite di↵erent
positions in the plot. The speed is much accelerated; but accuracy drops, where
the final mIoUs are lower than 60%. These methods are located in the lower
right phase in the figure.

Our Focus and Contributions In this paper, we focus on building a prac-
tically fast semantic segmentation system with decent prediction accuracy. Our
method is the first in its kind to locate in the top-right area shown in Fig. 1(a)
and is one of the only two available real-time approaches. It achieves decent
trade-o↵ between e�ciency and accuracy.

Di↵erent from previous architectures, we make comprehensive consideration
on the two factors of speed and accuracy that are seemingly contracting. We first
make in-depth analysis of time budget in semantic segmentation frameworks and
conduct extensive experiments to demonstrate insu�ciency of intuitive speedup
strategies. This motivates development of image cascade network (ICNet), a high
e�ciency segmentation system with decent quality. It exploits e�ciency of pro-
cessing low-resolution images and high inference quality of high-resolution ones.
The idea is to let low-resolution images go through the full semantic perception

1 Blue ones are tested with downsampled images. Inference speed is reported with sin-
gle network forward while accuracy of several mIoU aimed approaches (like PSPNet?)
may contain testing tricks like multi-scale and flipping, resulting much more time.
See supplementary material for detailed information.
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Fig. 4. Comparison of semantic segmentation frameworks. (a) Intermediate skip con-
nection used by FCN [1] and Hypercolumns [21]. (b) Encoder-decoder structure incor-
porated in SegNet [3], DeconvNet [4], UNet [33], ENet [8], and step-wise reconstruction
& refinement from LRR [34] and RefineNet [11]. (c) Multi-scale prediction ensemble
adopted by DeepLab-MSC [2] and PSPNet-MSC [5]. (d) Our ICNet architecture.

we append weighted softmax cross entropy loss in each branch with related loss
weight �t. Thus we minimize the loss function L defined as
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In the testing phase, the low and medium guidance operations are simply aban-
doned, where only high-resolution branch is retained. This strategy makes gradi-
ent optimization smoother for easy training. With more powerful learning ability
in each branch, the final prediction map is not dominated by any single branch.

4 Structure Comparison and Analysis

Now we illustrate the di↵erence of ICNet from existing cascade architectures for
semantic segmentation. Typical structures in previous semantic segmentation
systems are illustrated in Fig. 4. Our proposed ICNet (Fig. 4(d)) is by nature
di↵erent from others. Previous frameworks are all with relatively intensive com-
putation given the high-resolution input. While in our cascade structure, only
the lowest-resolution input is fed into the heavy CNN with much reduced compu-
tation to get the coarse semantic prediction. The higher-res inputs are designed
to recover and refine the prediction progressively regarding blurred boundaries
and missing details. Thus they are processed by light-weighted CNNs. Newly
introduced cascade-feature-fusion unit and cascade label guidance strategy in-
tegrate medium and high resolution features to refine the coarse semantic map
gradually. In this special design, ICNet achieves high-e�ciency inference with
reasonable-quality segmentation results.
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Fig. 2. Network architecture of ICNet. ‘CFF’ stands for cascade feature fusion detailed
in Sec. 3.3. Numbers in parentheses are feature map size ratios to the full-resolution
input. Operations are highlighted in brackets. The final ⇥4 upsampling in the bottom
branch is only used during testing.

show that it is very di�cult to keep a good balance between inference accuracy
and speed. The intuitive strategies are e↵ective to reduce running time, while
they yield very coarse prediction maps. Directly feeding high-resolution images
into a network is unbearable in computation.

Our proposed system image cascade network (ICNet) does not simply choose
either way. Instead it takes cascade image inputs (i.e., low-, medium- and high
resolution images), adopts cascade feature fusion unit (Sec. 3.3) and is trained
with cascade label guidance (Sec. 3.4). The new architecture is illustrated in
Fig. 2. The input image with full resolution (e.g., 1024⇥ 2048 in Cityscapes [7])
is downsampled by factors of 2 and 4, forming cascade input to medium- and
high-resolution branches.

Segmenting the high-resolution input with classical frameworks like FCN di-
rectly is time consuming. To overcome this shortcoming, we get semantic extrac-
tion using low-resolution input as shown in top branch of Fig. 2. A 1/4 sized im-
age is fed into PSPNet with downsampling rate 8, resulting in a 1/32-resolution
feature map. To get high quality segmentation, medium and high resolution
branches (middle and bottom parts in Fig. 2) help recover and refine the coarse
prediction. Though some details are missing and blurry boundaries are gener-
ated in the top branch, it already harvests most semantic parts. Thus we can
safely limit the number of parameters in both middle and bottom branches. Light
weighted CNNs (green dotted box) are adopted in higher resolution branches;
di↵erent-branch output feature maps are fused by cascade-feature-fusion unit
(Sec. 3.3) and trained with cascade label guidance (Sec. 3.4).

Although the top branch is based on a full segmentation backbone, the input
resolution is low, resulting in limited computation. Even for PSPNet with 50+
layers, inference time and memory are 18ms and 0.6GB for the large images in
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Fig. 1. (a)1: Inference speed and mIoU performance on Cityscapes [7] test set. Meth-
ods involved are PSPNet [5], ResNet38 [6], DUC [10], RefineNet [11], FRRN [12],
DeepLabv2-CRF[13], Dilation10 [14], DPN [15], FCN-8s [1], DeepLab [2], CRF-
RNN [16], SQ [9], ENet [8], SegNet [3], and our ICNet. (b): Time spent on PSPNet50
with dilation 8 for two input images. Roughly running time is proportional to the pixel
number and kernel number.

Our experiments show that high-accuracy methods of ResNet38 [6] and PSP-
Net [5] take around 1 second to predict a 1024⇥ 2048 high-resolution image on
one Nvidia TitanX GPU card during testing. These methods fall into the area
illustrated in Fig. 1(a) with high accuracy and low speed. Recent fast semantic
segmentation methods of ENet [8] and SQ [9], contrarily, take quite di↵erent
positions in the plot. The speed is much accelerated; but accuracy drops, where
the final mIoUs are lower than 60%. These methods are located in the lower
right phase in the figure.

Our Focus and Contributions In this paper, we focus on building a prac-
tically fast semantic segmentation system with decent prediction accuracy. Our
method is the first in its kind to locate in the top-right area shown in Fig. 1(a)
and is one of the only two available real-time approaches. It achieves decent
trade-o↵ between e�ciency and accuracy.

Di↵erent from previous architectures, we make comprehensive consideration
on the two factors of speed and accuracy that are seemingly contracting. We first
make in-depth analysis of time budget in semantic segmentation frameworks and
conduct extensive experiments to demonstrate insu�ciency of intuitive speedup
strategies. This motivates development of image cascade network (ICNet), a high
e�ciency segmentation system with decent quality. It exploits e�ciency of pro-
cessing low-resolution images and high inference quality of high-resolution ones.
The idea is to let low-resolution images go through the full semantic perception

1 Blue ones are tested with downsampled images. Inference speed is reported with sin-
gle network forward while accuracy of several mIoU aimed approaches (like PSPNet?)
may contain testing tricks like multi-scale and flipping, resulting much more time.
See supplementary material for detailed information.



Instance Segmentation

• Obiettivo
• Individuare non solo la segmentazione, ma anche l’istanza



Mask R-CNN
• Mask R-CNN = Faster R-CNN + FCN sui RoIs
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Recap: Faster R-CNN



Da Faster R-CNN a Mask R-CNN



Mask R-CNN: Mask

• 𝐾 ⋅ 𝑚×𝑚
• Una maschera di dimensione 𝑚×𝑚 per ognuna delle 𝐾 classi
• Ogni pixel è regolato da una sigmoide
• Loss

• Su una RoI associata alla classe 𝑘, 𝐿%&'(è la binary cross-entropy relativa alla maschera 
𝑚( associata
• Le altre maschere non contribuiscono alla loss



Mask R-CNN



RoIAlign

• Il mapping di una regione sulla feature map con 
RoIPooling causa un riallineamento



RoIAlign
• Con RoIAlign, ogni punto viene interpolato

• Recupera precision nella ricostruzione della maschera
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YOLACT: You Only Look At CoefficienTs

• Due task paralleli: 
• Generazione di un dizionario di non-local prototype masks sull’intera 

immagine
• Basato su FCN

• Predizione di un insieme di coefficienti di combinazione per ogni istanza
• Aggiunge una componente all’object detection per predire un vettore di “mask

coefficients”
• Per ogni istanza selezionata nel NMS viene costruita una maschera 

combinando i risultati dei due task.
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Figure 2: YOLACT Architecture Blue/yellow indicates low/high values in the prototypes, gray nodes indicate functions
that are not trained, and k = 4 in this example. We base this architecture off of RetinaNet [27] using ResNet-101 + FPN.

ture localization step (e.g., feature repooling). To do this,
we break up the complex task of instance segmentation into
two simpler, parallel tasks that can be assembled to form
the final masks. The first branch uses an FCN [31] to pro-
duce a set of image-sized “prototype masks” that do not de-
pend on any one instance. The second adds an extra head
to the object detection branch to predict a vector of “mask
coefficients” for each anchor that encode an instance’s rep-
resentation in the prototype space. Finally, for each instance
that survives NMS, we construct a mask for that instance by
linearly combining the work of these two branches.

Rationale We perform instance segmentation in this way
primarily because masks are spatially coherent; i.e., pixels
close to each other are likely to be part of the same instance.
While a convolutional (conv) layer naturally takes advan-
tage of this coherence, a fully-connected (fc) layer does not.
That poses a problem, since one-stage object detectors pro-
duce class and box coefficients for each anchor as an output
of an fc layer.2 Two stage approaches like Mask R-CNN get
around this problem by using a localization step (e.g., RoI-
Align), which preserves the spatial coherence of the fea-
tures while also allowing the mask to be a conv layer out-
put. However, doing so requires a significant portion of the
model to wait for a first-stage RPN to propose localization
candidates, inducing a significant speed penalty.

Thus, we break the problem into two parallel parts, mak-
ing use of fc layers, which are good at producing semantic
vectors, and conv layers, which are good at producing spa-
tially coherent masks, to produce the “mask coefficients”
and “prototype masks”, respectively. Then, because proto-
types and mask coefficients can be computed independently,

2To show that this is an issue, we develop an “fc-mask” model that pro-
duces masks for each anchor as the reshaped output of an fc layer. As our
experiments in Table 2c show, simply adding masks to a one-stage model
as fc outputs only obtains 20.7 mAP and is thus very much insufficient.

the computational overhead over that of the backbone de-
tector comes mostly from the assembly step, which can be
implemented as a single matrix multiplication. In this way,
we can maintain spatial coherence in the feature space while
still being one-stage and fast.

3.1. Prototype Generation
The prototype generation branch (protonet) predicts a set

of k prototype masks for the entire image. We implement
protonet as an FCN whose last layer has k channels (one
for each prototype) and attach it to a backbone feature layer
(see Figure 3 for an illustration). While this formulation is
similar to standard semantic segmentation, it differs in that
we exhibit no explicit loss on the prototypes. Instead, all
supervision for these prototypes comes from the final mask
loss after assembly.

We note two important design choices: taking pro-
tonet from deeper backbone features produces more ro-
bust masks, and higher resolution prototypes result in both
higher quality masks and better performance on smaller ob-
jects. Thus, we use FPN [26] because its largest feature
layers (P3 in our case; see Figure 2) are the deepest. Then,
we upsample it to one fourth the dimensions of the input
image to increase performance on small objects.

Finally, we find it important for the protonet’s output to
be unbounded, as this allows the network to produce large,
overpowering activations for prototypes it is very confident
about (e.g., obvious background). Thus, we have the option
of following protonet with either a ReLU or no nonlinearity.
We choose ReLU for more interpretable prototypes.

3.2. Mask Coefficients
Typical anchor-based object detectors have two branches

in their prediction heads: one branch to predict c class con-
fidences, and the other to predict 4 bounding box regres-
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ture localization step (e.g., feature repooling). To do this,
we break up the complex task of instance segmentation into
two simpler, parallel tasks that can be assembled to form
the final masks. The first branch uses an FCN [31] to pro-
duce a set of image-sized “prototype masks” that do not de-
pend on any one instance. The second adds an extra head
to the object detection branch to predict a vector of “mask
coefficients” for each anchor that encode an instance’s rep-
resentation in the prototype space. Finally, for each instance
that survives NMS, we construct a mask for that instance by
linearly combining the work of these two branches.

Rationale We perform instance segmentation in this way
primarily because masks are spatially coherent; i.e., pixels
close to each other are likely to be part of the same instance.
While a convolutional (conv) layer naturally takes advan-
tage of this coherence, a fully-connected (fc) layer does not.
That poses a problem, since one-stage object detectors pro-
duce class and box coefficients for each anchor as an output
of an fc layer.2 Two stage approaches like Mask R-CNN get
around this problem by using a localization step (e.g., RoI-
Align), which preserves the spatial coherence of the fea-
tures while also allowing the mask to be a conv layer out-
put. However, doing so requires a significant portion of the
model to wait for a first-stage RPN to propose localization
candidates, inducing a significant speed penalty.

Thus, we break the problem into two parallel parts, mak-
ing use of fc layers, which are good at producing semantic
vectors, and conv layers, which are good at producing spa-
tially coherent masks, to produce the “mask coefficients”
and “prototype masks”, respectively. Then, because proto-
types and mask coefficients can be computed independently,

2To show that this is an issue, we develop an “fc-mask” model that pro-
duces masks for each anchor as the reshaped output of an fc layer. As our
experiments in Table 2c show, simply adding masks to a one-stage model
as fc outputs only obtains 20.7 mAP and is thus very much insufficient.

the computational overhead over that of the backbone de-
tector comes mostly from the assembly step, which can be
implemented as a single matrix multiplication. In this way,
we can maintain spatial coherence in the feature space while
still being one-stage and fast.

3.1. Prototype Generation
The prototype generation branch (protonet) predicts a set

of k prototype masks for the entire image. We implement
protonet as an FCN whose last layer has k channels (one
for each prototype) and attach it to a backbone feature layer
(see Figure 3 for an illustration). While this formulation is
similar to standard semantic segmentation, it differs in that
we exhibit no explicit loss on the prototypes. Instead, all
supervision for these prototypes comes from the final mask
loss after assembly.

We note two important design choices: taking pro-
tonet from deeper backbone features produces more ro-
bust masks, and higher resolution prototypes result in both
higher quality masks and better performance on smaller ob-
jects. Thus, we use FPN [26] because its largest feature
layers (P3 in our case; see Figure 2) are the deepest. Then,
we upsample it to one fourth the dimensions of the input
image to increase performance on small objects.

Finally, we find it important for the protonet’s output to
be unbounded, as this allows the network to produce large,
overpowering activations for prototypes it is very confident
about (e.g., obvious background). Thus, we have the option
of following protonet with either a ReLU or no nonlinearity.
We choose ReLU for more interpretable prototypes.

3.2. Mask Coefficients
Typical anchor-based object detectors have two branches
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ture localization step (e.g., feature repooling). To do this,
we break up the complex task of instance segmentation into
two simpler, parallel tasks that can be assembled to form
the final masks. The first branch uses an FCN [31] to pro-
duce a set of image-sized “prototype masks” that do not de-
pend on any one instance. The second adds an extra head
to the object detection branch to predict a vector of “mask
coefficients” for each anchor that encode an instance’s rep-
resentation in the prototype space. Finally, for each instance
that survives NMS, we construct a mask for that instance by
linearly combining the work of these two branches.

Rationale We perform instance segmentation in this way
primarily because masks are spatially coherent; i.e., pixels
close to each other are likely to be part of the same instance.
While a convolutional (conv) layer naturally takes advan-
tage of this coherence, a fully-connected (fc) layer does not.
That poses a problem, since one-stage object detectors pro-
duce class and box coefficients for each anchor as an output
of an fc layer.2 Two stage approaches like Mask R-CNN get
around this problem by using a localization step (e.g., RoI-
Align), which preserves the spatial coherence of the fea-
tures while also allowing the mask to be a conv layer out-
put. However, doing so requires a significant portion of the
model to wait for a first-stage RPN to propose localization
candidates, inducing a significant speed penalty.

Thus, we break the problem into two parallel parts, mak-
ing use of fc layers, which are good at producing semantic
vectors, and conv layers, which are good at producing spa-
tially coherent masks, to produce the “mask coefficients”
and “prototype masks”, respectively. Then, because proto-
types and mask coefficients can be computed independently,

2To show that this is an issue, we develop an “fc-mask” model that pro-
duces masks for each anchor as the reshaped output of an fc layer. As our
experiments in Table 2c show, simply adding masks to a one-stage model
as fc outputs only obtains 20.7 mAP and is thus very much insufficient.

the computational overhead over that of the backbone de-
tector comes mostly from the assembly step, which can be
implemented as a single matrix multiplication. In this way,
we can maintain spatial coherence in the feature space while
still being one-stage and fast.

3.1. Prototype Generation
The prototype generation branch (protonet) predicts a set

of k prototype masks for the entire image. We implement
protonet as an FCN whose last layer has k channels (one
for each prototype) and attach it to a backbone feature layer
(see Figure 3 for an illustration). While this formulation is
similar to standard semantic segmentation, it differs in that
we exhibit no explicit loss on the prototypes. Instead, all
supervision for these prototypes comes from the final mask
loss after assembly.

We note two important design choices: taking pro-
tonet from deeper backbone features produces more ro-
bust masks, and higher resolution prototypes result in both
higher quality masks and better performance on smaller ob-
jects. Thus, we use FPN [26] because its largest feature
layers (P3 in our case; see Figure 2) are the deepest. Then,
we upsample it to one fourth the dimensions of the input
image to increase performance on small objects.

Finally, we find it important for the protonet’s output to
be unbounded, as this allows the network to produce large,
overpowering activations for prototypes it is very confident
about (e.g., obvious background). Thus, we have the option
of following protonet with either a ReLU or no nonlinearity.
We choose ReLU for more interpretable prototypes.

3.2. Mask Coefficients
Typical anchor-based object detectors have two branches

in their prediction heads: one branch to predict c class con-
fidences, and the other to predict 4 bounding box regres-
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Figure 3: Protonet Architecture The labels denote fea-
ture size and channels for an image size of 550 ⇥ 550. Ar-
rows indicate 3 ⇥ 3 conv layers, except for the final conv

which is 1 ⇥ 1. The increase in size is an upsample fol-
lowed by a conv. Inspired by the mask branch in [18].

sors. For mask coefficient prediction, we simply add a third
branch in parallel that predicts k mask coefficients, one cor-
responding to each prototype. Thus, instead of producing
4 + c coefficients per anchor, we produce 4 + c+ k.

Then for nonlinearity, we find it important to be able to
subtract out prototypes from the final mask. Thus, we apply
tanh to the k mask coefficients, which produces more sta-
ble outputs over no nonlinearity. The relevance of this de-
sign choice is apparent in Figure 2, as neither mask would
be constructable without allowing for subtraction.

3.3. Mask Assembly
To produce instance masks, we combine the work of the

prototype branch and mask coefficient branch, using a lin-
ear combination of the former with the latter as coefficients.
We then follow this by a sigmoid nonlinearity to produce
the final masks. These operations can be implemented effi-
ciently using a single matrix multiplication and sigmoid:

M = �(PCT ) (1)

where P is an h⇥w⇥k matrix of prototype masks and C is
a n ⇥ k matrix of mask coefficients for n instances surviv-
ing NMS and score thresholding. Other, more complicated
combination steps are possible; however, we keep it simple
(and fast) with a basic linear combination.

Losses We use three losses to train our model: classifi-
cation loss Lcls, box regression loss Lbox and mask loss
Lmask with the weights 1, 1.5, and 6.125 respectively. Both
Lcls and Lbox are defined in the same way as in [30]. Then
to compute mask loss, we simply take the pixel-wise binary
cross entropy between assembled masks M and the ground
truth masks Mgt: Lmask = BCE(M,Mgt).

Cropping Masks We crop the final masks with the pre-
dicted bounding box during evaluation. During training, we
instead crop with the ground truth bounding box, and divide
Lmask by the ground truth bounding box area to preserve
small objects in the prototypes.

3.4. Emergent Behavior
Our approach might seem surprising, as the general con-

sensus around instance segmentation is that because FCNs
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Figure 4: Head Architecture We use a shallower predic-
tion head than RetinaNet [27] and add a mask coefficient
branch. This is for c classes, a anchors for feature layer Pi,
and k prototypes. See Figure 3 for a key.

are translation invariant, the task needs translation variance
added back in [24]. Thus methods like FCIS [24] and
Mask R-CNN [18] try to explicitly add translation variance,
whether it be by directional maps and position-sensitive re-
pooling, or by putting the mask branch in the second stage
so it does not have to deal with localizing instances. In
our method, the only translation variance we add is to crop
the final mask with the predicted bounding box. However,
we find that our method also works without cropping for
medium and large objects, so this is not a result of crop-
ping. Instead, YOLACT learns how to localize instances

on its own via different activations in its prototypes.
To see how this is possible, first note that the prototype

activations for the solid red image (image a) in Figure 5 are
actually not possible in an FCN without padding. Because
a convolution outputs to a single pixel, if its input every-
where in the image is the same, the result everywhere in the
conv output will be the same. On the other hand, the consis-
tent rim of padding in modern FCNs like ResNet gives the
network the ability to tell how far away from the image’s
edge a pixel is. Conceptually, one way it could accomplish
this is to have multiple layers in sequence spread the padded
0’s out from the edge toward the center (e.g., with a kernel
like [1, 0]). This means ResNet, for instance, is inherently

translation variant, and our method makes heavy use of that
property (images b and c exhibit clear translation variance).

We observe many prototypes to activate on certain “par-
titions” of the image. That is, they only activate on objects
on one side of an implicitly learned boundary. In Figure
5, prototypes 1-3 are such examples. By combining these
partition maps, the network can distinguish between differ-
ent (even overlapping) instances of the same semantic class;
e.g., in image d, the green umbrella can be separated from
the red one by subtracting prototype 3 from prototype 2.

Furthermore, being learned objects, prototypes are com-
pressible. That is, if protonet combines the functionality of
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ture localization step (e.g., feature repooling). To do this,
we break up the complex task of instance segmentation into
two simpler, parallel tasks that can be assembled to form
the final masks. The first branch uses an FCN [31] to pro-
duce a set of image-sized “prototype masks” that do not de-
pend on any one instance. The second adds an extra head
to the object detection branch to predict a vector of “mask
coefficients” for each anchor that encode an instance’s rep-
resentation in the prototype space. Finally, for each instance
that survives NMS, we construct a mask for that instance by
linearly combining the work of these two branches.

Rationale We perform instance segmentation in this way
primarily because masks are spatially coherent; i.e., pixels
close to each other are likely to be part of the same instance.
While a convolutional (conv) layer naturally takes advan-
tage of this coherence, a fully-connected (fc) layer does not.
That poses a problem, since one-stage object detectors pro-
duce class and box coefficients for each anchor as an output
of an fc layer.2 Two stage approaches like Mask R-CNN get
around this problem by using a localization step (e.g., RoI-
Align), which preserves the spatial coherence of the fea-
tures while also allowing the mask to be a conv layer out-
put. However, doing so requires a significant portion of the
model to wait for a first-stage RPN to propose localization
candidates, inducing a significant speed penalty.

Thus, we break the problem into two parallel parts, mak-
ing use of fc layers, which are good at producing semantic
vectors, and conv layers, which are good at producing spa-
tially coherent masks, to produce the “mask coefficients”
and “prototype masks”, respectively. Then, because proto-
types and mask coefficients can be computed independently,

2To show that this is an issue, we develop an “fc-mask” model that pro-
duces masks for each anchor as the reshaped output of an fc layer. As our
experiments in Table 2c show, simply adding masks to a one-stage model
as fc outputs only obtains 20.7 mAP and is thus very much insufficient.

the computational overhead over that of the backbone de-
tector comes mostly from the assembly step, which can be
implemented as a single matrix multiplication. In this way,
we can maintain spatial coherence in the feature space while
still being one-stage and fast.

3.1. Prototype Generation
The prototype generation branch (protonet) predicts a set

of k prototype masks for the entire image. We implement
protonet as an FCN whose last layer has k channels (one
for each prototype) and attach it to a backbone feature layer
(see Figure 3 for an illustration). While this formulation is
similar to standard semantic segmentation, it differs in that
we exhibit no explicit loss on the prototypes. Instead, all
supervision for these prototypes comes from the final mask
loss after assembly.

We note two important design choices: taking pro-
tonet from deeper backbone features produces more ro-
bust masks, and higher resolution prototypes result in both
higher quality masks and better performance on smaller ob-
jects. Thus, we use FPN [26] because its largest feature
layers (P3 in our case; see Figure 2) are the deepest. Then,
we upsample it to one fourth the dimensions of the input
image to increase performance on small objects.

Finally, we find it important for the protonet’s output to
be unbounded, as this allows the network to produce large,
overpowering activations for prototypes it is very confident
about (e.g., obvious background). Thus, we have the option
of following protonet with either a ReLU or no nonlinearity.
We choose ReLU for more interpretable prototypes.

3.2. Mask Coefficients
Typical anchor-based object detectors have two branches

in their prediction heads: one branch to predict c class con-
fidences, and the other to predict 4 bounding box regres-
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Figure 3: Protonet Architecture The labels denote fea-
ture size and channels for an image size of 550 ⇥ 550. Ar-
rows indicate 3 ⇥ 3 conv layers, except for the final conv

which is 1 ⇥ 1. The increase in size is an upsample fol-
lowed by a conv. Inspired by the mask branch in [18].

sors. For mask coefficient prediction, we simply add a third
branch in parallel that predicts k mask coefficients, one cor-
responding to each prototype. Thus, instead of producing
4 + c coefficients per anchor, we produce 4 + c+ k.

Then for nonlinearity, we find it important to be able to
subtract out prototypes from the final mask. Thus, we apply
tanh to the k mask coefficients, which produces more sta-
ble outputs over no nonlinearity. The relevance of this de-
sign choice is apparent in Figure 2, as neither mask would
be constructable without allowing for subtraction.

3.3. Mask Assembly
To produce instance masks, we combine the work of the

prototype branch and mask coefficient branch, using a lin-
ear combination of the former with the latter as coefficients.
We then follow this by a sigmoid nonlinearity to produce
the final masks. These operations can be implemented effi-
ciently using a single matrix multiplication and sigmoid:

M = �(PCT ) (1)

where P is an h⇥w⇥k matrix of prototype masks and C is
a n ⇥ k matrix of mask coefficients for n instances surviv-
ing NMS and score thresholding. Other, more complicated
combination steps are possible; however, we keep it simple
(and fast) with a basic linear combination.

Losses We use three losses to train our model: classifi-
cation loss Lcls, box regression loss Lbox and mask loss
Lmask with the weights 1, 1.5, and 6.125 respectively. Both
Lcls and Lbox are defined in the same way as in [30]. Then
to compute mask loss, we simply take the pixel-wise binary
cross entropy between assembled masks M and the ground
truth masks Mgt: Lmask = BCE(M,Mgt).

Cropping Masks We crop the final masks with the pre-
dicted bounding box during evaluation. During training, we
instead crop with the ground truth bounding box, and divide
Lmask by the ground truth bounding box area to preserve
small objects in the prototypes.

3.4. Emergent Behavior
Our approach might seem surprising, as the general con-

sensus around instance segmentation is that because FCNs
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Figure 4: Head Architecture We use a shallower predic-
tion head than RetinaNet [27] and add a mask coefficient
branch. This is for c classes, a anchors for feature layer Pi,
and k prototypes. See Figure 3 for a key.

are translation invariant, the task needs translation variance
added back in [24]. Thus methods like FCIS [24] and
Mask R-CNN [18] try to explicitly add translation variance,
whether it be by directional maps and position-sensitive re-
pooling, or by putting the mask branch in the second stage
so it does not have to deal with localizing instances. In
our method, the only translation variance we add is to crop
the final mask with the predicted bounding box. However,
we find that our method also works without cropping for
medium and large objects, so this is not a result of crop-
ping. Instead, YOLACT learns how to localize instances

on its own via different activations in its prototypes.
To see how this is possible, first note that the prototype

activations for the solid red image (image a) in Figure 5 are
actually not possible in an FCN without padding. Because
a convolution outputs to a single pixel, if its input every-
where in the image is the same, the result everywhere in the
conv output will be the same. On the other hand, the consis-
tent rim of padding in modern FCNs like ResNet gives the
network the ability to tell how far away from the image’s
edge a pixel is. Conceptually, one way it could accomplish
this is to have multiple layers in sequence spread the padded
0’s out from the edge toward the center (e.g., with a kernel
like [1, 0]). This means ResNet, for instance, is inherently

translation variant, and our method makes heavy use of that
property (images b and c exhibit clear translation variance).

We observe many prototypes to activate on certain “par-
titions” of the image. That is, they only activate on objects
on one side of an implicitly learned boundary. In Figure
5, prototypes 1-3 are such examples. By combining these
partition maps, the network can distinguish between differ-
ent (even overlapping) instances of the same semantic class;
e.g., in image d, the green umbrella can be separated from
the red one by subtracting prototype 3 from prototype 2.

Furthermore, being learned objects, prototypes are com-
pressible. That is, if protonet combines the functionality of
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ture localization step (e.g., feature repooling). To do this,
we break up the complex task of instance segmentation into
two simpler, parallel tasks that can be assembled to form
the final masks. The first branch uses an FCN [31] to pro-
duce a set of image-sized “prototype masks” that do not de-
pend on any one instance. The second adds an extra head
to the object detection branch to predict a vector of “mask
coefficients” for each anchor that encode an instance’s rep-
resentation in the prototype space. Finally, for each instance
that survives NMS, we construct a mask for that instance by
linearly combining the work of these two branches.

Rationale We perform instance segmentation in this way
primarily because masks are spatially coherent; i.e., pixels
close to each other are likely to be part of the same instance.
While a convolutional (conv) layer naturally takes advan-
tage of this coherence, a fully-connected (fc) layer does not.
That poses a problem, since one-stage object detectors pro-
duce class and box coefficients for each anchor as an output
of an fc layer.2 Two stage approaches like Mask R-CNN get
around this problem by using a localization step (e.g., RoI-
Align), which preserves the spatial coherence of the fea-
tures while also allowing the mask to be a conv layer out-
put. However, doing so requires a significant portion of the
model to wait for a first-stage RPN to propose localization
candidates, inducing a significant speed penalty.

Thus, we break the problem into two parallel parts, mak-
ing use of fc layers, which are good at producing semantic
vectors, and conv layers, which are good at producing spa-
tially coherent masks, to produce the “mask coefficients”
and “prototype masks”, respectively. Then, because proto-
types and mask coefficients can be computed independently,

2To show that this is an issue, we develop an “fc-mask” model that pro-
duces masks for each anchor as the reshaped output of an fc layer. As our
experiments in Table 2c show, simply adding masks to a one-stage model
as fc outputs only obtains 20.7 mAP and is thus very much insufficient.

the computational overhead over that of the backbone de-
tector comes mostly from the assembly step, which can be
implemented as a single matrix multiplication. In this way,
we can maintain spatial coherence in the feature space while
still being one-stage and fast.

3.1. Prototype Generation
The prototype generation branch (protonet) predicts a set

of k prototype masks for the entire image. We implement
protonet as an FCN whose last layer has k channels (one
for each prototype) and attach it to a backbone feature layer
(see Figure 3 for an illustration). While this formulation is
similar to standard semantic segmentation, it differs in that
we exhibit no explicit loss on the prototypes. Instead, all
supervision for these prototypes comes from the final mask
loss after assembly.

We note two important design choices: taking pro-
tonet from deeper backbone features produces more ro-
bust masks, and higher resolution prototypes result in both
higher quality masks and better performance on smaller ob-
jects. Thus, we use FPN [26] because its largest feature
layers (P3 in our case; see Figure 2) are the deepest. Then,
we upsample it to one fourth the dimensions of the input
image to increase performance on small objects.

Finally, we find it important for the protonet’s output to
be unbounded, as this allows the network to produce large,
overpowering activations for prototypes it is very confident
about (e.g., obvious background). Thus, we have the option
of following protonet with either a ReLU or no nonlinearity.
We choose ReLU for more interpretable prototypes.

3.2. Mask Coefficients
Typical anchor-based object detectors have two branches

in their prediction heads: one branch to predict c class con-
fidences, and the other to predict 4 bounding box regres-
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Figure 5: Prototype Behavior The activations of the same
six prototypes (y axis) across different images (x axis). Pro-
totypes 1-3 respond to objects to one side of a soft, implicit
boundary (marked with a dotted line). Prototype 4 activates
on the bottom-left of objects (for instance, the bottom left of
the umbrellas in image d); prototype 5 activates on the back-
ground and on the edges between objects; and prototype 6
segments what the network perceives to be the ground in the
image. These last 3 patterns are most clear in images d-f.

multiple prototypes into one, the mask coefficient branch
can learn which situations call for which functionality. For
instance, in Figure 5, prototype 2 is a partitioning prototype
but also fires most strongly on instances in the bottom-left
corner. Prototype 3 is similar but for instances on the right.
This explains why in practice, the model does not degrade
in performance even with as low as k = 32 prototypes (see
Table 2b). On the other hand, increasing k is ineffective
most likely because predicting coefficients is difficult. If
the network makes a large error in even one coefficient, due
to the nature of linear combinations, the produced mask can
vanish or include leakage from other objects. Thus, the net-
work has to play a balancing act to produce the right coef-
ficients, and adding more prototypes makes this harder. In
fact, we find that for higher values of k, the network simply
adds redundant prototypes with small edge-level variations
that slightly increase AP95, but not much else.

4. Backbone Detector
For our backbone detector we prioritize speed as well

as feature richness, since predicting these prototypes and

coefficients is a difficult task that requires good features to
do well. Thus, the design of our backbone detector closely
follows RetinaNet [27] with an emphasis on speed.

YOLACT Detector We use ResNet-101 [19] with FPN
[26] as our default feature backbone and a base image size
of 550 ⇥ 550. We do not preserve aspect ratio in order to
get consistent evaluation times per image. Like RetinaNet,
we modify FPN by not producing P2 and producing P6 and
P7 as successive 3⇥ 3 stride 2 conv layers starting from P5

(not C5) and place 3 anchors with aspect ratios [1, 1/2, 2]
on each. The anchors of P3 have areas of 24 pixels squared,
and every subsequent layer has double the scale of the pre-
vious (resulting in the scales [24, 48, 96, 192, 384]). For the
prediction head attached to each Pi, we have one 3⇥3 conv

shared by all three branches, and then each branch gets its
own 3 ⇥ 3 conv in parallel. Compared to RetinaNet, our
prediction head design (see Figure 4) is more lightweight
and much faster. We apply smooth-L1 loss to train box re-
gressors and encode box regression coordinates in the same
way as SSD [30]. To train class prediction, we use softmax
cross entropy with c positive labels and 1 background label,
selecting training examples using OHEM [39] with a 3:1
neg:pos ratio. Thus, unlike RetinaNet we do not use focal
loss, which we found not to be viable in our situation.

With these design choices, we find that this backbone
performs better and faster than SSD [30] modified to use
ResNet-101 [19], with the same image size.

5. Other Improvements
We also discuss other improvements that either increase

speed with little effect on performance or increase perfor-
mance with no speed penalty.

Fast NMS After producing bounding box regression coef-
ficients and class confidences for each anchor, like most ob-
ject detectors we perform NMS to suppress duplicate detec-
tions. In many previous works [35, 36, 30, 37, 18, 27], NMS
is performed sequentially. That is, for each of the c classes
in the dataset, sort the detected boxes descending by con-
fidence, and then for each detection remove all those with
lower confidence than it that have an IoU overlap greater
than some threshold. While this sequential approach is fast
enough at speeds of around 5 fps, it becomes a large barrier
for obtaining 30 fps (for instance, a 10 ms improvement at
5 fps results in a 0.26 fps boost, while a 10 ms improvement
at 30 fps results in a 12.9 fps boost).

To fix the sequential nature of traditional NMS, we in-
troduce Fast NMS, a version of NMS where every instance
can be decided to be kept or discarded in parallel. To do
this, we simply allow already-removed detections to sup-
press other detections, which is not possible in traditional
NMS. This relaxation allows us to implement Fast NMS
entirely in standard GPU-accelerated matrix operations.
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Figure 6: YOLACT evaluation results on COCO’s test-dev set. This base model achieves 29.8 mAP at 33.0 fps. All
images have the confidence threshold set to 0.3.

To perform Fast NMS, we first compute a c ⇥ n ⇥ n
pairwise IoU matrix X for the top n detections sorted de-
scending by score for each of c classes. Batched sorting
on the GPU is readily available and computing IoU can
be easily vectorized. Then, we remove detections if there
are any higher-scoring detections with a corresponding IoU
greater than some threshold t. We efficiently implement
this by first setting the lower triangle and diagonal of X to
0: Xkij = 0, 8k, j, i � j, which can be performed in one
batched triu call, and then taking the column-wise max:

Kkj = max
i

(Xkij) 8k, j (2)

to compute a matrix K of maximum IoU values for each
detection. Finally, thresholding this matrix with t (K < t)
will indicate which detections to keep for each class.

Because of the relaxation, Fast NMS has the effect of
removing slightly too many boxes. However, the perfor-
mance hit caused by this is negligible compared to the stark
increase in speed (see Table 2a). In our code base, Fast
NMS is 11.8 ms faster than a Cython implementation of
traditional NMS while only reducing performance by 0.1
mAP. In the Mask R-CNN benchmark suite [18], Fast NMS
is 15.0 ms faster than their CUDA implementation of tradi-
tional NMS with a performance loss of only 0.3 mAP.

Semantic Segmentation Loss While Fast NMS trades a
small amount of performance for speed, there are ways to

increase performance with no speed penalty. One of those
ways is to apply extra losses to the model during training
using modules not executed at test time. This effectively
increases feature richness while at no speed penalty.

Thus, we apply a semantic segmentation loss on our fea-
ture space using layers that are only evaluated during train-
ing. Note that because we construct the ground truth for this
loss from instance annotations, this does not strictly capture
semantic segmentation (i.e., we do not enforce the standard
one class per pixel). To create predictions during training,
we simply attach a 1x1 conv layer with c output channels di-
rectly to the largest feature map (P3) in our backbone. Since
each pixel can be assigned to more than one class, we use
sigmoid and c channels instead of softmax and c + 1. This
loss is given a weight of 1 and results in a +0.4 mAP boost.

6. Results
We report instance segmentation results on MS COCO

[28] and Pascal 2012 SBD [16] using the standard metrics.
For MS COCO, we train on train2017 and evaluate on
val2017 and test-dev.
Implementation Details We train all models with batch
size 8 on one GPU using ImageNet [10] pretrained weights.
We find that this is a sufficient batch size to use batch norm,
so we leave the pretrained batch norm unfrozen but do not
add any extra bn layers. We train with SGD for 800k itera-
tions starting at an initial learning rate of 10�3 and divide by
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