Analisi di Immagini e Video (Computer Vision)

Giuseppe Manco

Outline

- Segmentation
- Approcci classici
- Deep Learning for Segmentation

Crediti

- Slides adattate da vari corsi e libri
 - Computational Visual Recognition (V. Ordonez), CS Virgina Edu
 - Computer Vision (S. Lazebnik), CS Illinois Edu

Approcci supervisionati

- L'approccio basato su CRF è semi-supervisionato
- Possiamo renderlo supervisionato?
 - Parametrizziamo gli unary e binary potentials

• E.g.,
$$p(y_i|x_i;\theta) = \frac{1}{Z} \exp\left(w_{y_i} \cdot F(x_i)\right)$$

• Apprendiamo i parametri che minimizzano l'energia media su tutti gli esempi

Semantic segmentation, object detection

Problema

- Etichettare ogni pixel con una classe
- Multi-class problem
- Utilizzo di dati già etichettati
 - Pascal VOC
 - MS COCO

object classes	building	grass	tree	cow	sheep	sky	airplane	water	face	car
bicycle	flower	sign	bird	book	chair	road	cat	dog	body	boat

MS-COCO

• Large-scale dataset for object detection, segmentation and captioning

- 330K images (>200K labeled)
- 1.5 million object instances
- 80 object categories
- 91 stuff categories
- 5 captions per image
- 250,000 people with keypoints

Perché Deep Learning?

- Stesso principio dell'object detection
 - Convolutional features, learned from training data
- Accuratezza
- Velocità

Approcci

- Approcci downsampling-upsampling
- Metodi multi-scala

• Utilizziamo i layer convoluzionali per fare le predizioni sui vari pixel

- Utilizziamo i layer convoluzionali per fare le predizioni sui vari pixel
 - Ma fare convoluzioni su feature map grandi è costoso

- Soluzione
 - Architettura Encoder-Decoder

Convolutionalization

- Fully Convolutional Layers
- Faster-RCNN, SSD

• Architettura Encoder-Decoder

• Architettura Encoder-Decoder

Up-sampling Convolutions

- Upsampling
 - Da un'input a bassa risoluzione si passa ad uno a più alta risoluzione
 - Transposed Convolution
 - Qual è la relazione?
 - Suggerimento: invertiamo le relazioni originarie

https://github.com/vdumoulin/conv_arithmetic

• Ogni valore si distribuisce su un intorno dell'output in base al kernel.

• La distribuzione viene guidata da padding e stride

Convolution e transposed convolution

- Ogni riga definisce un'operazione di convoluzione
 - Filtro 3x3, input 4x4
 - No padding, no strides, no dilation

Convolution Matrix (4, 16)

Convolution e transposed convolution

• Ogni riga definisce un'operazione di convoluzione

Convolution e transposed convolution

• Trasponendo la matrice di convoluzione, otteniamo l'operazione opposta

Output (4, 4)

ConvTranspose, Padding

- Decrementa l'output della TD
 - Interpretazione: l'ammontare di padding che l'input richiede per completare l'output
 - Quale sarebbe l'output dell'esempio precedente?

1	Α	В	С	D	Ε	F	G	н	1	J	к	L	М	Ν	0	Ρ	Q	R	S	Т	U	۷	W	х	Y	
1		Į.																								
2					Input								Kernel				Output									
3																										
4		0	0	0	0	0	0	0	0																	
5		0		0	0	0	0	0	0					3			8 - 1		1	5	11	14	8	3		
6		0		1	3	2	1	0	0				1	2	3	i.			1	6	15	18	12	3		
7		0	0	1	3	3	1	0	0				0	1	0				4	13	21	21	15	11		
8		0	0	2	1	1	3	0	0				2	1	2				5	17	28	27	25	11		
9		0	0	3	2	3	3	0	0					Ĩ.		ų.			4	7	9	12	8	6		
10		0	0	0	0	0	0	0	0										6	7	14	13	9	6		
11		0	0	0	0	0	0	0	0																	
																	1 h									

/	Α	В	С	D	E	F	G	н	- 1	J	к	L	М	N	0	Р	Q	
1					1.1													
2	31	i - 1	Ing	out	147		1-1	1	k	Cerne	<u>el</u>		ui n		1			
3																F 16		
4		1	3	2	1			14 - 1	1	2	3	4						
5		1	3	3	1			E al	0	1	0	j,	i÷ 1		21	21		
6		2	1	1	3				2	1	2				28	27		
7		3	2	3	3			Ŀi		i d	-1-	ā.	i÷ a					
8																		

ConvTranspose, Stride

- Espande l'output
 - Di conseguenza «fraziona» l'input aggiungendo spazi

/	Α	В	С	D	Е	F	G	Н	1	J	к	L	М	N	0	Р	Q	R	S	т	U	۷	w	
1											1.1													
2		Input									t di	k	Kerne	<u>el</u>				Output						
3																								
4		0		0	0	0	0	0			t di													
5	14			0	0	0	0	0			t 1t		l÷ 1					3	6	12	6	9		
6		0		3	0	3	0	0			1,11	1	2	3	μ,			0	3	0	3	0		
7		0	0	0	0	0	0	0			t di	0	1	0	i.			7	5	16	5	9		
8		0	0	1	0	1	0	0				2	1	2	F			0	1	0	1	0		
9		0	0	0	0	0	0	0			1.1							2	1	4	1	2		
10		0	0	0	0	0	0	0			t at													
11																								

ConvTranspose, checkerboarding

Animation: https://distill.pub/2016/deconv-checkerboard/

ConvTranspose, checkerboarding

ConvTranspose, checkerboarding

ConvTranspose, Checkerboarding

ConvTranspose, Checkerboarding

Transposed Convolution in Pytorch

FCN: architettura

- Principio
 - Riduciamo la dimensione, facciamo upsampling
- Tre varianti
 - Coarse upsampling
 - Combined upsampling, skip connections (tramite somma)

FCN

- L'utilizzo di ConvTranspose con stride di grandi dimensioni causa la presenza di artefatti
- Scarsa risoluzione ai bordi
 - L'encoding causa perdita di informazione

DeconvNet Up-sampling Convolutions or "Deconvolutions"

• Backbone: VGG

http://cvlab.postech.ac.kr/research/deconvnet/

Unpooling

Unpooling

• Bilinear interpolation

Unpooling

• Bed of nails

Unpooling

• Max unpooling

DeconvNet

SegNet

Eliminando i FC layer, porta a risultati migliori

U-Net

- Usa le skip connections per combinare le feature maps
- La combinazione viene effettuata per concatenazione

Metodi Multi-scala

- Idea generale
 - Otteniamo una feature map utilizzando un'architettura standard (ResNet)
 - Applichiamo una serie di convoluzioni con filtri di dimensioni diverse per ottenere risoluzioni diverse
 - Encoding delle varie scale
 - Upsampling e combinazione dei risultati

Metodi Multi-scala

• Esplosione combinatoria del numero di parametri

• Soluzione: Dilated convolutions

• Invece di ridurre la risoluzione spaziale delle feature maps, utilizziamo un filtro sparso

• La dimensione del receptive field cresce esponenzialmente ma il numero di parametri è lineare

Vantaggi

(b) Going deeper with atrous convolution. Atrous convolution with rate > 1 is applied after block3 when *output_stride* = 16.

Multigrid CNN

Conv Conv Conv Conv kernel: 3x3 kernel: 3x3 kernel: 3x3 kernel: 3x3 rate: 12 rate: 6 rate: 18 rate: 24 rate = 24 rate = 18rate = 12 rate = 6 Atrous Spatial Pyramid Pooling Input Feature Map

Real-Time Semantic Segmentation

- ENet
- ICNet
- Fast-SCNN
- DFANet
- ...

- ENet
- Combina Encoder-Decoder con blocchi ResNet-like
 - 5 stadi
 - Sfrutta la riduzione e successivo restore dei canali per migliorare l'efficienza
- Design choices per l'efficienza
 - Early downsampling
 - I primi due blocchi riducono la size in maniera significativa

Input

Concat

- Ricostruzione tramite MaxUnpooling
- Decoder size •
 - Large encoder, small decoder
- Non-linear activations
 - PReLU invece delle ReLU
- Asymmetric convolutions, dilated convolutions
- Regularization
 - Stochastic Depth, spatial dropout

Concat

Table 1: EN	et archite	cture. (Dutp	ut sizes are given
	Je input	01 012		PReLU
Name	MaxPoo	ling e		con Output size
initial		,		$16^{\text{ReLUS}} \times 256$
bottleneck1.0	Paddir	gn	ling	$164 \times 128 \times 128$
$4 \times$ bottlenec	k1.x	_		$64 \times 128 \times 128$
bottleneck2.0	do	wnsamp	ling	egulla2138ex $64 imes 64$
bottleneck2.1				$128 \times 64 \times 64$
bottleneck2.2	(+)-	dilated	2	$128 \times 64 \times 64$
bottleneck2.3	as	ymmetr	ic 5	$128 \times 64 \times 64$
bottleneck2.4		dilated	4	$128 \times 64 \times 64$
bottleneck2.5				$128 \times 64 \times 64$
bottleneck2.6		dilated	8	$128 \times 64 \times 64$
bottleneck2.7	as	ymmetr	ic 5	$128 \times 64 \times 64$
bottleneck2.8	(dilated 1	.6	$128\times 64\times 64$
Repeat sect	ion 2, with	out bot	tlene	ck2.0
bottleneck4.0	u	psampli	ng	$64 \times 128 \times 128$
bottleneck4.1			-	$64 \times 128 \times 128$
bottleneck4.2				$64\times128\times128$
bottleneck5.0	u	psampli	ng	$16 \times 256 \times 256$
bottleneck5.1		-	-	$16\times 256\times 256$
fullconv				$C \times 512 \times 512$

Regularizer

PReLU

ENet

	NVIDIA TX1				NVIDIA Titan X							
Model	480	×320	640>	<360	1280	×720	640	0×360	1280	×720	1920	×1080
	ms	fps	ms	fps	ms	fps	ms	fps	ms	fps	ms	fps
SegNet	757	1.3	1251	0.8	-	-	69	14.6	289	3.5	637	1.6
ENet	47	21.1	69	14.6	262	3.8	7	135.4	21	46.8	46	21.6

.

Model	Class IoU	Class iIoU	Category IoU	Category iIoU
SegNet	56.1	34.2	79.8	66.4
ENet	58.3	34.4	80.4	64.0

output

ICNet

- Analisi dei bottleneck nei metodi multi-scala
 - La convoluzione su immagini grandi è costosa
 - Soluzione: combinazione «furba» per accellerare la computazione

ICNet

• Trade-off tra velocità e accuratezza

Instance Segmentation

- Obiettivo
 - Individuare non solo la segmentazione, ma anche l'istanza

Mask R-CNN

• Mask R-CNN = Faster R-CNN + FCN sui Rols

Mask

Recap: Faster R-CNN

Da Faster R-CNN a Mask R-CNN

Mask

Mask R-CNN: Mask

- $K \cdot m \times m$
 - Una maschera di dimensione $m \times m$ per ognuna delle K classi
 - Ogni pixel è regolato da una sigmoide
 - Loss
 - Su una Ro
l associata alla classe k, L_{mask} è la binary cross-entropy relativa alla mascher
a m_k associata
 - Le altre maschere non contribuiscono alla loss

Mask R-CNN

28x28 soft prediction

Resized Soft prediction

RolAlign

 Il mapping di una regione sulla feature map con RolPooling causa un riallineamento

RolAlign

- Con RolAlign, ogni punto viene interpolato
 - Recupera precision nella ricostruzione della maschera

• Priors

Region Proposals

• Predizione

Non-Maximum Suppression

• Mask

YOLACT: You Only Look At CoefficienTs

- Due task paralleli:
 - Generazione di un dizionario di non-local prototype masks sull'intera immagine
 - Basato su FCN
 - Predizione di un insieme di coefficienti di combinazione per ogni istanza
 - Aggiunge una componente all'object detection per predire un vettore di "mask coefficients"
 - Per ogni istanza selezionata nel NMS viene costruita una maschera combinando i risultati dei due task.

Caratteristiche

- Loss
 - $L_{cs} + L_{box} + L_{mask}$
 - $L_{mask} = BCE(M, M_{gt})$
- YOLACT impara a localizzare le istanze

Risultati

• 29.8mAP, 33FPS

Riassunto

- Semantic vs. Instance segmentation
- Architetture complesse
- Base per learning task simili
 - Depth estimation
 - Surface normal estimation
 - Colorization

