Analisi di Immagini e Video (Computer Vision)

Giuseppe Manco

Outline

- Segmentation
- Approcci classici
- Deep Learning for Segmentation

Crediti

- Slides adattate da vari corsi e libri
 - Computational Visual Recognition (V. Ordonez), CS Virgina Edu
 - Computer Vision (S. Lazebnik), CS Illinois Edu

Approcci supervisionati

- L'approccio basato su CRF è semi-supervisionato
- Possiamo renderlo supervisionato?
 - Parametrizziamo gli unary e binary potentials

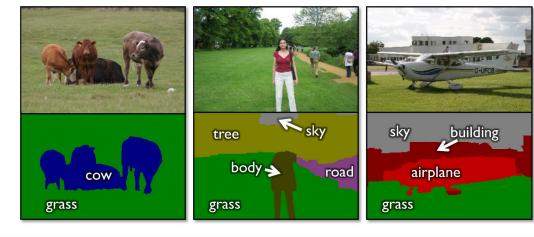
• E.g.,
$$p(y_i|x_i;\theta) = \frac{1}{Z} \exp\left(w_{y_i} \cdot F(x_i)\right)$$

• Apprendiamo i parametri che minimizzano l'energia media su tutti gli esempi

Semantic segmentation, object detection

Problema

- Etichettare ogni pixel con una classe
- Multi-class problem
- Utilizzo di dati già etichettati
 - Pascal VOC
 - MS COCO



object classes	building	grass	tree	cow	sheep	sky	airplane	water	face	car
bicycle	flower	sign	bird	book	chair	road	cat	dog	body	boat

MS-COCO

• Large-scale dataset for object detection, segmentation and captioning

- 330K images (>200K labeled)
- 1.5 million object instances
- 80 object categories
- 91 stuff categories
- 5 captions per image
- 250,000 people with keypoints

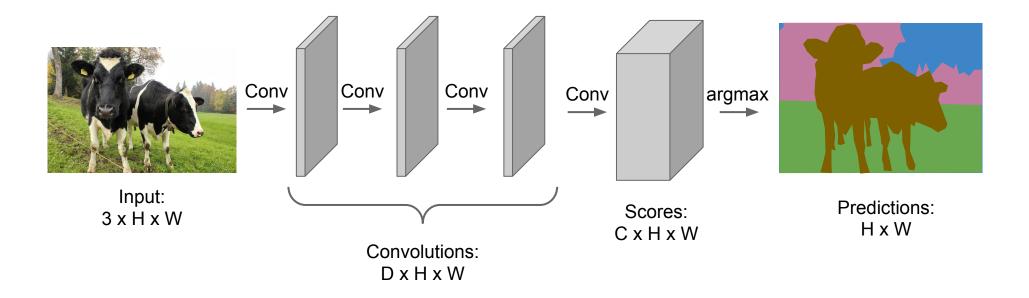
Perché Deep Learning?

- Stesso principio dell'object detection
 - Convolutional features, learned from training data
- Accuratezza
- Velocità

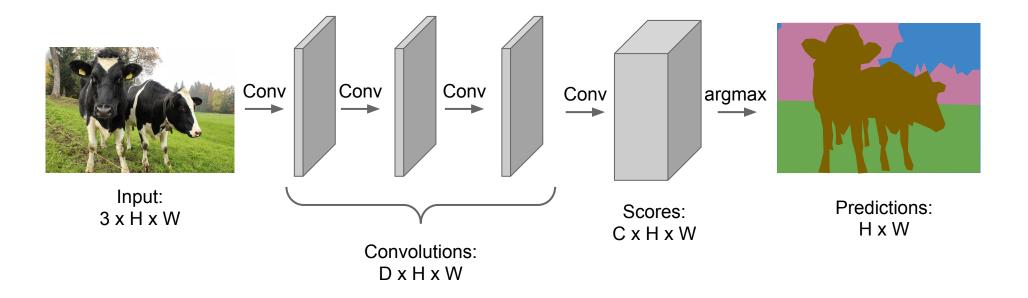
Approcci

- Approcci downsampling-upsampling
- Metodi multi-scala

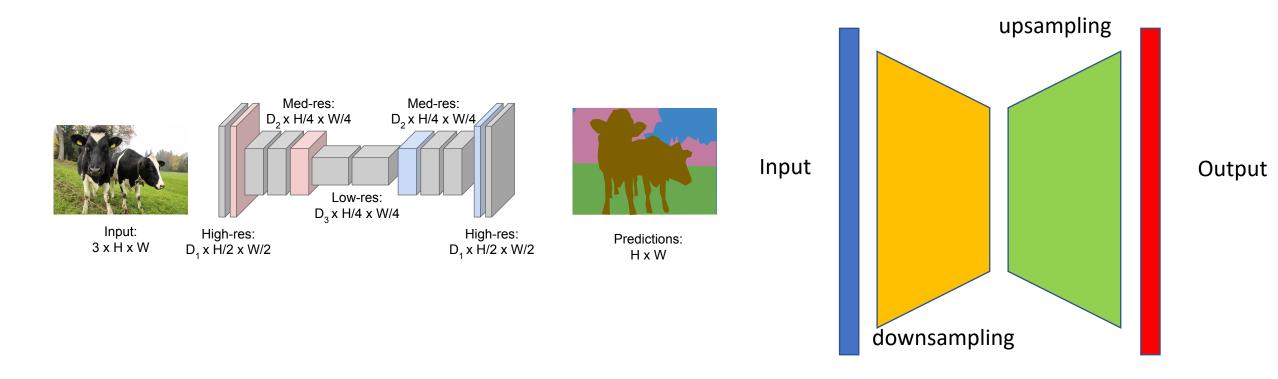
• Utilizziamo i layer convoluzionali per fare le predizioni sui vari pixel



- Utilizziamo i layer convoluzionali per fare le predizioni sui vari pixel
 - Ma fare convoluzioni su feature map grandi è costoso

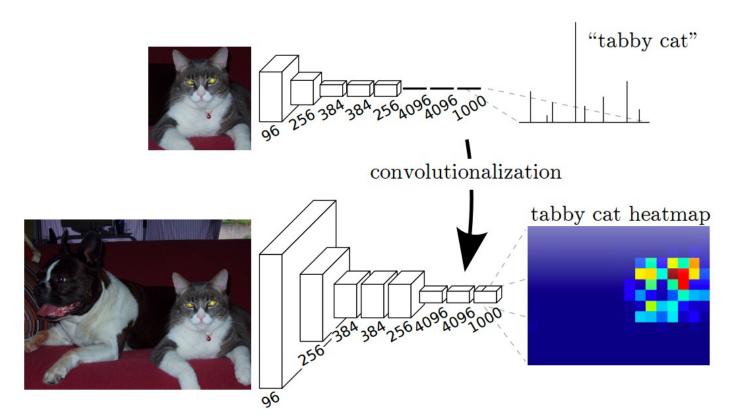


- Soluzione
 - Architettura Encoder-Decoder

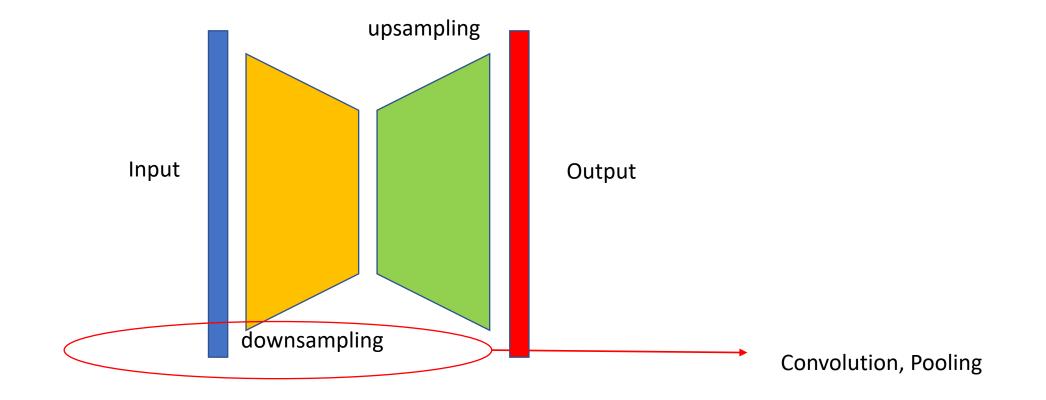


Convolutionalization

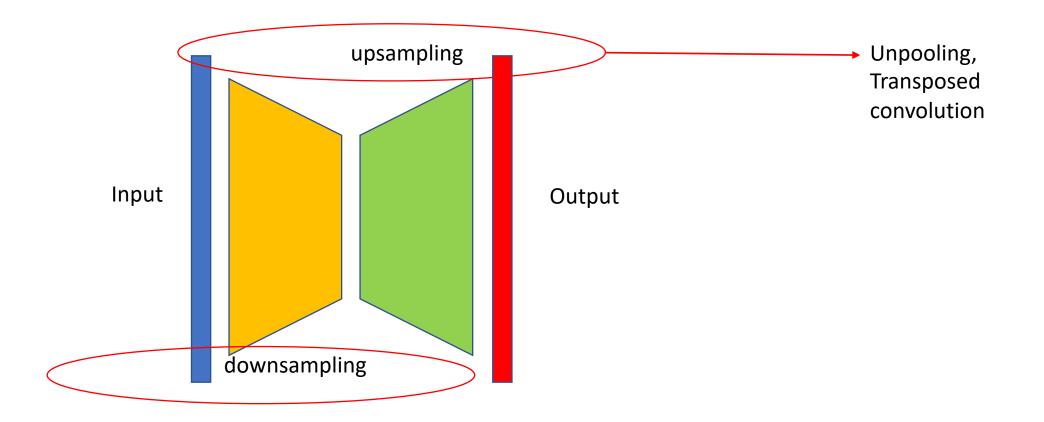
- Fully Convolutional Layers
- Faster-RCNN, SSD



• Architettura Encoder-Decoder

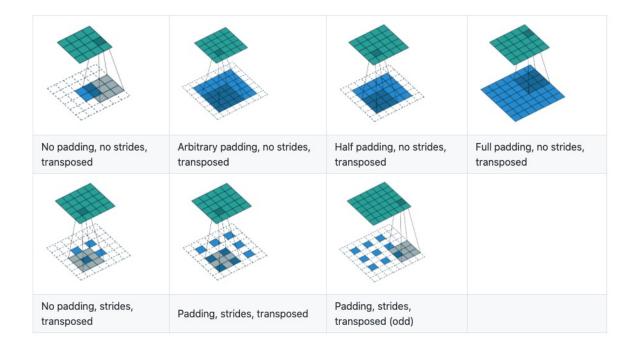


• Architettura Encoder-Decoder

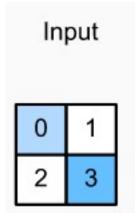


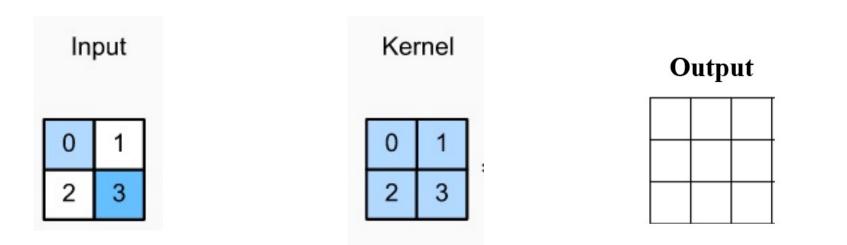
Up-sampling Convolutions

- Upsampling
 - Da un'input a bassa risoluzione si passa ad uno a più alta risoluzione
 - Transposed Convolution
 - Qual è la relazione?
 - Suggerimento: invertiamo le relazioni originarie

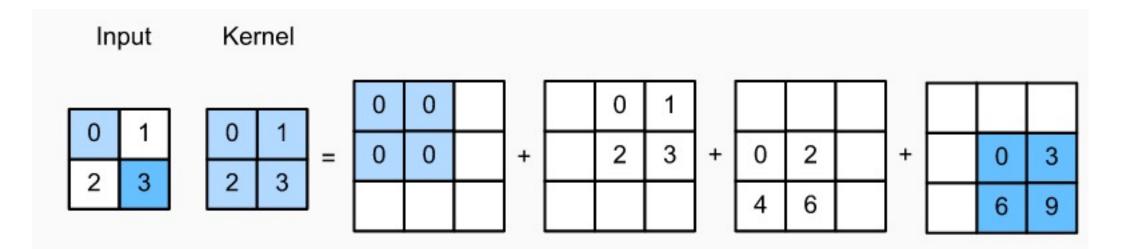


https://github.com/vdumoulin/conv_arithmetic





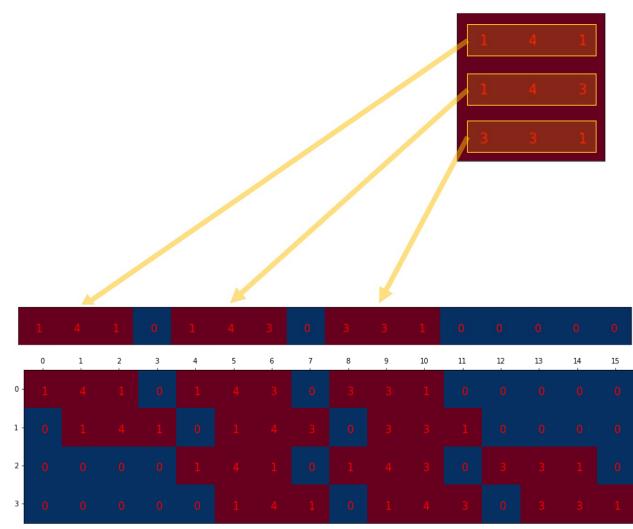
• Ogni valore si distribuisce su un intorno dell'output in base al kernel.



• La distribuzione viene guidata da padding e stride

Convolution e transposed convolution

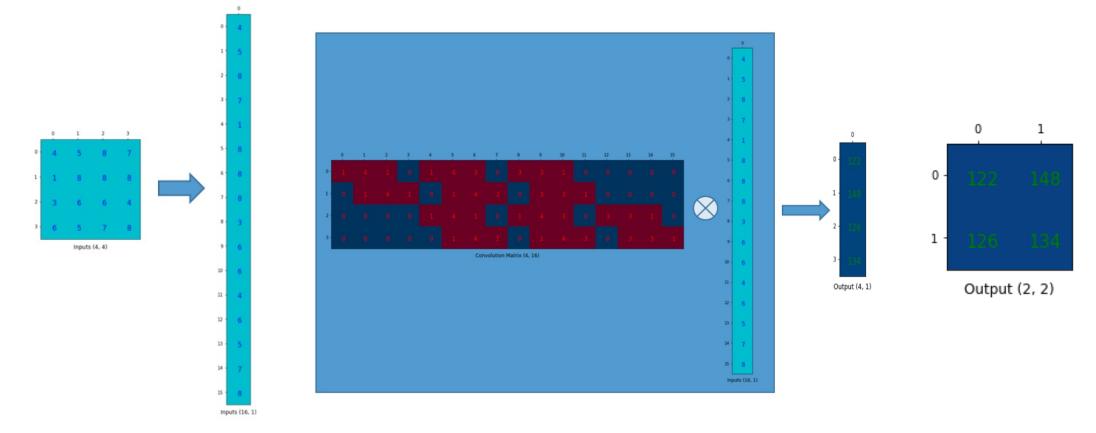
- Ogni riga definisce un'operazione di convoluzione
 - Filtro 3x3, input 4x4
 - No padding, no strides, no dilation



Convolution Matrix (4, 16)

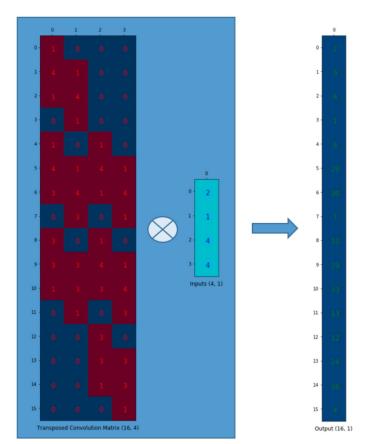
Convolution e transposed convolution

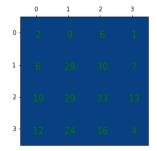
• Ogni riga definisce un'operazione di convoluzione



Convolution e transposed convolution

• Trasponendo la matrice di convoluzione, otteniamo l'operazione opposta





Output (4, 4)

ConvTranspose, Padding

- Decrementa l'output della TD
 - Interpretazione: l'ammontare di padding che l'input richiede per completare l'output
 - Quale sarebbe l'output dell'esempio precedente?

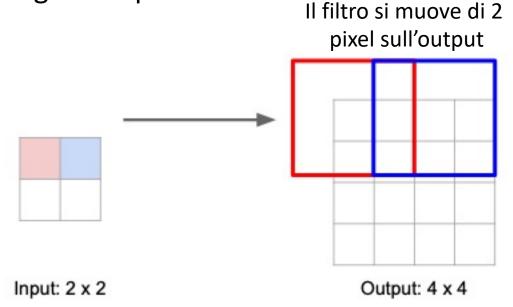
\mathbb{Z}	Α	В	С	D	E	F	G	н	I	J	к	L	Μ	Ν	0	Ρ	Q	R	S	Т	U	۷	w	х	Y
1																									
2				Input								K	erne	el		Output									
3																									
4		0			0	0	0	0	0																
5				0	0	0	0	0	0										1	5	11	14	8	3	
6				1	3	2	1	0	0				1	2	3				1	6	15	18	12	3	
7		0	0	1	3	3	1	0	0				0	1	0				4	13	21	21	15	11	
8		0	0	2	1	1	3	0	0				2	1	2				5	17	28	27	25	11	
9		0	0	3	2	3	3	0	0										4	7	9	12	8	6	
10		0	0	0	0	0	0	0	0										6	7	14	13	9	6	
11		0	0	0	0	0	0	0	0																

	Α	В	С	D	E	F	G	Н	Т	J	K	L	Μ	N	0	Ρ	Q
1																	
2			Inp	out					k	Cerne	<u>el</u>		Output			put	
3																	
4		1	3	2	1				1	2	3						
5		1	3	3	1				0	1	0				21	21	
6		2	1	1	3				2	1	2				28	27	
7		3	2	3	3												
8																	

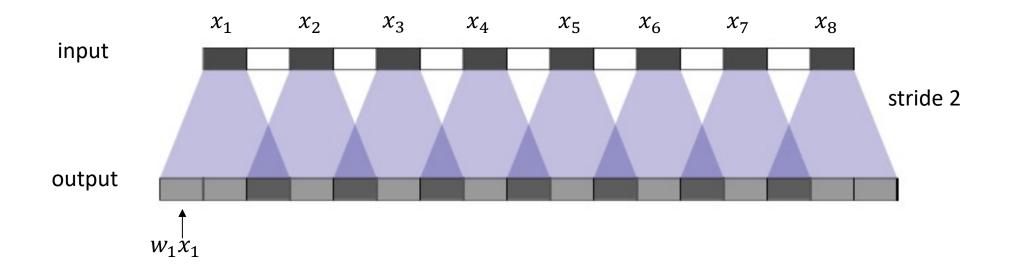
ConvTranspose, Stride

- Espande l'output
 - Di conseguenza «fraziona» l'input aggiungendo spazi

_	Α	В	С	D	E	F	G	Н	I	J	к	L	м	Ν	0	Ρ	Q	R	S	Т	U	۷	W
1																							
2		<u>Input</u>									Kernel							Output					
3																							
4		0		0	0	0	0	0															
5				0	0	0	0	0										3	6	12	6	9	
6		0		3	0	3	0	0				1	2	3				0	3	0	3	0	
7		0	0	0	0	0	0	0				0	1	0				7	5	16	5	9	
8		0	0	1	0	1	0	0				2	1	2				0	1	0	1	0	
9		0	0	0	0	0	0	0										2	1	4	1	2	
10		0	0	0	0	0	0	0															
11																							

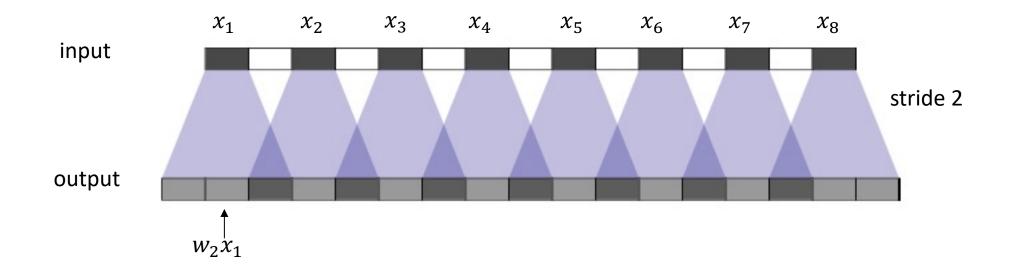


ConvTranspose, checkerboarding

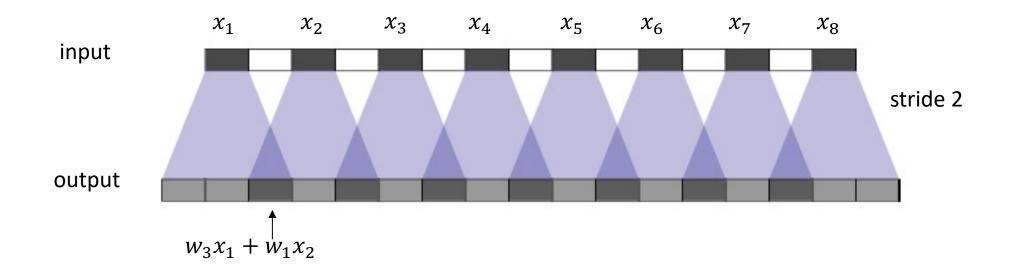


Animation: https://distill.pub/2016/deconv-checkerboard/

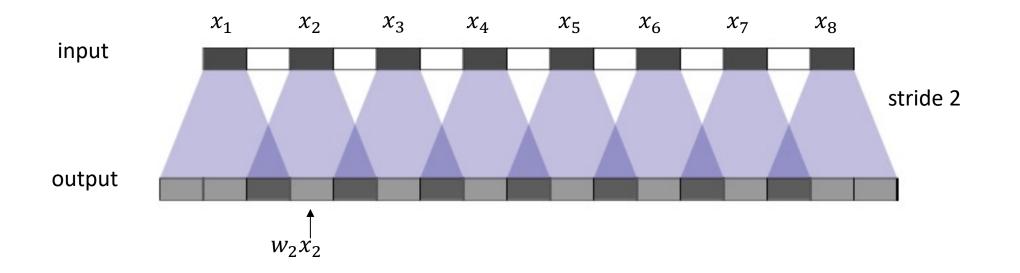
ConvTranspose, checkerboarding



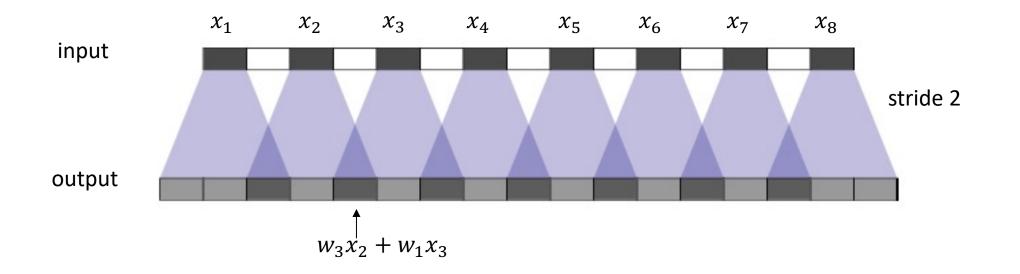
ConvTranspose, checkerboarding



ConvTranspose, Checkerboarding

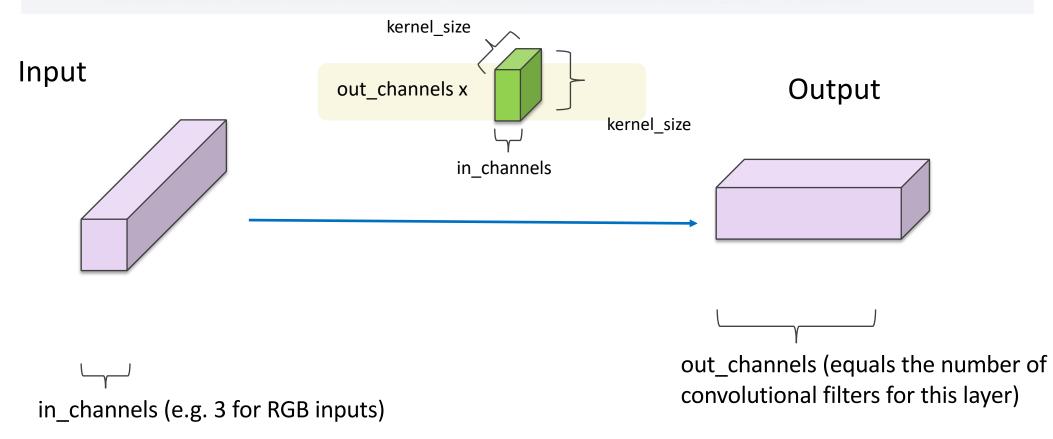


ConvTranspose, Checkerboarding



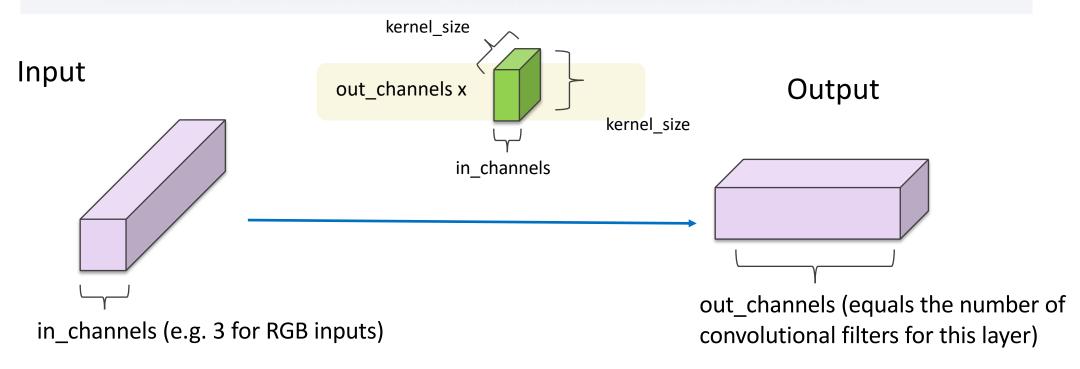
Transposed Convolution in Pytorch

CLASS torch.nn.ConvTranspose2d(*in_channels*, *out_channels*, *kernel_size*, *stride=1*, *padding=0*, *output_padding=0*, *groups=1*, *bias=True*, *dilation=1*, *padding_mode='zeros'*)



Transposed Convolution in Pytorch

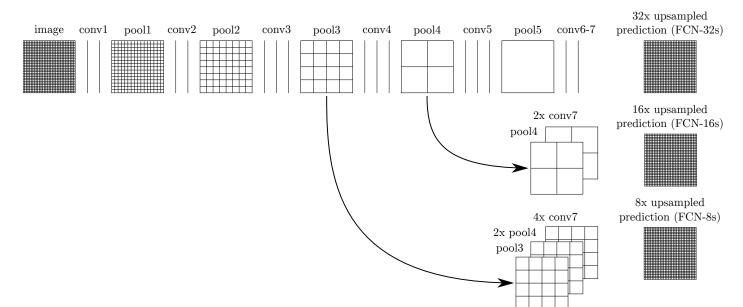
CLASS torch.nn.ConvTranspose2d(*in_channels*, *out_channels*, *kernel_size*, *stride=1*, *padding=0*, *output_padding=0*, *groups=1*, *bias=True*, *dilation=1*, *padding_mode='zeros'*)

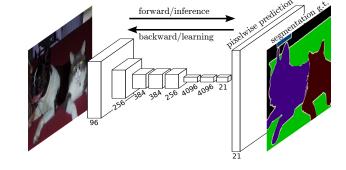


Out=(*In*-1)×stride-2×padding+dilation×(kernel_size-1)+output_padding+1

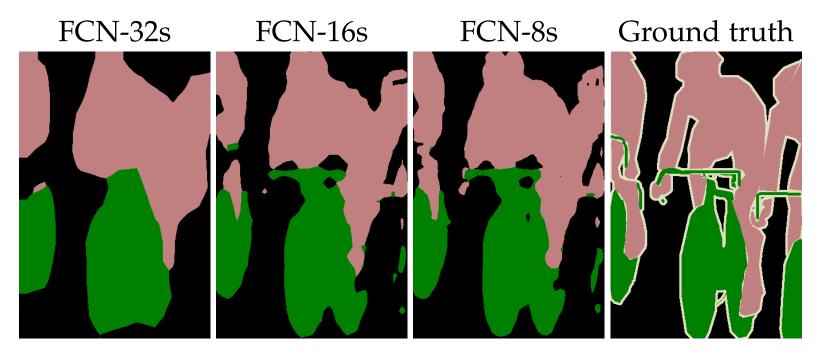
FCN: architettura

- Principio
 - Riduciamo la dimensione, facciamo upsampling
- Tre varianti
 - Coarse upsampling
 - Combined upsampling, skip connections (tramite somma)





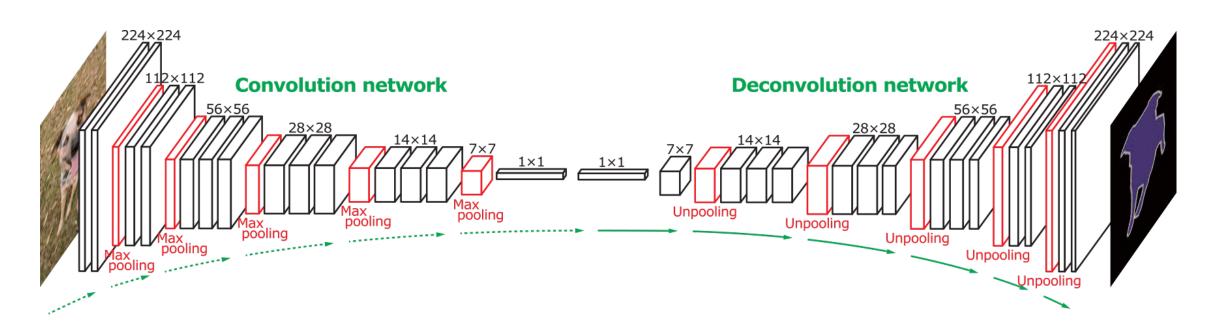
FCN



- L'utilizzo di ConvTranspose con stride di grandi dimensioni causa la presenza di artefatti
- Scarsa risoluzione ai bordi
 - L'encoding causa perdita di informazione

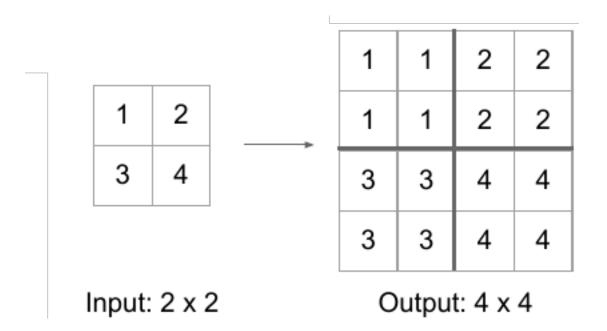
DeconvNet Up-sampling Convolutions or "Deconvolutions"

• Backbone: VGG



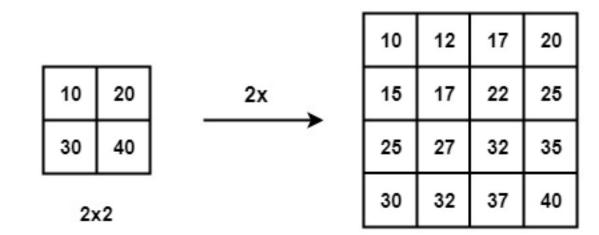
http://cvlab.postech.ac.kr/research/deconvnet/

Unpooling



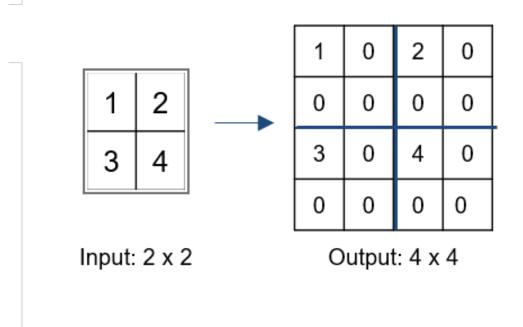
Unpooling

• Bilinear interpolation



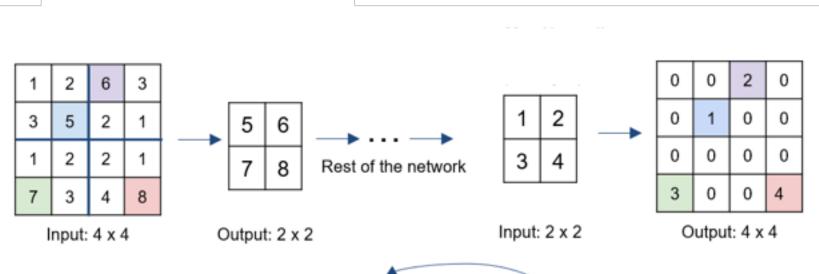
Unpooling

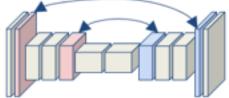
• Bed of nails



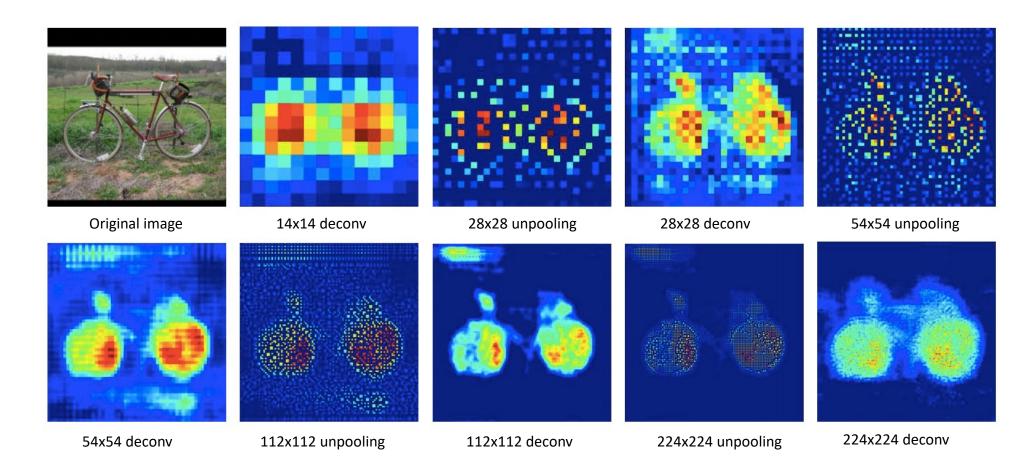
Unpooling

• Max unpooling

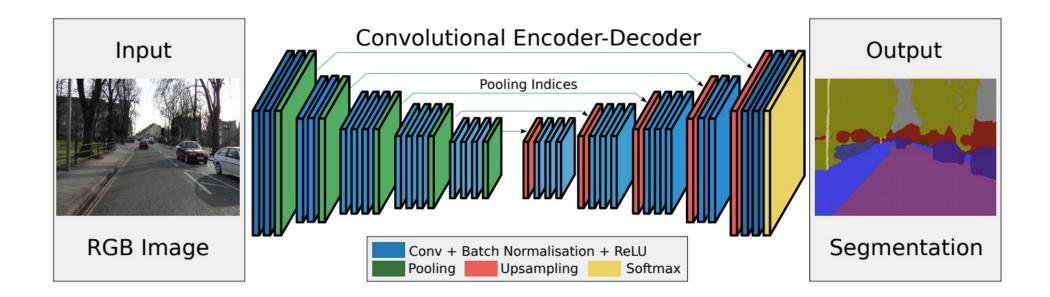




DeconvNet



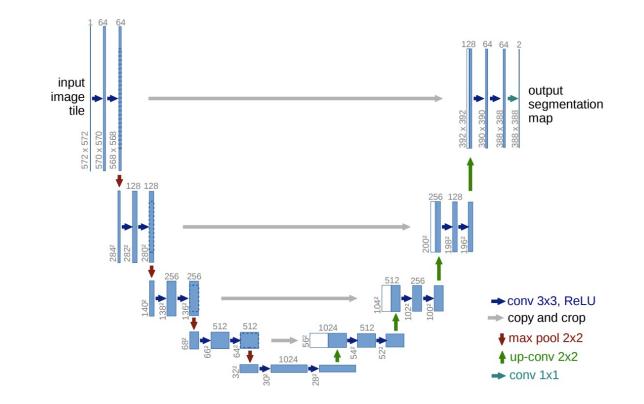
SegNet



Eliminando i FC layer, porta a risultati migliori

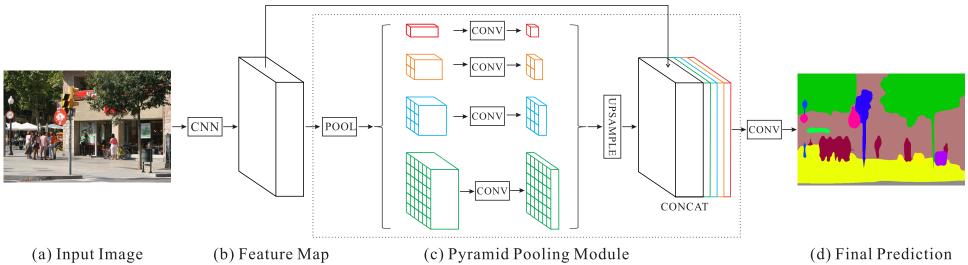
U-Net

- Usa le skip connections per combinare le feature maps
- La combinazione viene effettuata per concatenazione



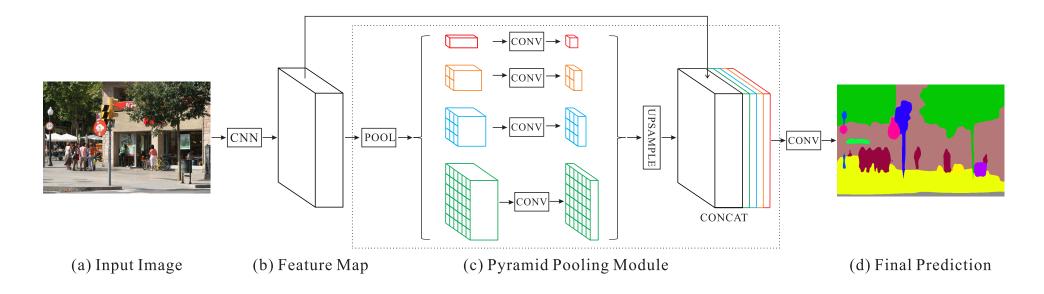
Metodi Multi-scala

- Idea generale
 - Otteniamo una feature map utilizzando un'architettura standard (ResNet)
 - Applichiamo una serie di convoluzioni con filtri di dimensioni diverse per ottenere risoluzioni diverse
 - Encoding delle varie scale
 - Upsampling e combinazione dei risultati



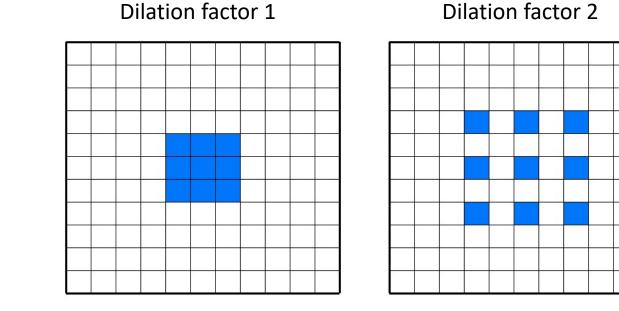
Metodi Multi-scala

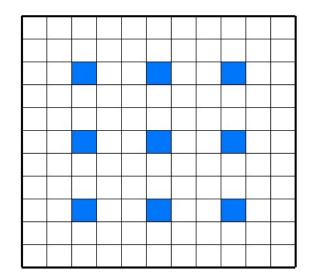
• Esplosione combinatoria del numero di parametri

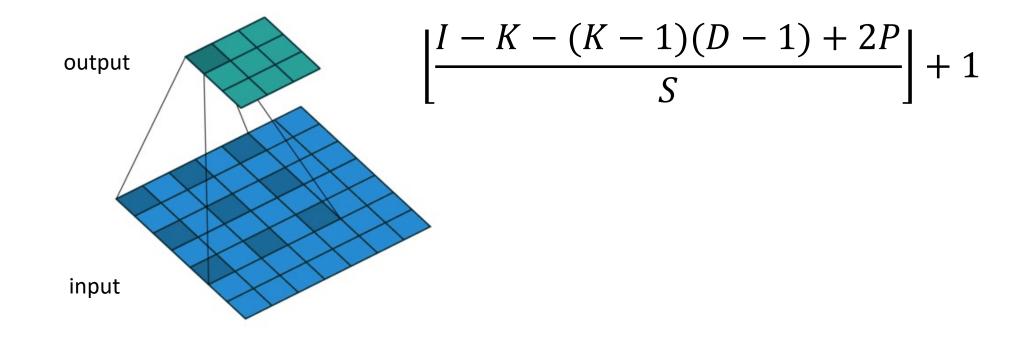


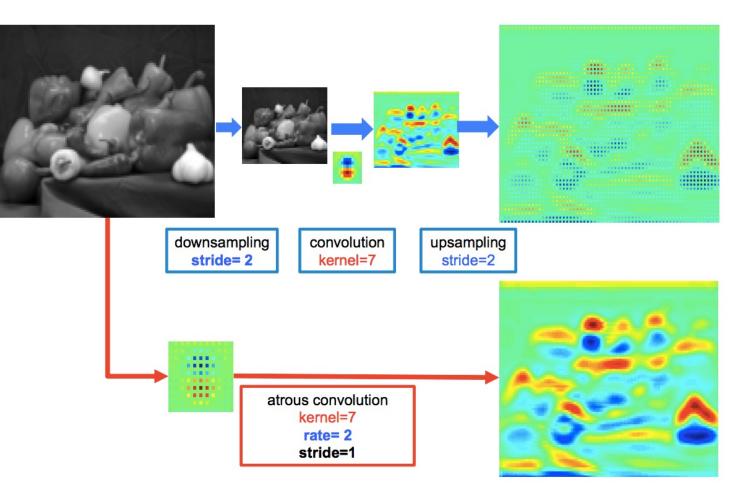
• Soluzione: Dilated convolutions

• Invece di ridurre la risoluzione spaziale delle feature maps, utilizziamo un filtro sparso

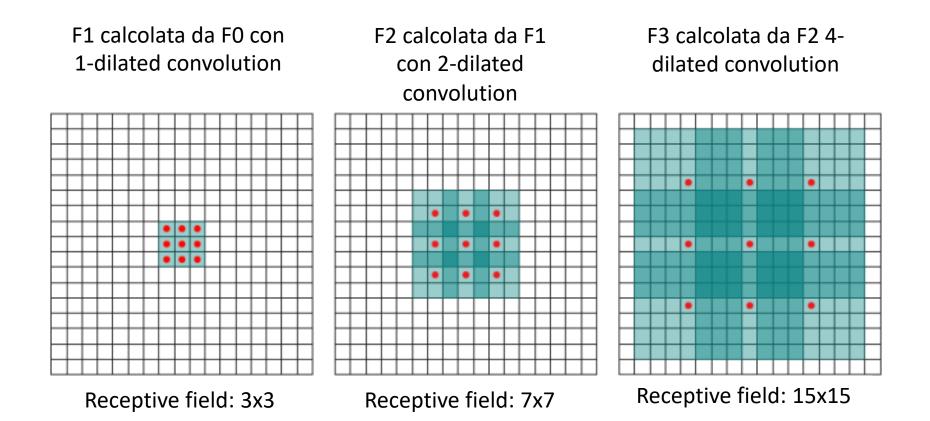




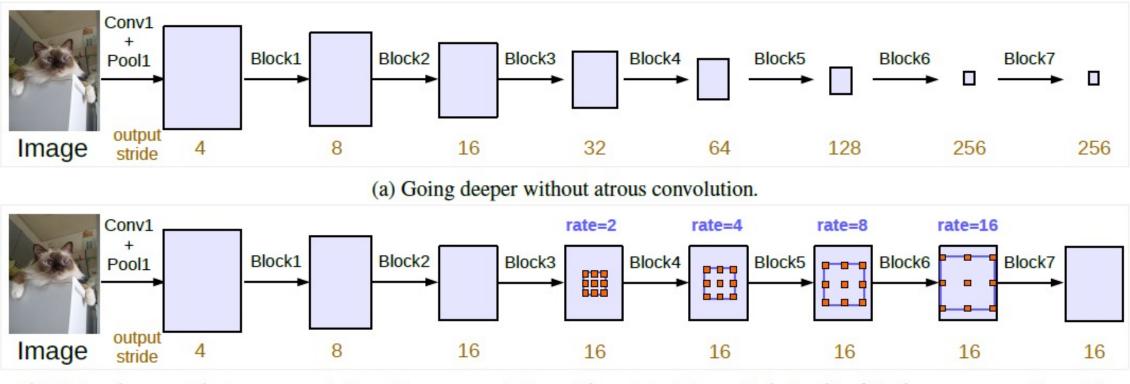




• La dimensione del receptive field cresce esponenzialmente ma il numero di parametri è lineare

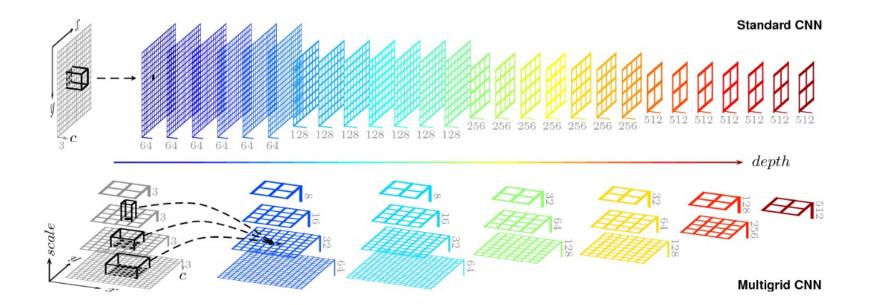


Vantaggi



(b) Going deeper with atrous convolution. Atrous convolution with rate > 1 is applied after block3 when *output_stride* = 16.

Multigrid CNN



Conv Conv Conv Conv kernel: 3x3 kernel: 3x3 kernel: 3x3 kernel: 3x3 rate: 12 rate: 6 rate: 18 rate: 24 rate = 24 rate = 18rate = 12 rate = 6 0 Atrous Spatial Pyramid Pooling Input Feature Map

Real-Time Semantic Segmentation

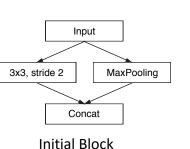
- ENet
- ICNet
- Fast-SCNN
- DFANet
- ...

- ENet
- Combina Encoder-Decoder con blocchi ResNet-like
 - 5 stadi
 - Sfrutta la riduzione e successivo restore dei canali per migliorare l'efficienza
- Design choices per l'efficienza
 - Early downsampling
 - I primi due blocchi riducono la size in maniera significativa

Input

Concat

- Ricostruzione tramite MaxUnpooling
- Decoder size •
 - Large encoder, small decoder
- Non-linear activations
 - PReLU invece delle ReLU
- Asymmetric convolutions, dilated convolutions
- Regularization
 - Stochastic Depth, spatial dropout



Concat

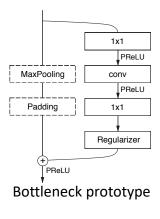


Table 1. FN	et architecture. Output sizes are giv	von
for on even	ble input of 512×512^{x1}	ven
Name	MaxPooling e conOutput size	<u>.</u>
initial	16^R≈^L2 56 × 2	256
bottleneck1.0	Padding $npling$ $\frac{164 \times 128 \times 1}{100}$	128
$4 \times$ bottlenec		
bottleneck2.0	downsamplingegulatizer $64 imes$	64
bottleneck2.1	$128 \times 64 \times$	64
bottleneck2.2	$(+)$ dilated 2 $128 \times 64 \times$	64
bottleneck2.3	asymmetric 5 $128 \times 64 \times 64$	64
bottleneck2.4	dilated 4 $128 \times 64 \times$	64
bottleneck2.5	$128 \times 64 \times$	64
bottleneck2.6	dilated 8 $128 \times 64 \times$	64
bottleneck2.7	asymmetric 5 $128 \times 64 \times$	64
bottleneck2.8	dilated 16 $128 \times 64 \times$	64
Repeat sect	on 2, without bottleneck2.0	
bottleneck4.0	upsampling $64 \times 128 \times 1$	128
bottleneck4.1	$64 \times 128 \times 1$	128
bottleneck4.2	$64 \times 128 \times 1$	128
bottleneck5.0	upsampling $16 \times 256 \times 2$	256
bottleneck5.1	$16 \times 256 \times 2$	256
fullconv	$C \times 512 \times 5$	$\overline{512}$

Regularizer

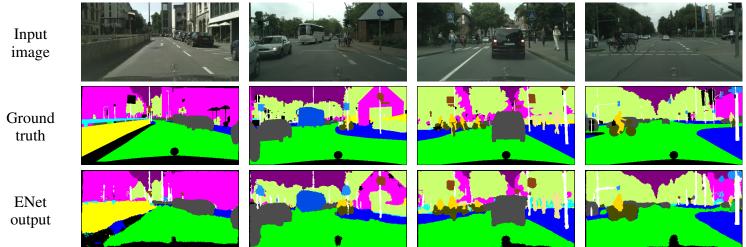
PReLU

ENet

Model	NVIDIA TX1				NVIDIA Titan X							
	480×320		640×360		1280×720		640×360		1280×720		1920×1080	
	ms	fps	ms	fps	ms	fps	ms	fps	ms	fps	ms	fps
SegNet	757	1.3	1251	0.8	-	-	69	14.6	289	3.5	637	1.6
ENet	47	21.1	69	14.6	262	3.8	7	135.4	21	46.8	46	21.6

.

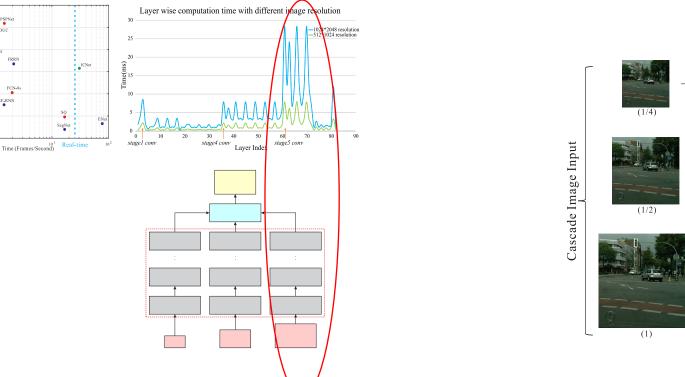
Model	Class IoU	Class iIoU	Category IoU	Category iIoU
SegNet	56.1	34.2	79.8	66.4
ENet	58.3	34.4	80.4	64.0

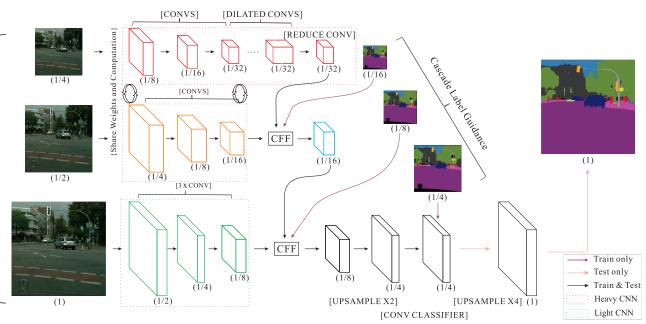


ENet output

ICNet

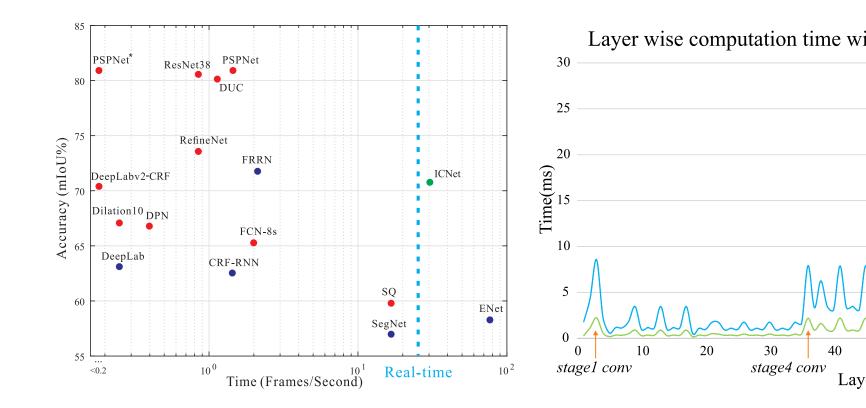
- Analisi dei bottleneck nei metodi multi-scala
 - La convoluzione su immagini grandi è costosa
 - Soluzione: combinazione «furba» per accellerare la computazione





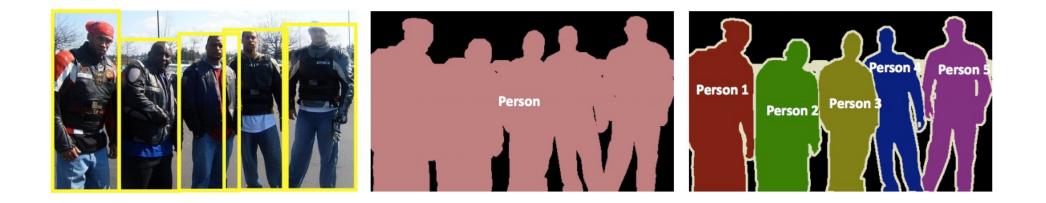
ICNet

• Trade-off tra velocità e accuratezza



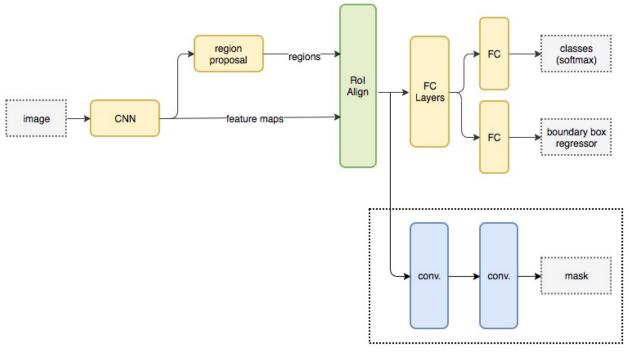
Instance Segmentation

- Obiettivo
 - Individuare non solo la segmentazione, ma anche l'istanza



Mask R-CNN

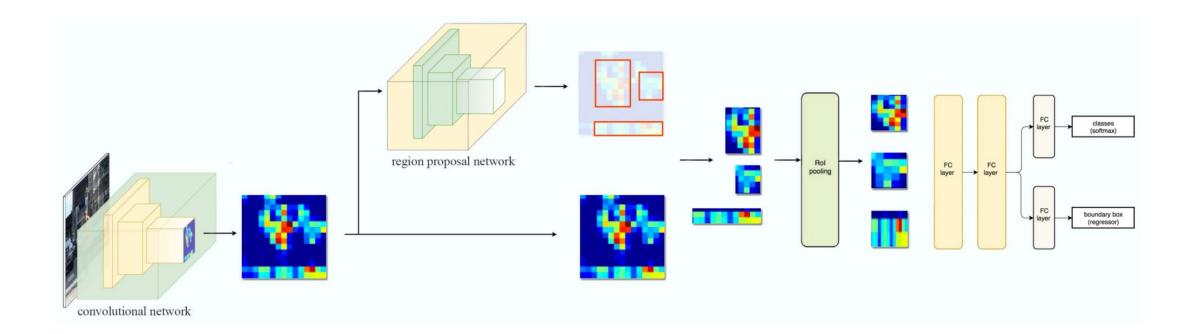
• Mask R-CNN = Faster R-CNN + FCN sui Rols



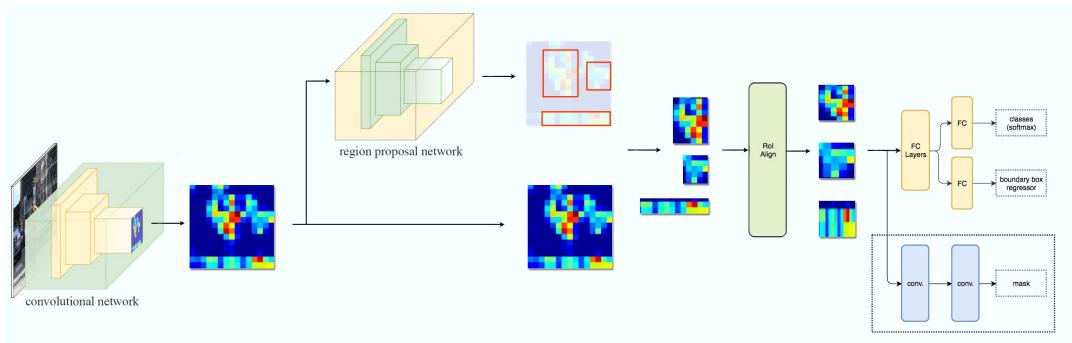
Mask

Loss: $L_{cs} + L_{box} + L_{mask}$

Recap: Faster R-CNN



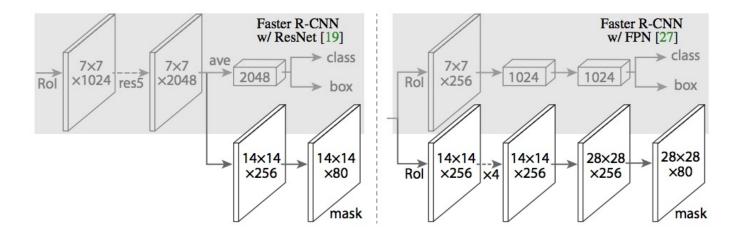
Da Faster R-CNN a Mask R-CNN



Mask

Mask R-CNN: Mask

- $K \cdot m \times m$
 - Una maschera di dimensione $m \times m$ per ognuna delle K classi
 - Ogni pixel è regolato da una sigmoide
 - Loss
 - Su una Rol associata alla classe k, L_{mask} è la binary cross-entropy relativa alla maschera m_k associata
 - Le altre maschere non contribuiscono alla loss



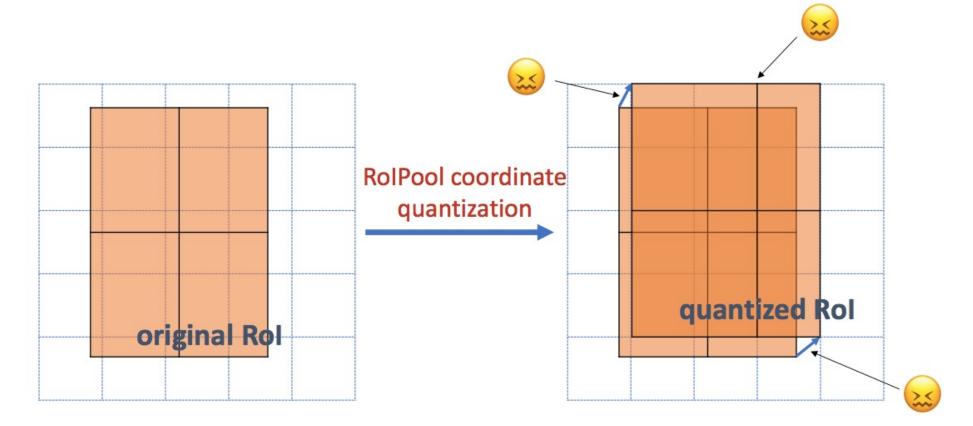
Mask R-CNN

28x28 soft prediction

Resized Soft prediction

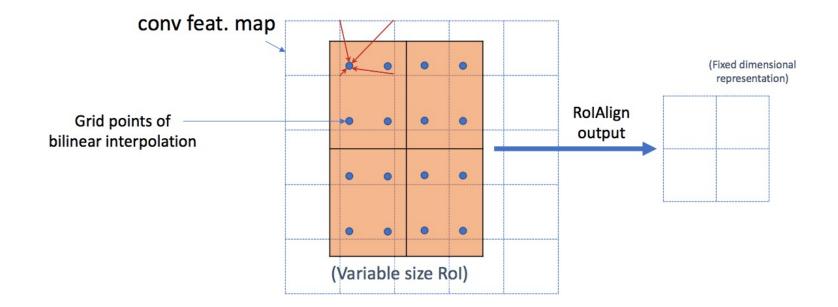
RolAlign

 Il mapping di una regione sulla feature map con RolPooling causa un riallineamento

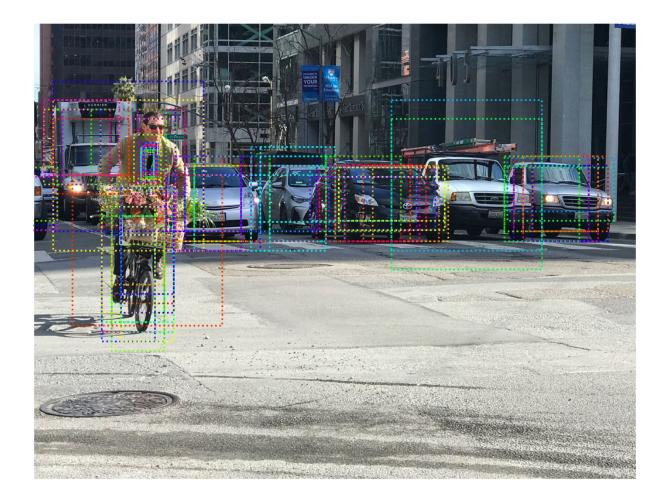


RolAlign

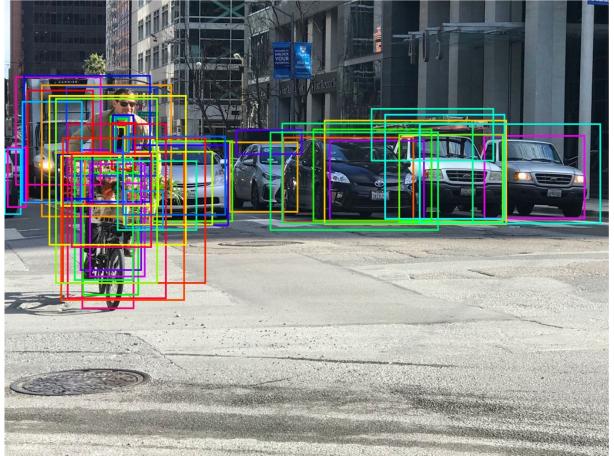
- Con RolAlign, ogni punto viene interpolato
 - Recupera precision nella ricostruzione della maschera



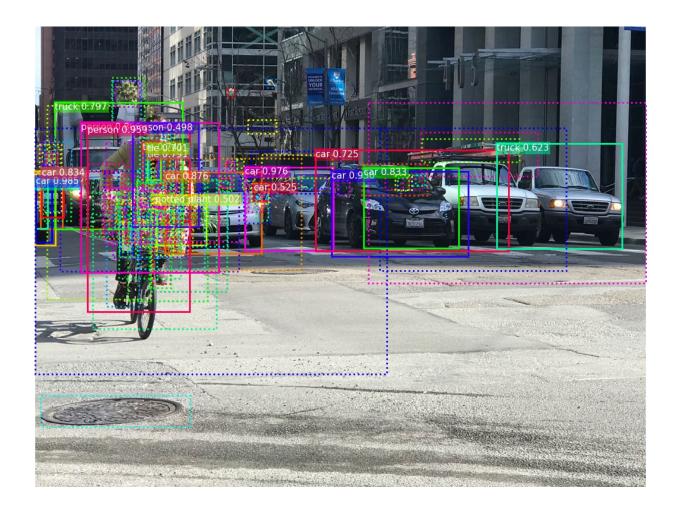
• Priors



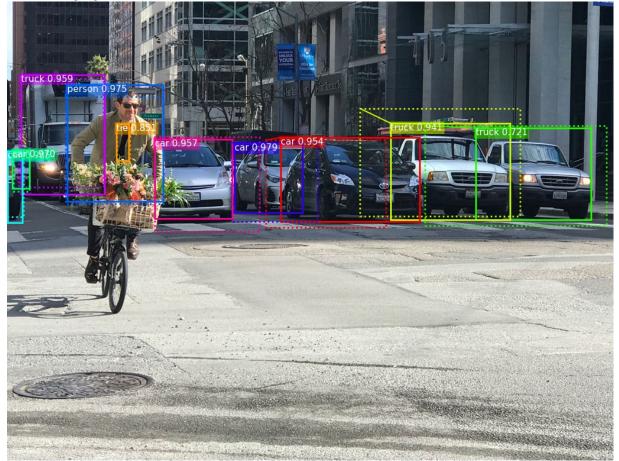
Region Proposals



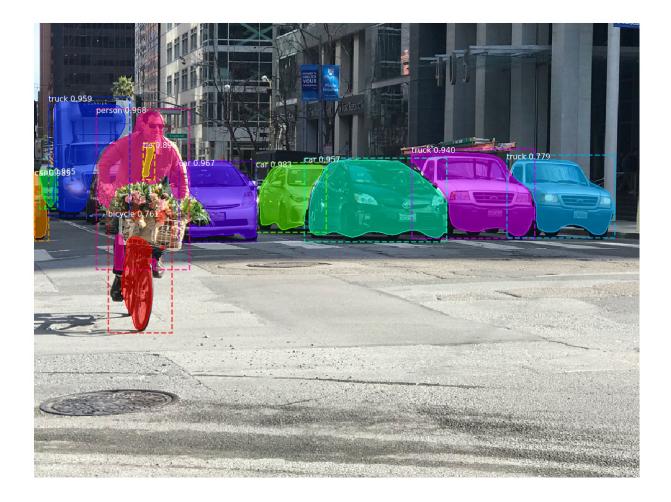
• Predizione



Non-Maximum Suppression

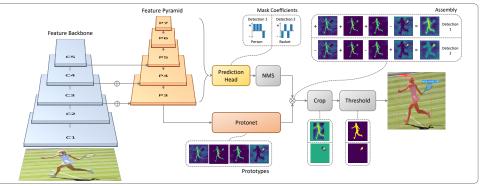


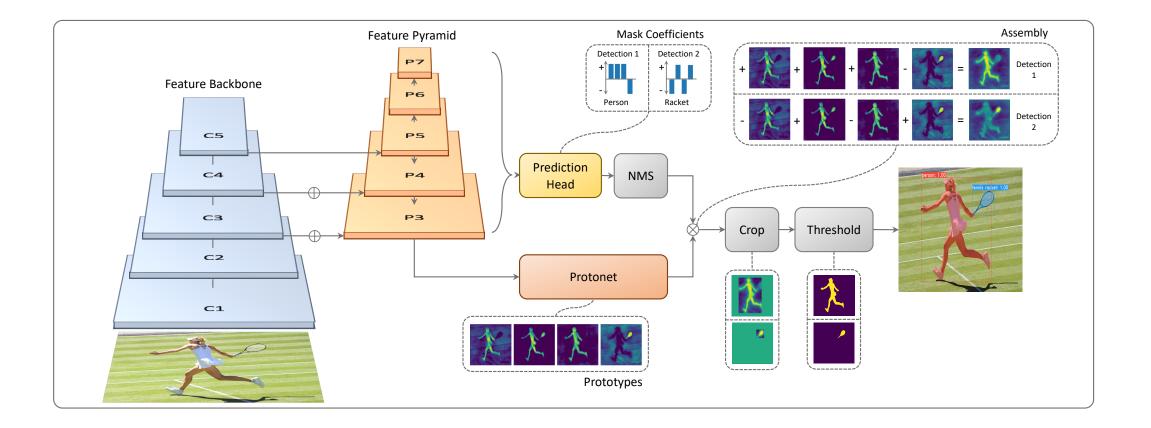
• Mask

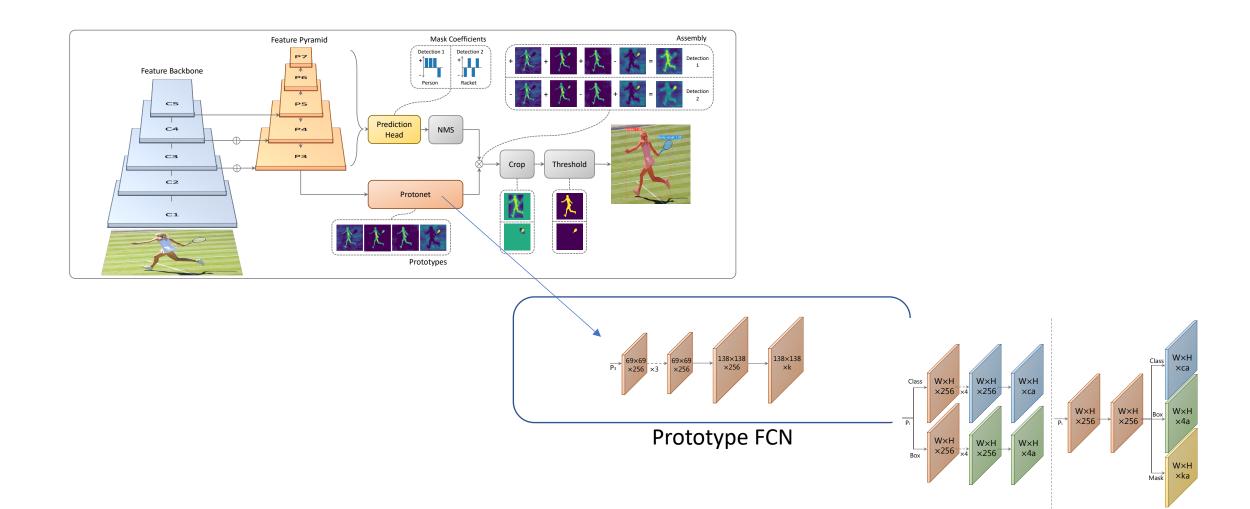


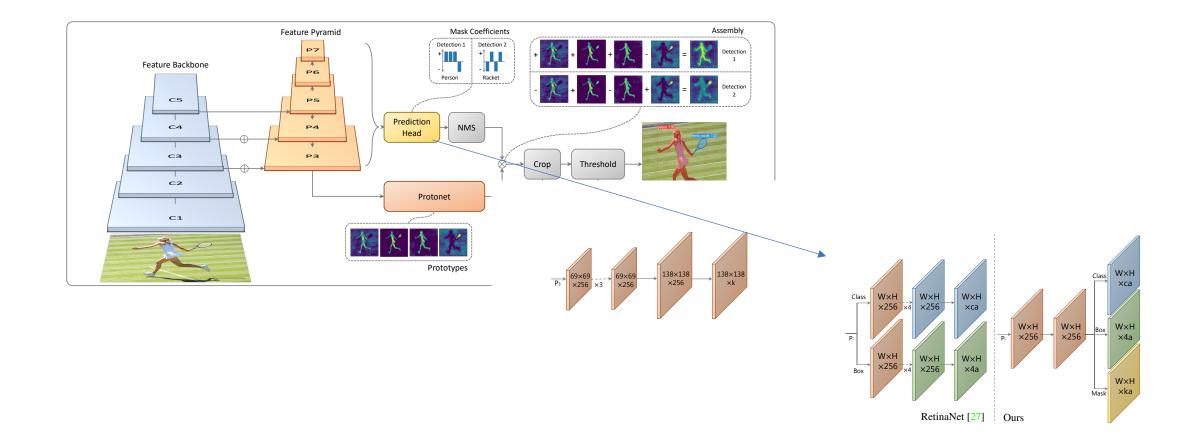
YOLACT: You Only Look At CoefficienTs

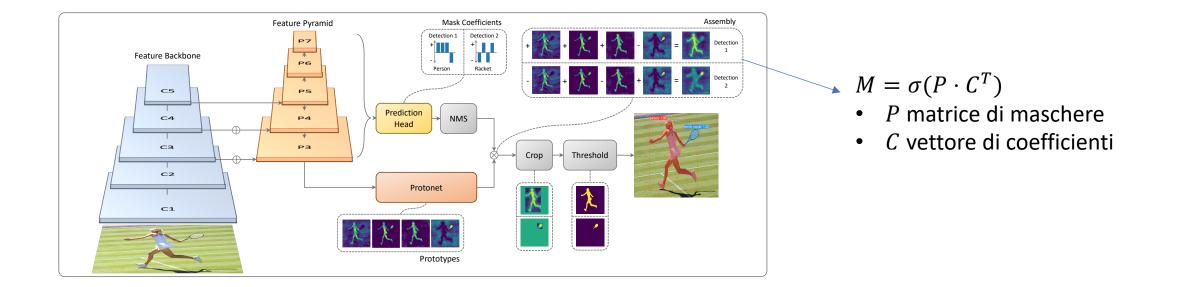
- Due task paralleli:
 - Generazione di un dizionario di non-local prototype masks sull'intera immagine
 - Basato su FCN
 - Predizione di un insieme di coefficienti di combinazione per ogni istanza
 - Aggiunge una componente all'object detection per predire un vettore di "mask coefficients"
 - Per ogni istanza selezionata nel NMS viene costruita una maschera combinando i risultati dei due task.





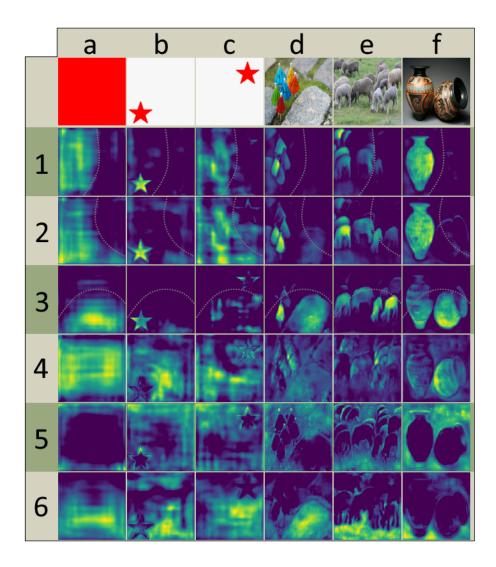






Caratteristiche

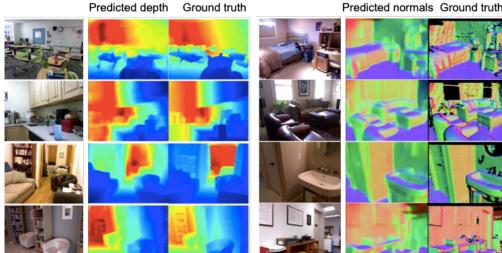
- Loss
 - $L_{cs} + L_{box} + L_{mask}$
 - $L_{mask} = BCE(M, M_{gt})$
- YOLACT impara a localizzare le istanze



• 29.8mAP, 33FPS

Riassunto

- Semantic vs. Instance segmentation
- Architetture complesse
- Base per learning task simili
 - Depth estimation
 - Surface normal estimation •
 - Colorization



Predicted normals Ground truth