Analisi di Immagini e Video (Computer Vision)

Giuseppe Manco

Outline

- Generative Modeling
 - Motivazioni
 - task
- Approcci
 - Variational Autoencoders
 - Generative Adversarial Networks

Crediti

- Alcune slides adattate da altri corsi:
 - Computer Vision (I. Gkioulekas) CS CMU Edu

Recap: ML estimation

- Dato un campione $X = \{ x_1, x_2, ..., x_n \}$
 - Generato da una distribuzione (sconosciuta) \mathbb{P}_{r}
- E data una distribuzione candidata $\mathbb{P}_{ heta}$ parametrizzata da heta
- Troviamo il parametro $\hat{\theta}$ che ottimizza la verosimiglianza:

$$\hat{\theta} = \operatorname{argmax}_{\theta} P_{\theta}(X)$$

$$= \operatorname{argmax}_{\theta} \prod_{i} P_{\theta}(x_{i})$$

$$= \operatorname{argmax}_{\theta} \sum_{i} \log P_{\theta}(x_{i})$$

$$= \operatorname{argmax}_{\theta} \mathbb{E}_{x \sim \mathbb{P}_{r}} \log P_{\theta}(x)$$

Problemi con ML

- ML è consistente: in linea di massima, può apprendere qualsiasi distribuzione, se osserva una quantità infinita di dati e lo spazio dei parametri è completo
 - Minimizzare la Likelihood è equivalente a minimizzare la Kullback-Leibler (KL) divergence tra la vera distribuzione \mathbb{P}_r e la distribuzione candidata \mathbb{P}_{θ}

$$KL[\mathbb{P}_{r}|\mathbb{P}_{\theta}] = \int P_{r}(x) \log \frac{P_{r}(x)}{P_{\theta}(x)} dx$$

• Tuttavia, nella realtà (a causa della mis-specifica del modello e della quantità di dati finite), tende a produrre modelli **overgeneralized**

Problemi con ML

$$KL[\mathbb{P}_{r}|\mathbb{P}_{\theta}] = \int P_{r}(x) \log \frac{P_{r}(x)}{P_{\theta}(x)} dx$$

- Quando $P_r(x) > P_{\theta}(x)$, larghe regioni di \mathbb{P}_r assumono valori bassi in \mathbb{P}_{θ} . Il loro contributo sulla $KL[\mathbb{P}_r|\mathbb{P}_{\theta}]$ tende a inifinito.
- Tuttavia, quando $P_r(x) < P_{\theta}(x)$, x ha una bassa (true) probability, ma un'alta probabilità di essere generato dal modello. Il contributo a $KL[\mathbb{P}_r|\mathbb{P}_{\theta}]$ tende a 0.

Source: [Theis at al 2016]

Latent generative models

- Assumiamo un processo stocastico, governato da variabili latent z
- Deep latent generative models:
 - $P(\mathbf{x}|\mathbf{z})$ è definite da una rete neurale
 - Variational Autoencoders
 - Generative Adversarial Networks

$$\mathbf{z} \sim P_{\phi}(\cdot)$$

 $\mathbf{x} \sim P_{\theta}(\cdot|\mathbf{z})$

$$P(\mathbf{x}) = \int P(\mathbf{x}|\mathbf{z})P(\mathbf{z})\mathrm{d}\mathbf{z}$$

Variational Autoencoders

- Definiamo una proposal distribution $Q_{m \phi}$ parametrizzata da $m \phi$
- Approssimiamo la log-likelihood con

$$\log P(x) \ge \mathbb{E}_{z \sim Q_{\phi}} \left[\log P_{\theta}(x|z) \right] - \mathrm{KL} \left[Q_{\phi}(z) | P(z) \right]$$

Evidence Lower Bound (ELBO)

• Ottimizziamo ELBO su ϕ e θ

Variational Autoencoders

- Vantaggi:
 - Robusto all'overfitting (effetto regolarizzazione sulle variabili latenti)
 - Le variabili latent sono interpretabili (tramite P(z|x))
- Svantaggi: esempi imprecisi (blurry)
 - ML-oriented training
 - ELBO è un'approssimazione della log-likelihood
 - Assunzioni sulla prior di z

Generative Adversarial Networks (GANs)

- Modello
 - Objettivo: addestrare una funzione G_{θ} che trasforma un valore random z in un dato
 - Nessuna assunzione sulle distribuzioni dei dati o sulle variabili latenti
 - Implementa la funzione di sampling da $P_{\theta}(x)$ in maniera efficiente
 - Può riprodurre qualsiasi distribuzione P(x) se G_{θ} è sufficientemente complessa

• Learning as a two-player game

- Discriminator D_{ϕ} : Addestrato a discriminare tra dati reali e dati generati
- Generator G_{θ} : Addestrato a generare esempi realistici per confondere il discriminatore

${\bf G}$ sintetizza immagini che confondono ${\bf D}$

D identifica le fakes

G sintetizza le immaginin che *confondono* **D**:

$$argmax_{D}argmin_{G}\mathbb{E}_{x}[\log D(x) + \log(1 - D(G(z)))]$$

G sintetizza le immagini che *confondono* il *miglior* D:

 $argmax_{D}$ $argmin_{G} \mathbb{E}_{x}[\log D(x) + \log(1 - D(G(z)))]$

Per G, D è una funzione di loss.

Piuttosto che essere definita a mano, è appresa.

• Discriminator Loss:

$$L_D(\phi,\theta) = \mathbb{E}_{x \sim \mathbb{P}_r} \left[\log D_{\phi}(x) \right] + \mathbb{E}_{x \sim \mathbb{P}_{\theta}} \left[\log \left(1 - D_{\phi} \right) \right]$$

• Generator loss

$$L_G(\phi,\theta) = -L_D(\phi,\theta)$$

• Adversarial Game

$$\max_{\phi} \min_{\theta} \mathbb{E}_{x \sim \mathbb{P}_{r}} [\log D_{\phi}(x)] + \mathbb{E}_{x \sim \mathbb{P}_{\theta}} [\log(1 - D_{\phi})]$$

• Optimal discriminator:

$$L_D(\phi,\theta) = \int p_r(x) \log D(x) + p_\theta(x) \log(1 - D(x)) dx$$

• Massimizzando il termine all'interno dell'integrale rispetto a D(x):

$$D^*(x) = \frac{P_r(x)}{P_r(x) + P_{\theta}(x)}$$

$$L_D(D^*,\theta) = \int p_r(x) \log D(x) + p_\theta(x) \log(1 - D(x)) dx$$

$$= \int p_r(x) \log \frac{P_r(x)}{P_r(x) + P_{\theta}(x)} + p_{\theta}(x) \log \frac{P_{\theta}(x)}{P_r(x) + P_{\theta}(x)} dx$$
$$= KL \left[\mathbb{P}_r | \frac{\mathbb{P}_{\theta} + \mathbb{P}_r}{2} \right] + KL \left[\mathbb{P}_{\theta} | \frac{\mathbb{P}_{\theta} + \mathbb{P}_r}{2} \right] - 2 \log 2$$
$$= 2JS \left[\mathbb{P}_r | \mathbb{P}_{\theta} \right] - 2 \log 2$$

 $L_G(D^*, \theta) \approx JS[\mathbb{P}_r | \mathbb{P}_{\theta}]$

• Minimizzare su θ equivale a minimizzare la Jensen-Shannon Divergence

$$JS[\mathbb{P}_{\mathrm{r}}|\mathbb{P}_{\theta}] = \frac{1}{2}KL[\mathbb{P}_{\mathrm{r}}|\mathbb{P}_{\theta}] + \frac{1}{2}KL[\mathbb{P}_{\theta}|\mathbb{P}_{\mathrm{r}}]$$

Schema GAN

Algorithm 1 Inference algorithm. 1 Initialize ϕ and θ 2 for number of epochs do for k steps do 3 Sample $\left\{ \tilde{x}_{\theta}^{(1)}, \dots, \tilde{x}_{\theta}^{(m)} \right\}$ from \mathbb{P}_{θ} ; 4 Sample $\{x^{(1)}, \ldots, x^{(1)}\}$ from \mathbb{P}_r ; 5 Update ϕ by ascending its stochastic gradient: 6 $\nabla_{\phi} \frac{1}{m} \sum_{i=1}^{m} \left[\log \left(D_{\phi} \left(x^{(i)} \right) \right) + \log \left(1 - D_{\phi} \left(\tilde{x}_{\theta}^{(1)} \right) \right) \right]$ end for Sample $\left\{ \tilde{x}_{\theta}^{(1)}, \dots, \tilde{x}_{\theta}^{(m)} \right\}$ from \mathbb{P}_{θ} ; 7 8 Update θ by descending its stochastic gradient: 9 $\nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} \log\left(1 - D_{\phi}\left(\tilde{x}_{\theta}^{(i)}\right)\right)$ 10 end for

11 Return ϕ and θ .

Schema GAN

 Critico: Backpropagation dagli esempi

1 I	nitialize ϕ and θ
2 f	or number of epochs do
3	for k steps do
4	Sample $\left\{ \tilde{x}_{\theta}^{(1)}, \dots, \tilde{x}_{\theta}^{(m)} \right\}$ from \mathbb{P}_{θ} ;
5	Sample $\{x^{(1)}, \ldots, x^{(1)}\}$ from \mathbb{P}_r ;
6	Update ϕ by ascending its stochastic gradient:
7	end for Sample $\int \tilde{x}^{(1)} = \tilde{x}^{(m)} \int \text{from } \mathbb{P}_{e^{i}}$
0	Sample $\{x_{\theta}, \dots, x_{\theta}\}$ from \mathbb{T}_{θ} ,
9	Update θ by descending its stochastic gradient:
	$ abla_{ heta} rac{1}{m} \sum^m \log\left(1 - D_{\phi}\left(ilde{x}_{ heta}^{(i)} ight) ight)$

Training Challenges

- Problemi
 - Mode Collapse
 - Slow Convergence
 - Overgeneralization
 - Instabilità
- Rimedi
 - Network Depth
 - Game setup, loss refinement
 - Hacks

Network Depth

- Processo iterativo
 - Aumentiamo la complessità della rete progressivamente

Game Setup

• Min-Max Gaming è instabile

 $L_D(\phi, \theta) = \mathbb{E}_{x \sim \mathbb{P}_r} \left[\log D_{\phi}(x) \right] + \mathbb{E}_{x \sim \mathbb{P}_{\theta}} \left[\log (1 - D_{\phi}) \right] \qquad L_G(\phi, \theta) = -L_D(\phi, \theta)$

• Non-Saturating GAN

$$L_G(\phi, \theta) = \mathbb{E}_{x \sim \mathbb{P}_{\theta}} [\log(D_{\phi})]$$

Game setup

Instabilità

- Quando fermare il training?
- Wassersteing GAN
 - Sostituisce la JS con EM distance

$$L_D(\phi, \theta) = \mathbb{E}_{z} [f_{\phi}(G(z))] - \mathbb{E}_{x \sim \mathbb{P}_{r}} [f_{\phi}(x)]$$

 $L_G(\phi,\theta)=-L_D(\phi,\theta)$

- f_{ϕ} 1-Lipshitz: $|f_{\phi}(x_1) f_{\phi}(x_2)| \le |x_1 x_2|$
 - Gradient clipping
 - Gradient penalties

Hacks

- Normalizzazione degli input
- Batch Normalization
- Gradient penalties
- Variare (aumentare) le iterazioni sul discriminatore
- Soft/noisy labels sul discriminator
- Evitare gradienti sparsi
 - No ReLU/MaxPool

Sviluppi

- Semi-Supervised GAN
- Conditional GAN
- CycleGAN

Semi-supervised GAN

• Idea: utilizziamo il generator per irrobustire un discriminatore

$$L_{D}(\phi,\theta) = \mathbb{E}_{x,y\sim\mathbb{P}_{r}}\left[\log D_{\phi}(y|x)\right] + \mathbb{E}_{x\sim\mathbb{P}_{\theta}}\left[\log\left(1-\sum_{y}D_{\phi}(y|x)\right)\right] \qquad L_{G}(\phi,\theta) = \mathbb{E}_{x\sim\mathbb{P}_{\theta}}\left[\log\left(\sum_{y}D_{\phi}(y|x)\right)\right]$$

Conditional GAN

$$L_{D}(\phi,\theta) = \mathbb{E}_{x,y\sim\mathbb{P}_{r}}\left[\log D_{\phi}(y,x)\right] + \mathbb{E}_{x\sim\mathbb{P}_{\theta}(y)}\left[\log\left(1-\sum_{y}D_{\phi}(y,x)\right)\right]$$
$$L_{G}(\phi,\theta) = \mathbb{E}_{x\sim\mathbb{P}_{\theta}(y)}\left[\log\left(\sum_{y}D_{\phi}(y,x)\right)\right]$$

Supervised GAN-MNIST

Esempi: Super Resolution

Esempi: Image to Image Transalation

https://affinelayer.com/pixsrv/

Esempio: Colorization

$argmax_D argmin_G \mathbb{E}_{x,y}[\log D(x,y) + \log(1 - D(G(x|y),y))]$

$argmax_D argmin_G \mathbb{E}_{x,y}[\log D(x) + \log(1 - D(G(z|y)))]$

G(z|y)y G D real or fake *pair*?

$argmax_D argmin_G \mathbb{E}_{x,y}[\log D(x,y) + \log(1 - D(G(z|y),y))]$

$$argmax_D \ argmin_G \mathbb{E}_{x,y}[\log D(x,y) + \log(1 - D(G(z|y),y))]$$

Qual è il ruolo del random noise?

• Se l'input è sufficientemente complesso, CGAN non hanno bisogno di *z*

$$\left[\log D(x,y) + \log(1 - D(G(y),y))\right]$$

Image Inpainting

OT

Unpaired image translation

- Tutti gli esempi precedenti si basano sul fatto di poter accoppiare l'input all'output desiderato
- Che succede se le coppie sono inconsistenti?

CycleGAN

- Due Conditional GAN combinate
 - Ogni discriminatore accetta due input
 - L'immagine originale corrispondente a quel dominio e l'immagine generata
- Aggiustamenti
 - Cycle-consistency loss
 - Identity loss

CycleGAN

- Component-wise loss:
 - $L_{GAN}(D_A, G) = \mathbb{E}_x[\log D_A(x) + \log(1 D_A(G(x)))]$
 - $L_{GAN}(D_B, F) = \mathbb{E}_{y}[\log D_B(x) + \log(1 D_B(F(y)))]$
- Consistency loss:

•
$$L_{CYCLE}(G,F) = \mathbb{E}_{x}\left[\left\|F(G(x)) - x\right\|_{1}\right] + \mathbb{E}_{y}\left[\left\|G(F(y) - y\|_{1}\right]\right]$$

- Overall loss:
 - $L_{GAN}(D_A, D_B, G, F) = L_{GAN}(D_A, G) + L_{GAN}(D_B, F) + \lambda L_{CYCLE}(G, F)$

Applicazioni

https://junyanz.github.io/CycleGAN/

