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Abstract The outlying property detection problem (OPDP) is the problem of dis-
covering the properties distinguishing a given object, known in advance to be an
outlier in a database, from the other database objects. This problem has been
recently analyzed focusing on categorical attributes only. However, numerical at-
tributes are very relevant and widely used in databases. Therefore, in this paper,
we analyze the OPDP within a context where also numerical attributes are taken
into account, which represents a relevant case left open in the literature. As ma-
jor contributions, we present an efficient parameter-free algorithm to compute the
measure of object exceptionality we introduce, and propose a unified framework
for mining exceptional properties in the presence of both categorical and numerical
attributes.

1 Introduction

Anomaly and outlier detection is a prominent research topic in data mining that
focuses on approaches to discover unexpected elements in data populations. His-
torically, this research topic has been extensively investigated and several methods
have been proposed which find outliers based on either statistical modeling or spa-
tial proximity.

Despite the wide attention that anomaly detection has received in the litera-
ture, the related problem of anomaly justification happened to be largely underes-
timated. Typically, the result of an outlier detection algorithm over a population
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of objects is a score associated with each object. The score, either binary or nu-
merical, quantifies whether the related object significantly deviates from the rest
of the population. Scoring the objects enables comparison and ranking, and ulti-
mately the detection of the outlier objects; however, a score is a mere quantitative
information, which provides little or no insight about the structural reasons why
a given object is deemed as an outlier.

In order to cope with this problem, a possible approach would be to reformulate
outlier detection algorithms in ways to allow them to provide, besides the outlier
detection, also an interpretation of discovered outlierness in terms of discriminative
features [13,14]. A main disadvantage in this approach is the lack of generality, as
it would require to reconsider the several anomaly detection algorithms proposed
in the literature and to suitably reformulate them so that their output is not
only the outlier objects and related scores, but also their justification in terms of
discrimintative features.

Alternatively, one can formalize the problem as a more general, supervised
learning task: given an object already deemed as an outlier, the objective is that
of discovering the properties distinguishing such an outlier from the other database
objects. We call this the outlying property detection problem (OPDP) [5, 16, 32, 39].
Notice that, under this perspective, OPDP is different from the outlier detection
problem, as it allows also to focus on objects which, in principle, might not be
outliers at all, and we would simply like to single out those features distinguishing
the object under observation from the rest of the population. For example, [16]
describes the case of candidates who apply for a position, for whom we would like
to highlight weaknesses and strengths.

In the paper [5], the OPDP was studied and instantiated as follows: given a
dataset characterized by certain attributes and a single input object known in
advance to be anomalous in that dataset, the goal is to find a set of attributes
explaining why this object is actually anomalous or, in other terms, detect the un-
expected properties (if any) this anomalous object exhibits. The cited paper only
considers the case where attributes whose values justify the given object anomaly
are categorical. In several scenarios, though, the input dataset has numerical at-
tributes which may well account for the anomaly of a given input anomalous ob-
ject. The appropriate handling of such non-categorical attributes is a non-trivial
problem left open in [5] and it is precisely the problem we face in this paper.

To see why this problem is relevant, consider the case of patient data, char-
acterized by health parameters including several numerical features such as body
temperature, blood pressure measurements, or cholesterol level. If a history of pa-
tients is available, then it is relevant to single out that subset of those parameters
that mostly differentiate a sick patient from the healthy population. It is impor-
tant to highlight here that the abnormal individual, whose peculiar characteristics
we want to detect, is provided as an input to the problem, that is, this individ-
ual has been recognized as anomalous in advance by the virtue of some external
information, mean or procedure.

This paper generalizes the approach proposed in [5], by extending it to the case
of numerical attributes. Similar to the mentioned paper, the basic idea is to focus
on a property featured by a given input anomalous object, where this property
characterizes the outlierness of the object if there is a high imbalance between the
density of the value exhibited by the object under consideration and the densities
of the rest of the database values.
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To elucidate, given a dataset DB and a query object q deemed to be abnormal
(on the basis of available external knowledge), we claim that a property, that is
a set of attributes, witnesses the abnormality of the object q if the combination
of values q exhibits on these attributes is anomalously rare according to the joint
distribution of the same attributes in the whole data set.

This rarity, or unbalance, can be unveiled by analyzing the curve of the cumu-
lative distribution function (cdf ) associated with the occurrence probability of the
domain values. As explained in [5], relying on the cdf allows to correctly recognize
exceptional properties independently of the form of the underlying probability
density function (pdf ): the former compares the occurrence probabilities of the
domain values rather than directly comparing the domain values themselves.

When dealing with numerical attributes, a key aspect is being able to efficiently
estimate both the cdf and the related pdf, as well as to exploit them to measure
the associated imbalance. This is in fact the main contribution of the paper, which
can be hence summarized as follows.

– We refine the outlierness measure proposed in [5], which is able to quantify the
exceptionality of a property featured by the query object as a function of the
underlying cdf. We analyze the main characteristics of the proposed measure,
as well as its relationships and differences with related measures from the
literature.

– We then present a parameter-free algorithm for computing both pdf and cdf

for numerical attributes in time O(n log n), and show how the latter can be
employed in the detection of outlier explanations.

– This result, combined with the results of [5], enables a general methodology
for uniformly mining exceptional properties in the presence of both categorical
and numerical attributes. This way, a fully automated support is provided to
decode those properties determining the abnormality of the given object within
the reference data context.

The rest of the paper is organized as follows. Section 2 introduces our min-
ing task and discusses the relationships and differences with the outlier detection
mining task. Section 3 introduces the outlierness measure and the concept of expla-
nation. Section 4 describes the method for computing outlierness and determining
associated explanations. Section 5 discusses experimental results, including a real-
life case study. Finally, Section 6 presents conclusions.

2 Background and Related Work

To begin with, we next introduce some preliminary definitions and fix the notation.
An attribute a is an identifier with an associated domain, also denoted D(a). Let
A = a1, . . . , am be a set of m attributes1. Then, an object o on A is a tuple
o = 〈v1, . . . , vm〉 of m values, such that each vi is a value in the domain of ai. The
value vi associated with the attribute ai in o will be denoted by o[ai]. A database

DB on a set of attributes A is a multi-set (that is, duplicate elements are allowed)
of objects on A.

1 For the sake of simplicity and without loss of generality, we are assuming that an arbitrary
ordering of the attributes in A has been fixed.
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Fig. 1 Example of function Ga(·).

2.1 Outlier detection

Given a database DB over an attribute schema A, an outlier is an object o ∈ DB

that is “exceptional”, as it significantly differs from the rest of the data in DB .
The notion of outlierness has been extensively studied in recent literature and,
in this context, approaches to outlier detection can be classified as supervised,
semi-supervised, and unsupervised.

Supervised methods exploit the availability of a labeled data set, containing
observations already labeled as normal and abnormal, in order to build a model
of the normal class [11]. Since usually normal observations are the great major-
ity, these data sets are unbalanced and specific classification techniques must be
designed to deal with the presence of rare classes.

Semi-supervised methods typically assume that only normal examples are
given. The goal is to find a description of the data, that is a rule partitioning
the object space into an accepting region, containing the normal objects, and a re-
jecting region, containing all the other objects [37]. These methods are also called
one-class classifiers or domain description techniques, and they are related to nov-
elty detection since the domain description is used to identify objects significantly
deviating from the training examples.

Unsupervised methods search for outliers in an unlabelled data set by assigning
to each object a score which reflects its degree of abnormality. Scores are usually
computed by comparing each object with objects belonging to its neighborhood.
Following [1], we can classify the main unsupervised approaches to outlier detection
as probabilistic and statistical models, (e.g. [6,7,17,28,42]), where the outliers are
modeled as data points which poorly fit the underlying data distribution; linear
models, (e.g., [10,35,41]), where data points are embedded into a lower dimensional
subspace in terms of linear relationships and outliers are modeled as data points
exhibiting large residuals; proximity-based models (e.g. [4,9,23,25,27,34]), which
model outliers as data points isolated from the remaining data; models for high-
dimensional data (e.g. [2, 20, 22, 31, 33, 40]) where it is assumed that outliers are
characterized by unusual local behavior in lower dimensional subspaces.

2.2 Outlying property detection

All of the above mentioned methods focus on outlier identification and they do not
provide explanations of why an identified outlier is exceptional. Indeed, in a sense,
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the problem addressed here is to be considered orthogonal to the unsupervised
outlier detection task, as we are interested in unveiling the specific properties
that make an object o ∈ DB special w.r.t. a population in DB . To this purpose,
we assume that a set o1, . . . , ok of outliers is already given as input, and we are
interested in characterizing each oi. This can be accomplished by:

1. Detecting the subset Si ⊆ DB that represents a population, and such that
oi ∈ S. Intuitively, S represents a set of objects that share similar features.

2. Identifying a set {ai1 , . . . , aini } ∈ A (with ni ≤ m) where oi[ai1 , . . . , aini ] sub-
stantially differentiates oi from the other objects in Si.

Subspace outlier mining techniques [2, 31] could in principle be used to ex-
tract information about outlier properties. However, the originary task consid-
ered thereof is different from the task investigated here, since subspaces in those
approaches highlight the outlierness, whereas in our approach they represent a
homogenous subpopulation upon which to compare a given property. The ap-
proaches [13,14] consider the problem of detecting and interpreting local outliers,
i.e., objects which are outliers relative to a subpopulation of neighbors, rather than
the entire dataset. The outlierness is measured in a low-dimensional subspace ca-
pable of preserving the locality around the neighbors while at the same time max-
imizing the distance from the outlier candidate. Incidentally, the low-dimensional
transformation also provides the insights for the relevant features which contribute
most to the outlierness. Again, the problem tackled in these papers is different,
since our aim is to characterize the outlierness of an input object, rather than to
discover outliers in a population.

In [26], the authors focus on the identification of the intensional knowledge as-
sociated with distance-based outliers. First, they detect the distance-based outliers
in the full attribute space and then, for each outlier, they search for the subspaces
that better explain why it is exceptional. The exceptional object is not provided in
input, but it belongs to the set of distance-based outliers of the dataset in the full
attribute space. Furthermore, this setting models outliers which are exceptional
with respect to the whole population, but it does not capture objects which are
exceptional only with respect to homogeneous subpopulations.

Since the problem specification requires outliers to be given in the first place, it
is in principle possible to divide the data into outliers and normal objects. Based
on this partitioning, it would be possible to use contrast set mining techniques
(like, e.g., [8]), in order to explain those outliers. However, this would result in
high class imbalance, where the few instances in the rare class would trigger poor
quality contrasts. Solutions to the rare case problem have been proposed, based on
the enrichment of the originary dataset. In particular, [32] proposes an approach
which follows this strategy. The authors assume that outliers are given as input,
and their objective is to find an explanatory subspace, that is a subspace of the
original numerical attribute space where the outlier shows the greatest deviation
from the other points. The basic idea of the algorithm is to encode the notion of
outlierness as separability: given an object o deemed as an outlier, one can devise
an artificial set of points x oversampled from a gaussian distribution centered in o.
Then, an outlierness of o can be measured in terms of the accuracy in separating
the artificial points x from the other points in DB . Having encoded the outlierness
as a classification problem, the explanatory subspace can hence be reduced to
feature selection relative to such a classification problem.
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In [16], the authors propose a method based on ranking and searching. In short,
given a subspace, the authors rank the query object within the subspace according
to a density-based outlierness measure. Then explanations are provided as those
minimal subspaces for which the rank in minimum. Since the number of possible
subspaces is exponential in the dimensionality of the data, the authors propose a
heuristic to reduce the complexity of the search.

The techniques [32] and [16] can be considered paradigmatic of two different
categories of approaches: those based on feature selection and those based on
score and search. The authors in [39] discuss the connection between these two
approaches and propose a hybrid solution. As for the feature selection phase, they
aim at determinining the subspaces where a kernel density estimate of the data
at the query point is minimized, by formulating a quadratic integer programming
problem. Since solving the associated objective function is NP-hard, they relaxed
it to a problem in the real domain that provides a ranking of the features. Having
obtained the feature ranking they perform a score-and-search on the top-ranked
features.

Besides other technical details, there are some substantial differences between
the approaches [16, 32, 39] and the approach devised in this paper. First of all,
it is assumed that outlierness is relative to the whole population. Their method
returns individual subspaces where the query object is mostly outlying comparing
to the other subspaces. By contrast, we are interested in modeling the scenario
where outlierness can be expressed relative to a homogeneous subpopulation. That,
is, we are interested in finding contextual rule-based explanations relative to a
subpopulation of homogeneous objects. In this respect, the meaning of the two
types of explanations is fundamentally different. Formally, with reference to the
problem statement above, these methods assume in condition 1 that Si = DB and
they only focus on condition 2.

To see why this can be problematic, onsider the dataset in Figure 2a, showing
a skill-age relationship. According to the data, skill is directly proportional to
age, with the highest level of skill reached on the mean at about 35 years of age.
The red point on the left upper corner is a clear outlier, since it represents a
young individual (eighteen years old) exhibiting a high skill score. In this scenario,
the only way to characterize the outlierness of this individual is to look at the
full feature space, since neither the age nor the skill subspace alone are able to
explain abnormality. Hence, a subspace selection method will return the whole set
of attributes, a not compeletely satisfactory explanation, since a deeper analysis
should disclose the fact that, within the subpopulation of high skilled people,
there’s an individual which is characterized by a young age.

Furthermore, relying on separability can be misleading, as the accuracy of the
method can be reduced in those subspaces where several points exhibit low density
(and hence they do not properly characterize the exceptionality of the outlier).
Consider the situation depicted in 2b. In this situation, the individual denoted
by the red point can be clearly separated by all other points (the separation is
the black line). Yet, the subspace Height/Skill does not properly characterize its
outlierness, since the data is sparse in this subspace and all points exhibit a similar
(low) density. This is further exhacerbated in situations where separability can be
expressed in a non-linear fashion, as shown in 2c. Here, we can clearly see how
the contour of the red point would allow to produce artificial point that enhance
the separation within the Height/Skill subspace. Still, the density of the red point
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Fig. 2 Outlier explanation in problematic situations. (a) Although the whole Age/Skill feature
space is suitable for the outlier (located left upper corner), the explanation should characterize
it as the only individual exhibiting high skill within the subpopulation of individuals with young
age. (b-c) The candidate outlier is clearly separable from all other individuals (by means of a
line or a circle). However, the feature subspace does not properly characterize the outlier, as
all individuals exhibit low density within the given subspace.

is not substantially different than those of the other points, and hence expressing
exceptionality through the subspace is clearly inappropriate.

We claim that a more robust solution can be devised, in the style of [5]. In that
paper, each subset of attributes is intended to represent a property of individuals.
A property witnesses the abnormality of an object if the combination of values the
object assumes on these attributes is very infrequent with respect to the overall
distribution of the attribute values in the dataset, and this is measured my means
of the so called outlierness score. This latter is based on measuring how much the
frequency of the combination of values assumed by that object on those attributes
is rare as compared to the frequencies associated with the combinations of values
assumed on the same attributes by the other objects in the population.

A major problem with the outlierness score presented in [5] is that it was specif-
ically designed and shown effective for categorical attributes. Hence the question
arises on how to adapt that idea to a more general setting with both categorical
and numerical attributes. Discretizing numerical attributes and applying the above
technique to the discretized attributes makes more difficult to discover meaningful
knowledge than working directly on the numerical data, for several reasons. First
of all, the result of the analysis will strongly depend on the kind of discretiza-
tion. This drawback is further exacerbated by the peculiarities of the outlierness
measure, which assigns higher scores to very unbalanced distributions, and by
contrast provides low scores to uniform frequency distributions. In this sense, the
discretization process should be supervised by the outlierness score, in order to
detect in the first place the bins capable of magnifying the score itself.

The notion of outlierness introduced here shares a common rationale with that
already proposed in [5], but aims at overcoming the aforementioned drawbacks in
presence of numerical data, as accounted for in the following sections.

Before concluding the section, we point out that there is a major difference
between our measure and all of those employed in the techniques above discussed.
Indeed, methods based on traditional outlier scores or on density estimation take
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Fig. 3 Example of outlierness measure.

into account only the distribution of the data in the neighborhood of the outlier,
while methods based on the concept of separability are not able to discriminate the
amount of the deviation of the outlier from the rest of the population. Conversely,
our measure is able to consider the data distribution in its entirety and, as such, it
is specifically tailored for detecting outlying properties. We will substantiate the
above claim in the following section.

3 Outliers and Explanations

In the following, we shall characterize populations in a “rule-based” fashion, by
denoting the subset of DB that embodies them.

Formally, a condition on A is an expression of the form a ∈ [l, u], where (i)
a ∈ A, (ii) l, u ∈ D(a), and (iii) l ≤ u, if a is numeric, and l = u, if a is categorical.
If l = u, the interval I = [l, u] is sometimes abbreviated as u and the condition as
a ∈ I or a = I.

Let c be a condition a ∈ [l, u] on A. An object o of DB satisfies the condition
c, if and only if o[a] equals l, if a is categorical, or l ≤ o[a] ≤ u, if a is numerical.
Moreover, o satisfies a set of conditions C if and only if o satisfies each condition
c ∈ C. Given a set C of conditions on A. The selection DBC of the database DB

w.r.t. C is the database consisting of the objects o ∈ DB satisfying C.
Next, the definition of outlierness (Section 3) and of explanation (Section 3.3)

are introduced.

3.1 Outlierness

The outlierness is a measure used to quantify the exceptionality of a property. The
intuition underlying this measure is that an attribute makes an object exceptional
if the relative likelihood of the value assumed by that object on the attribute is rare
if compared to the relative likelihood associated with the other values assumed on
the same attribute by the other objects of the database.

Let a be an attribute of A. We assume that a random variable Xa is associated
with the attribute a, which models the domain of a. Then, with fa(x) we denote
the pdf associated with Xa. The pdf provides a first indication on the outlierness
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degree of a given value x, as usually we would expect low pdf values associated to
outliers. However, the sole pdf value is not enough. A given pdf value represents
a hypothetical “frequency” for that value in the sample under consideration. How
typical is that “frequency” provides a better insight on the outlierness degree:
a low pdf value in a population exhibiting low values only is not an indicator
of an outlier, whereas an anomalous low pdf value in a population of significantly
higher values denotes that the value under observation represents an outlier. Thus,
analyzing how the values distribute on a pdf is the key for measuring the degree
of outlierness.

Let Xf
a denote the random variable whose pdf represents the relative likelihood

for the pdf fa to assume a certain value. The cdf Ga of Xf
a is:

Ga(ϕ) = Pr(Xf
a ≤ ϕ) =

∫ ϕ

0

Pr(Xf
a = v) dv. (1)

Example 1 Assume that the height of the individuals of a population is normally
distributed with mean µ = 170cm and standard deviation σ = 7.5cm. Then, let a be
the attribute representing the height, Xa is a random variable following the same
distribution of the domain and fa(x) is the associated pdf, reported in the first
graph of fig. 1. The pdf fa(x) assumes values in the domain [0, fa(µ) = 0.0532] ⊂ R.

Consider, now, the random variable Xf
a . The cdf Ga(v) associated with Xf

a denotes
the probability for fa to assume value less than or equal to v. Then, Ga(v) = 0 for
each v ≤ 0 and Ga(v) = 1 for each v ≥ 0.0532. To compute the value of Ga(v) for a
generic v, the integral reported in Equation (1) has to be evaluated. The resulting
function is reported in the second graph of fig. 1.

The Outlying Property Factor OPFa(o,DB) (or, simply, OPFa(o)) of the at-
tribute a in o w.r.t. DB is defined as follows:

OPFa(o) = Ω

(∫ sup(fa)

fa(o[a])

(1−Ga(f)) df −
∫ fa(o[a])

0

Ga(f) df

)
. (2)

Here, Ω denotes a function from R to [0, 1] such that (i) Ω(x) = 0 for x < 0,
and (ii) Ω(x) = Ω+(x) for x ≥ 0, where Ω+ is any monotone increasing function
mapping R+

0 to [0, 1]. In the following we employ the mapping:

Ω+(x) =
1− exp(−x)

1 + exp(−x)
.

The first integral measures the area above the cdf Ga(f) for f > fa(o[a]), while the
second integral measures the area below the cdf Ga for f ≤ fa(o[a]). Intuitively, the
larger the first term, the larger the degree of unbalanceness between the occurrence
probability of o[a] and that of the values that are more probable than o[a]. As for
the second term, the smaller it is, the more likely the value o[a] to be rare. Thus,
the outlierness value ranges within [0, 1] and, in particular, it is close to zero for
usual properties. By contrast, values closer to one denote exceptional properties.

Example 2 Consider fig. 3, reporting on the left a Gaussian distribution fa(x) (with
mean µ = 0 and standard deviation σ = 0.1). Consider the values v1 = −1 and
v2 = −0.12, for which fa(v1) ≈ 0 and fa(v2) ≈ 2 hold. Assume that an outlier
object o exhibits value v1 on a. The associated outlierness OPFa(o) corresponds to
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the whole area (filled with horizontal lines) above the cdf curve, that is Ω(3.06) =
0.91. For an object o′ exhibiting value v2 on a, instead, the associated outlierness
corresponds to the difference between two areas (filled with vertical lines) detected
at frequency 2, that is Ω(1.17− 0.10) = 0.49.

For the sake of clarity, in the above example we considered a pdf having a
simple form. However, we wish to point out that our measure is able to correctly
recognize exceptional properties irrespectively of the form of the underlying pdf,
since it compares the occurrence probabilities of the domain values rather than
directly comparing the original domain values.

3.2 Properties and comparison with outlier detection scores

We notice that if the argument of the function Ω approached to +∞ it would be
mapped to one. However, for any bounded probability density function f next we
show that the argument of Ω is finite.

Theorem 1 The argument of Ω in Equation (2) is upper (lower, resp.) bounded by

sup(fa) (− sup(fa), resp.).

Proof The argument of Ω in Equation (2) can be rewritten as:∫ sup(fa)

fa(o[a])

(1−Ga(f)) df −
∫ fa(o[a])

0

Ga(f) df =

=

∫ sup(fa)

fa(o[a])

df −
∫ sup(fa)

0

Ga(f) df =

= sup(fa)− fa(o[a])−
∫ sup(fa)

0

Ga(f) df.

Since, Ga(f) ∈ [0, 1] and fa(o[a]) ∈ [0, sup(fa)], the upper bound can be obtained
by considering fa(o[a]) = 0 and Ga(f) = 0:

sup(fa)− fa(o[a])−
∫ sup(fa)

0

Ga(f) df ≤ sup(fa),

while the lower bound can be obtained by considering fa(o[a]) = sup(fa) and
Ga(f) = 1:

sup(fa)− fa(o[a])−
∫ sup(fa)

0

Ga(f) df ≥ − sup(fa).

We point out that the OPF measure is carefully tailored to the task at hand,
since it is able to compare the specificity of the value assumed by the outlier on
the property under analysis with the specificity of all the other values.

This is due to the fact that OPF considers the data distribution in its entirety
as opposed to the majority of the outlier scores designed within the data mining
literature that approach the problem by taking into account only the distribution
of the data in the neighborhood of the object. Indeed, traditional outlier detection
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Fig. 4 Example density plots: each curve is associated with a different truncated Gaussian
distribution with its own µ and σ parameter. The red circle (located in 1) is an outlier point
sampled from a uniform distribution separated from the truncated Gaussians.

measures are designed to rank objects according to their exceptionality with re-
spect to a given set of properties, while our measure is designed to rank properties
according to their exceptionality with respect to a given object.

Notice that the above characteristics is shared both by the so called “global”
methods (such as the distance-based ones) and by those known as “local” ones
(such as the density-based LOF, MDEF, and others). Indeed, despite their names,
the difference between those techniques relies in the fact that to construct the
outlier score the former consider only the neighborhood of the object, while the
latter take also advantage of the neighborhood of its neighbors. Thus, in order to
declare points either as inliers or outliers both rely uniquely on the distribution of
the objects within their neighborhood.

One can argue that the ranking of the outlier scores accomplished by the above
methods takes anyway into account the whole distribution of the data, but we no-
tice this is not really the case since traditional outlier detection techniques usually
assign the same score to outliers immersed in very different data distributions.
Consequently, they are not suitable to rank properties with respect to their excep-
tionality To illustrate this behavior, consider the distributions reported in Figure
4. We assume that each curve is associated with a different property and is built
as follows: 1% of the data (call it N 1) is uniformly distributed in the range [0, 2],
while the remainder 99% of the data (call it N 2) is distributed according to a trun-
cated normal distribution with mean µ and standard deviation σ having support
[µ − 4σ, µ + 4σ]. The standard deviation σ is set to (µ − 2)/4, so that N 2 ranges
from 2 to 2+8σ. As for µ, we consider six different values: 1.5, 2, 3.5, 6, 11 and 25.5.

For each data distribution, we generated a dataset of 100,000 objects and con-
sidered as outlier out an object whose value approaches 1, namely an object laying
in the middle of N 1. Then, according to the data distribution, the neighborhood
of the oulier is not affected by N 2.

The following table reports, for the object out, its outlier scores according to
the proposed measure and two known ones a global (KNN [4]) and a local (LOF [9])
score.
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µ OPF KNN LOF

1 0.798 0.350 1.007
2 0.493 0.350 1.007
5 0.203 0.350 1.007
10 0.094 0.350 1.007
20 0.038 0.350 1.007
50 0.009 0.350 1.007

As reported in table, the values of OPF are strongly affected by the distribution
of the whole population and, in particular, the larger is the variance of N 2, the
more the values of N 1 and N 2 tend to be equipossible and, then, the smaller
become the outlierness of out. Conversely, both KNN and LOF consider solely
the neighborhood of out. The resulting outlier score associated with out does not
depend on changing N 2. As a consequence, using such methods to rank properties
appears inappropriate.

3.3 Explanations

Explanations are used in our framework to provide a justification of the anomalous
value characterizing an outlier. Intuitively, an attribute a ∈ A of o that behaves
normally with respect to the database as a whole, may be unexpected when the at-
tention is restricted to a portion of the database. We shall again call this anomalous
attribute a property of o. Relevant subsets of the database upon which to investi-
gate outlierness can be hence obtained by selecting the database objects satisfying
a condition, and such that a property is exceptional for o w.r.t. that data subset.

A condition c (set of conditions C, resp.) is, intuitively, an explanation of the
property a if o ∈ DBc (o ∈ DBC , resp.) and a is exceptional for o w.r.t. DBc (DBC ,
resp.) (i.e., the value OPFa(o,DBC) is close to 1). Finally, the outlierness of the
set property a in o w.r.t. DB with explanation C is defined as OPFC

a (o,DB) =
OPFa(o,DBC).

It is worth noticing that, according to the relative size of DBC , not all the ex-
planations should be considered equally relevant. In the following, we concentrate

on σ-explanations, i.e., conditions C such that |DBC |
DB ≥ σ, where σ ∈ [0, 1] is a

user-defined parameter.
Thus, given an object o of a database DB on a set of attributes A and pa-

rameter σθ ∈ [0, 1] and kn > 0, the problem of interest here is: Find the kn pairs

(E, p), such that E ⊆ A, p ∈ A \ E, and E is a σθ-explanation, scoring the highest

values of OPFE
p (o,DB). Such an attribute p is also called an outlying property (with

explanation E).

4 Detecting Outlying Properties

In order to detect outlying properties and their explanations, we need to solve two
basic problems: (1) computing the outlierness of a certain multiset of values and
(2) determining the conditions to be employed to form explanations. The strategies
we have designed to solve these two problems exploit a common framework, which
is based on Kernel Density Estimation (KDE). Specifically, given a numerical
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Function ComputePDF (x, h,w)

Input: x = x1, . . . , xn : a set of values
h : a bandwidth
w = w1, . . . , wn : a set of weights
Output: f̂ = f̂1, . . . , f̂n : the density estimate at points x

1 Sort the sequence L = xl1, . . . , x
l
n, according to the values {xi − wih

2
: 1 ≤ i ≤ n}, and

record the associated indexes l1, . . . , ln;

2 Sort the sequence U = xu1 , . . . , x
u
n, according to the values {xi + wih

2
: 1 ≤ i ≤ n}, and

record the associated indexes u1, . . . , un;
3 for i = 1 to n do
4 Find the last element xll∗ of L not greater than xi;

5 Find the first element xuu∗ of U not smaller than xi;
6 Set J to {l1, l2, . . . , l∗} ∩ {u∗, . . . , un−1, un};
7 Set f̂i to 1

nh

∑
j∈J

1
wj

;

8 return (f̂1, . . . , f̂n);

Function EstimatePDF (x)

Input: x = x1, . . . , xn
Output: f̂ = f̂1, . . . , f̂n

1 Set h to 1.06 · std(x) · n−1/5 // Rule of thumb
2 Set β to (1, . . . , 1);
3 for t = 1 to 5 do

4 f̂ = ComputePDF(x, h,w);

5 fm = (
∏n
i=1 f̂i)

1/n;
6 for i = 1 to n do

7 Set βi to (fm/f̂i)
1/2;

8 return (f̂1, . . . , f̂n);

attribute a, in order to estimate the pdf fa we exploit generalized kernel density

estimation [24], according to which the estimated density at point x ∈ D(a) is

f̂m,w,b(x) =

(
k∑
i=1

wi

)−1 k∑
i=1

wi
bi
K

(
x−mi

bi

)
, (3)

Here, K is a kernel function, and m = (m1, . . . ,mk), w = (w1, . . . , wk) and
b = (b1, . . . , bk) are k-dimensional vectors denoting the kernel location, weight, and
bandwidth, respectively. The above mentioned strategies are detailed next, together
with the method for mining outlying properties.

4.1 Outlierness computation.

In order to compute the outlierness, we specialize formula in Equation (3) by
setting m = (x1, . . . , xn) and w = 1, thus obtaining

f̂a(x) =
1

n

n∑
i=1

1

bi
K

(
x−mi

bi

)
, (4)



14 Fabrizio Angiulli et al.

Function ComputeOutlierness(o, a,DB)

Input: o : an outlier object
a : a dataset attribute
DB : a dataset
Output: out : the outlierness of the attribute a in o w.r.t. DB

1 Set x to DB [a];

2 Set f̂ to EstimatePDF(x);

3 Determine the sequence f̃1, . . . , f̃n, by sorting the elements of the set {f̂i : 1 ≤ i ≤ n};
4 for i = 1 to n do

5 Set Gi to |{fj ≤ f̃i : 1 ≤ j ≤ n}|/n = i/n;

6 Let i∗ be such that f̃i∗ is the value in f̂ associated with o[a];
7 Set out to 0;
8 for i = i∗ + 1 to n do

9 Set out = out+ (f̃i − f̃i−1)(2−Gi −Gi−1)/2;

10 for i = 2 to i∗ do

11 Set out = out− (f̃i − f̃i−1)(Gi +Gi−1)/2;

12 return Ω(out);

where x1, . . . , xn are the values in {y[a] : y ∈ DB}, each term bi is equal to hβi,
with h a global bandwidth and

∏n
i=1 βi = 1. The rationale underlying this choice

is that we want that each value at hand (m = x) contributes in equal manner
(w = 1) to the estimation of the underlying pdf. Moreover, we employ the Parzen

window kernel function, that is K(x) = 1, for |x| ≤ 1/2, and K(x) = 0 otherwise,
since this kernel represents a good trade-off between simplicity of computation and
accuracy. Indeed, we are able to provide a parameter-free function that computes
an accurate estimate f̂a of the pdf fa in time O(n log n). We also notice that, since
the outlierness depends on the cdf of the pdf values, this greatly mitigates the
impact of the non-smoothness of the estimate of the pdf through Parzen windows,
other than making the measure robust w.r.t. deviations of the estimate from the
real distribution.

Let x denote the vector (x1, . . . , xn), and β denote the vector (β1, . . . , βn). The
function ComputePDF computes the vector f̂ , whose generic element f̂i represents
the value of density f̂a(xi) at point xi, as computed by exploiting Equation (4).
In particular, when the Parzen window is employed, the computation of f̂a(x)
reduces to determine the value 1

nh

∑
j∈J

1
βj

, where J is the set containing the

indexes j of the elements xj of x such that
∣∣∣x−xjβjh

∣∣∣ ≤ 1
2 or, in other words, such

that xj −
βjh
2 ≤ x and x ≤ xj +

βjh
2 . The set J associated with a specific value

x, can be determined by performing two binary searches and one intersection, as
shown in the pseudo-code. Since this computation is executed n times, this leads
to an overall cost O(n log n).

The function EstimatePDF is in charge of computing the right values for the
parameters h and β. It exploits the algorithm for calculating a variable bandwidth
KDE [36]. The method starts with a density estimate by using a fixed-bandwidth
kernel, with h determined by means of a rule of thumb [38] (see Function Esti-

matePDF , line 1) and β = 1. Then, the bandwidths βi are updated to a value
which is inversely related to the density estimate. It was observed [19] that itera-
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tions produce little changes: hence, we execute it a fixed number of times in order
to have a computational cost of O(n log n).

The function ComputeOutlierness exploits EstimatePDF to compute the numer-
ical estimate f̂ of the pdf fa. Then, it computes the distribution function Ga (see
Equation (1)) by setting Gi to |{fj ≤ f̃i : 1 ≤ j ≤ n}|/n, that is i/n, and, finally,
the outlierness value out (see Equation (2)), by performing a numerical integra-
tion, which costs O(n). Thus, the dominating operations of ComputeOutlierness are
the call to the function EstimatePDF and the sorting of the elements of f̂ , with a
resulting overall cost O(n log n).

4.2 Condition building

Proper conditions are the basic building blocks for the explanations. To single them
out, our strategy consists in finding, for each attribute a, the “natural” interval
Ia including o[a], namely, an interval of homogeneous values on a. The rationale
underlying this choice is to avoid the risk of overfitting: a guided search for a proper
condition can easily yield an ad-hoc fragment of the data where the outlierness
measure is “artificially” maximized. On the other side, proper conditions which
encode the genuine intervals for each attribute domain can have a relevant impact
on the detection of significant outlier explanations.

The search for feasible intervals still relies on adopting the kernel density family
introduced above. In practice, for each attribute a, we estimate fa by means of
f̂m,w,b. This latter function can be interpreted as a mixture density over the
parameter sets m,w,b. Also, the adoption of a Gaussian kernel

K(x) = φ(x) = (2π)−1/2 exp(x2/2)

allows to estimate the parameter set via a standard EM-based maximum likelihood
approach. In particular, the approach will partition the values {y[a] : y ∈ DB} into

a set of j∗ disjoint intervals I1a , . . . , I
j∗

a and, then, the interval Ijoa which o[a] belongs
to will be selected as the proper condition Ia for the attribute a.

The resulting iterative scheme draws from [24], and updates locations and
bandwidths according to the following equations:

mj =
1∑
i γij

n∑
i=1

xiγij , (5)

b2j =
1∑
i γij

n∑
i=1

γij(xi −mj)
2. (6)

Here, γij represents the mixed probability that value i is associated with the j-th
interval and, in its turn, is computed at each iteration as:

γij =
wjφbj (xi −mj)

f̂m,w,b(xi)
(7)

We also adapt the annihilation procedure proposed in [18], which allows for an
automatic estimation of the optimal number j∗ of intervals, as well as to ignore
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Function ComputeInterval(o, a,DB)

Input: o : an outlier object
a : a dataset attribute
DB : a dataset
Output: out : the natural interval of the attribute a in o w.r.t. DB

1 set x to DB [a];

2 set j∗ to
√
n;

3 initialize γij randomly, ∀i ∈ [1..n] and ∀j ∈ [1..j∗];
4 repeat
5 for j = 1 to j∗ do
6 update wj // Equation (8)
7 if wj > 0 then
8 update mj , bj // Equation (6)
9 update γij , ∀i ∈ [1..n] // Equation (7)

10 else
11 eliminate the jth component;
12 set j∗ to j∗ − 1;

13 until increase in likelihood is negligible;

14 assign xi to the interval I
ji
a s.t. ji = arg maxj γij ;

15 let Ijoa be the interval which o[a] belongs to;

16 set la to mini{xi | xi ∈ Ijoa };
17 set ua to maxi{xi | xi ∈ Ijoa };
18 return [la, ua]

initialization issues. The estimation of the parameters is accomplished iteratively
for each interval Ija, where each weight is computed as

wj =
max{0,

∑n
i=1 γij −

n
2 }∑j∗

j=1 max{0,
∑n
i=1 γij −

n
2 }

(8)

Whenever a weight equals to 0, the contribution of its component annihilates in
the density estimation. As a consequence, the iterative procedure can start with a
high initial value j∗, and the initialization of each mixed probability can be done
randomly without compromising the final result. Function ComputeInterval reports
the overall scheme. We also call the interval reported by this function the natural

interval of a in o w.r.t. DB .

4.3 The mining method

Given a dataset DB on the set of attributes A = {a1, . . . , am}, an outlier object
o, parameters σθ ∈ [0, 1], a positive integer kn (denoting the desired number of
outlying pairs), and positive integer kθ ≤ m (representing an upper bound to
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Algorithm 1: OutlyingPropertyDetector(o,DB)

Input: o : an outlier object
DB : a dataset

Output: OP : the set of minimal explanation-property pairs of o in DB
1 set Ωθ to 0 /* outlierness threshold */

// First phase
2 foreach attribute ai ∈ A do
3 Compute interval Iai ;

// Second phase
4 foreach attribute p ∈ A do
5 set L1 to {ci ≡ ai ∈ Iai s.t. |DBci |/|DB | ≥ σθ};
6 set j to 2;
7 while j ≤ kθ and Lj−1 6= ∅ do
8 set Ej to {C ∪ {c} s.t. C ∈ Lj−1 and c ∈

⋃
Lj−1 and c 6∈ C};

9 foreach C ∈ Ej do
10 if |DBC |/|DB| ≥ σθ then
11 if outCp (o,DB) > Ωθ then
12 if |OP| = kn then
13 let (Cmin, pmin) be minpair(OP);
14 set OP to OP \ {(Cmin, pmin)};
15 set OP to OP ∪ {(C, p)};
16 if |OP| = kn then
17 let (Cmin, pmin) be minpair(OP);

18 set Ωθ to OPF
Cmin
pmin (o,DB);

19 else
20 set Lj to Lj ∪ {C};

21 set j to j + 1;

22 return OP

the size of an acceptable explanation 2), the algorithm Outlying-Property Detector

computes the top kn pairs (E, p), with |E| ≤ kθ and p ∈ A \ E, such that:

1. E is a σθ-explanation, and
2. (E, p) is minimal, that is, there is no pair (E′, p) with E′ ⊂ E for which both

points 1 and 2 hold.

The algorithm consists of two main phases. During the first phase, for each
attribute ai ∈ A, the interval Iai and, hence, the associated condition ai ∈ Iai , is
determined by means of the procedure described in Section 4.2. Given the set of
conditions S = {a1 ∈ Ia1 , . . . , am ∈ Iam} on the m attributes in A, the second phase
exploits an apriori-like strategy [3] in order to search for the pairs (E, p) with E ⊆ S
satisfying the above mentioned conditions. The computed pairs are accumulated
in the set OP, which represents the output of the algorithm. In particular, we
should store in OP the top kn pairs. So the algorithm starts by setting Ωθ to 0
and, then, all the pairs scoring an outlierness greater than 0 are stored in OP as
long as the size of OP reaches kn. When kn pairs are in OP, the algorithm exploits

2 We point out that kθ has a twofold function: it allows the analyst to control the complexity
of the mined patterns and it speeds up the algorithm execution. However, by setting kθ to m
the algorithm is able to detect explanations of any length, while pruning the search space and
avoiding overfitting by means of the threshold support.
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the function minpair(OP) in order to find the pair belonging to OP scoring the
lowest value of outlierness, sets Ωθ to the outlierness of such a pair and inserts a
new pair in OP if and only if its outlierness is greater than Ωθ. In such a case the
pair belonging to OP scoring the lowest value of outlierness is removed from OP.

As for the cost of the above procedure, the first step basically depends on the
rate of convergence of the EM algorithm. By assuming that the number k of kernel
locations is initially set to

√
n, the basic iteration is O(n3/2). Notice, however, that

interval components annihilate early in the first iterations, so that we can assume
that the number of intervals k∗ is bounded to a constant value. Thus, the overall
complexity of the first step is linear in the size of the data and the number of
iterations. Clearly, the rate of convergence of the algorithm is also of practical
interest, and it is usually faster than the quadratic convergence typically available
with Newton-type methods. [15] shows that the rate of convergence of the EM
algorithm is linear.

As far as the second step is concerned, computing the outlierness costs O(n log n).
Since these two sub-steps are executed at most O(mkθ ) times, the overall cost of
step 2 is O(mkθn log n). However, notice that the apriori-like strategy greatly re-
duces the size of portion of the search space to be explored, so that the total
number of conditions explored in practice is much smaller.

5 Experimental results

In this section, experimental results conducted by employing the proposed tech-
nique are described.

Experiments are organized as follows. In Section 5.1 we evaluate our approach
on some datasets from the UCI Machine Learning repository with the aim of
showing its effectiveness and of studying its scalability. In Section 5.2 we study
trustability of the technique by performing a sensitivity analysis of the algorithm
to the parameter σθ with reference to good and bad outliers. In Section 5.3 we
perform a comparison of our approach with that proposed in [5] designed for
categorical attributes. Finally, in Section 5.4 we describe some specific real-life
case study where the technique was profitably exploited.

In these experiments, whenever a ground truth is not readily available, it is
represented by outlier tuples detected by resorting to the feature bagging algorithm
described in [29]. Briefly, the technique detects outliers by iteratively running a
base outlier detection algorithm on a subset of the available attributes. Outlier
detected in the various runs are then scored by adopting a combine function which
assigns a score to each outlier.

The bagging technique was instantiated by exploiting the base OD method
described in [4], where the parameters are set to produce just a single outlier.
Further, the adopted combine technique simply scores outliers on the basis of the
positive responses they get within the iterations.3

Notice that the feature bagging technique boosts the robustness of base outlier
detection techniques. At the same time, it makes quite difficult to manually infer
(e.g., by means of visualization techniques) the reasons why a specific tuple was

3 In practice, if a tuple is detected as an outlier in a given iteration, it gets a positive score.
Scores are then summarized in the combine function, and tuples are sorted according to the
scores.
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Fig. 5 Experimental results on the Ecoli, Yeast, and Cloud datasets.

detected to be an outlier. In fact, a tuple can be singled out as an outlier for a
combination of factors which, in turn, depend on different attribute subsets. As a
consequence, the analysis of the outliers produced with such a technique provides
a significant benchmark of the effectiveness of our outlier explanation technique.

5.1 Evaluation and execution time

We employed three real datasets from the UCI Machine Learning repository [30].
The first two datasets, namely Ecoli (with 336 instances and 7 attributes) and
Yeast (with 1,484 instances and 8 attributes), contain information about protein
localization sites. The third database, called Cloud, contains information about
cloud cover and includes 1,024 instances with 10 attributes.

The support threshold σθ was set to 0.2, the maximum number kθ of conditions
in the explanation was set to 3, and the number kn of top explanation-property
pairs to 5. The following table reports the explanation-property pairs scoring the
maximum outlierness value.

DB o outEp (o) p E

Ecoli 223 1.000 a4 ∅
Yeast 990 0.997 a3 { a2 ∈ [0.13, 0.38] }

Cloud 354 1.000 a6

{ a1 ∈ [1.0, 6.7],
a2 ∈ [134.9, 255.0],
a5 ∈ [2,450.5, 3,211.5] }

In the third column, we report the outlierness value, in the fourth column the
attribute associated with the property, and in the fifth column the explanation.



20 Fabrizio Angiulli et al.

Figure 5 reports the functions Ga(f) associated with the objects considered in the
experiments.

Figure 5, at its top left, reports the area associated with the property a4 and
empty explanation for the object 223 in the Ecoli database. The property a4 is the
attribute Presence of charge on N-terminus of predicted lipoproteins. The object 223
is the only object assuming value 0.5 on this attribute, while all the other objects
assume value 1.0. As a consequence, this attribute is a clear outlying property with
respect to the whole database and, in fact, the associated explanation is empty.

Figure 5, at its top right, reports the area associated with the property a3
for the object 990 in the Y east database. The attribute a3 is Score of the ALOM

membrane spanning region prediction program. The solid line represents the curve
Ga3(f) obtained when the explanation {a2} is taken into account, while the dashed
line represents the curve Ga3(f) obtained for the empty explanation. We note that,
by taking the explanation into account, an improvement of the outlierness value
is achieved, even if the property a3 is quite interesting also with respect to the
whole database.

Finally, Figure 5, at its bottom left, reports the area associated with the prop-
erty a6 and the explanation {a1, a2, a5} for the object 354 in the Cloud database.
The attribute a6 is the Visible entropy, while the explanation attributes are Visible

mean, Visible max and Contrast. Figure 5 on the bottom right reports the area as-
sociated with the same property, but for the empty explanation. In this case, it is
worth noting that the property a6 turns out not to be exceptional with respect to
the whole database (the outlierness value is approximatively 0.3) but it becomes
rather exceptional with respect to the subpopulation selected by the explanation.

The following table reports the execution times associated with the experi-
ments.4

DB
Condition Top Pairs
Building Computation

Ecoli 3.19 sec 0.19 sec
Yeast 23.19 sec 0.83 sec
Cloud 167.53 sec 1.20 sec

We also study the effects of the kθ parameter on the performance. Greater
values of kθ trigger larger explanations. Since the support for large explanations
decreases as well, the performance tends to become stable for large values of kθ.
Figure 6 reports this phenomenon: the curves tend to flatten for increasing values,
on all datasets.

5.2 Trustability and sensitivity

A nice feature of our algorithm is the robustness of the outlying property factor
to the support σθ. If an explanation that characterizes the outlier exists then a
property will eventually be associated to such an explanation, with an high OPF

for all values of σθ less or equal than the actual support of explanation. That is,
if we start with the highest value of σθ and progressively decrease this value, the
algorithm will eventually detect all relevant pairs and it will associate an high

4 Experiments have been performed on an Intel Core i7 2.3GHz based computer by using
the Java programming language.
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Fig. 6 Total Outlier Computation Time for Ecoli, Yeast, and Cloud datasets.
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Fig. 7 Sensitivity to σθ. (a) Structure of the datasets exploited for the experiments. The red
point (located in (0.75, 0.25)) and blue point (located in (0.25, 0.75)) represent respectively a
bad and good outlier. (b) Outlierness degree of the good and bad outlier, for increasing values
of σθ.

OPF to them. By contrast if an object does not exhibit any relevant explanation
the OPF value of each property will be low regardless of σθ.

To verify this capability of the algorithm to detect faithful explanations we
devise the following experiment. We considered a family of synthetically gener-
ated datasets, both consisting of 5,000 points and 10 attributes. The values in 8
attributes are randomly chosen from a uniform distribution with range [0, 1]. For
the remaining 2 attributes, we group values in three gaussian clusters, cluster C1
having mean (µ, µ), cluster C2 having mean (1− µ, 1− µ), and cluster C3 having
mean (1−µ, µ), where µ = 0.25. All of the three clusters have a standard deviation
0.05.

On each dataset, we consider two artificial points. One point represents a “good
outlier” og with an associated explanation-property pair (Eog , pog ). The “good
outlier” og is located in (µ, 1 − µ). Thus, the explanation property pair exists in
the selected subspace (ai, aj) and it has the form (Eog = {ai ∈ [0, 0.5]}, pog = {aj}),
meaning that among the objects having a low value for ai, the object og exhibits
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an exceptional value for aj . The exceptionality is relative to the size of C1 and
C2, which characterize the explanation, and no exceptionalily is likely to exhist
within the remaining dimensions.

We also take into account a “bad outlier” by adding an object ob located close
to the center of cluster C3. In principle, the exceptionality of this object can only
exhibited in the same subspace (ai, aj), and it is inversely proportional to the size
of C3.

For each dataset we varied the size of the three clusters. Specifically, we varied
a parameter % ∈ [0.2, 0.4] and enforced each of the clusters C1 and C2 to contain
the % fraction of the dataset points, whereas C3 contains the remaining 1 − 2%
fraction. Figure 7a reports, for such an example dataset, the projection on the two
selected dimensions. All datasets exhibit a similar structure, but the cluster have
a different population. The “good outlier” og is colored in blue, , while the “bad
outlier” ob is colored red.

Figure 7b reports the top outlierness score associated with the objects og (solid
red line) and ob (dashed blue line). Values are obtaining by averaging the outcomes
of 100 runs on randomly generated datasets of the above family. The figure shows
that the outlierness is increasing for decreasing values of σθ and, in particular, each
outlier admits a threshold under which the outlierness degree is maximal. Also,
the minimal outlierness value is given by a threshold σθ for which no explanations
can be found. With the given cluster structure and the varying size of the clusters,
no interval can be detected for the good outlier when σθ ≥ 0.4 In such a case the
only viable explanations are (∅, ai) and (∅, aj). In both cases the outlierness of the
good outlier is determined by the difference in density of the two clusters projected
on the dimension under focus. Within this dimension in fact, the good outlier is
still located in the region with the lowest density. this explains a relatively high
outlierness value even in the case σθ ≥ 0.4.

A similar situation happens for the bad outlier. However, the outlierness ex-
hibited by this value is extremely low, even for low values of σθ. The peak in the
region σθ ≤ 0.2 is due to statistical fluctuations: the only explanation is charac-
terized by ({ai ∈ [0.5, 1], aj ∈ [0, 0.5]}, ak) and ak is one of the dimension where
the values are uniformly distributed. Besides that, it is clear that the outlierness
degree for the “good outlier” and the “bad outlier” differs significantly irrespective
of the σθ parameter. This shows that the technique is robust and, in particular,
we can expect high values of outlierness for good outliers and low values for bad
outliers.

To conclude, the experiments witness the stability of the algorithm and in
particular it suggests a procedure for finding the optimal σθ by progressively de-
creasing its value.

5.3 Comparison to other approaches

We already discussed the main differences with regard other approaches found in
the literature in Section 2. As a matter of fact, the proposed approach is a direct
extention of the approach proposed in [5]. The technical development however is
completely different. Specifically, as for the measure here described, its computa-
tion requires to perform density estimation of the data, which is not needed in
the case of [5]. As for the explanations, the part concerning the computation of
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Fig. 8 Unif2 dataset: outlierness of AU2 in oU2 computed using the method in [5] (on the
left), and density estimate of the same attribute carried out by our method (on the right).

Fig. 9 Different equi-width histograms associated with the attribute AU2 of the Unif2 data
set.

intervals is not required in [5], where attribute-values are directly used instead.
Moreover, pruning rules already applied in [5] cannot be applied here, due the
different nature of the two approaches.

That said, it is worth considering whether a simple adaptation of the approach
[5] can be compared to the one we illustrated above in terms of quality. And, in
fact, we show next that the strategy based on first discretizing numerical data and
then applying on the transformed dataset an algorithm specifically designed for
mining outlying properties in categorical data is unfaithful.

To this aim, we consider a synthetic data set (Unif2 in the following) consisting
of 20,000 objects. This dataset contains an outlier oU2 which is distinguished from
the rest of the population from the value it assumes on a particular attribute AU2.
Specifically, almost all values of this attribute belong to two equally-sized uniformly
distributed clusters, the first one in the range [−1.1,−0.1] and the second one in
the range [0.1, 1.1]. The only exception is represented by the object oU2, for which
oU2[AU2] = 0 holds.

In the following, we focus on the analysis of the behavior of the two methods on
the attribute AU2, in order to demonstrate that, while AU2 is naturally perceived
as an outlying property by the technique presented here, it is very unlikely this
is discovered if the technique developed in [5] is employed. In order to apply the
method [5] to the Unif2 dataset, its attributes have been discretized by grouping
attribute values in equi-width bins (we note that, in our scenario, using equi-sized
bins is meaningless, since such a kind of discretization corresponds to make the
attribute values uniformly distributed).

Figure 8 reports, on the left, the value of the outlierness (as defined in [5]) on the
value oU2[AU2] of oU2 according to different bins sizes employed in discretizing the
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data. Specifically, the number of bins has been varied from 2 to 50. The experiment
highlights that when the method in [5] is applied, the outcome of the analysis
strongly depends on the kind of adopted discretization. In particular when the
number of bins is in the range [4, 20] the outlierness measure is quite unstable, in
that it basically fluctuates between its maximum value and its middle value. This
means that by increasing or, alternatively, decreasing the number of bins of as
low as one unit, the result of the analysis may dramatically change. This is a very
undesirable property, since determining the right number of bins for the analysis
at hand might be quite a challenging task.

Figure 9, showing different frequency histograms associated with the attribute
AU2, should further clarify the matter. The histogram associated with the best
outlierness value, namely outlierness 0.1, is the one using 11 bins (at the center
of the figure). In this case, the central bin (centered in zero) scores a low value of
absolute frequency. On the other hand, for both 10 bins (reported on the left in
the same figure) and 12 bins (reported on the right), the fact that the outlierness
of AU2 in oU2 is sensibly smaller can be explained by looking at the displayed
histograms. In both cases, the value of oU2 is grouped with some more frequent
values and, hence, the corresponding outlierness value gets sensibly smaller.

Providing a large number of bins does not solve the problem: indeed, as already
pointed out in Section 2, the scoring function assigns a score close to 1 to very un-
balanced distributions, while its value rapidly decreases when frequencies spread.
And, indeed, with a large bin size the number of different categorical values (each
associated with a different bin) becomes large, and these values score about the
same absolute frequency. The consequence is that the outlierness values get small
as well.

It can be concluded that, in order to enable the method [5] to discover mean-
ingful knowledge, the bins that maximize the score should be detected in the first
place. However, the interaction with explanations (which select subsets of the over-
all population) makes it rather difficult to provide optimal a-priori intervals, since
the distribution of the property attribute are likely to change when switching from
one explanation to another.

This is clearly not the case with the technique proposed in this paper. Since
the outlierness measure defined here directly exploits the density estimate of the
object value, it is completely adaptive with respect to numerical data and does
not suffer of the aforementioned drawbacks. The outlierness of the object oU2

on the attribute AU2 computed by our method is 0.775. Figure 8 on the right
shows the density estimate of attribute AU2, together with the value associated
to oU2 (notice the circle on the curve), which is exploited in order to compute the
outlierness associated with oU2.

5.4 Case Studies

5.4.1 Interplanetary magnetic field data

This experiment has been conducted in order to validate our technique on a well-
established ground truth. In this experiment, researchers of the Physics Depart-
ment of University of Calabria provided us with a dataset of interplanetary mag-
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Fig. 10 Outlierness of observation 63,777 of Interplanetary magnetic field dataset.

netic field measurements [21]. The measurements concern MESSENGER magnetic
field data in the solar wind at a heliocentric distance of about 0.3 AU.

The dataset consists of 236,183 observations each composed of 11 attributes.
The attributes are: time, the instant of time of the observation; bx, by, and bz, the
three components of the magnetic field; bmag, the magnetic field amplitude; angle2

and angle4, the magnetic field angle variation after 2 and 4 seconds respectively;
pvi2 and pvi4, the partial variance of increments of the magnetic field after 2 and
4 seconds respectively; lim2 and lim4, the local intermittency measure after 2 and
4 seconds respectively.

They also pointed out 2,153 observations (about the 0.91% of the data) that
they manually marked as anomalous on the basis of the domain knowledge. Specif-
ically, these observations correspond to regions of high shear stress and high mag-
netic field compressibility. Moreover, the analysis they conducted on these anoma-
lous observations has revealed that they correspond to bursts in the PVI and LIM

series.
The OPD technique has been applied to each of these observations in order to

determine the exceptional properties they possess. Interestingly, almost all of these
observations exhibit the same exceptional properties, while no explanation is able
to improve their outlierness, thus confirming that these properties are exceptional
in a global sense. Specifically, they differ from the rest of the population on the
basis of the values assumed on the four last attributes, thus confirming that our
technique is able to detect meaningful outlying properties. Figure 10 reports the
outlierness computation for the observation 63,777, which evaluates 0.49.

5.4.2 Medical prescriptions

We further tested the technique on a real-life dataset about doctors and their as-
sociated medical prescriptions. In the scenario under consideration, each doctor is
associated with a group of patients, and can prescribe drugs to people belonging
to that group. There are several situations in which the detection of anomalous
prescriptions can be of interest in this scenario: from fraud detection (doctors
prescribing more than expected, e.g., with regards to a specific pharmaceutical
company) to the diagnosis of unknown epidemiological issues. The specific goal
is to find doctors whose behaviour is different than expected. Outlier explanation
plays a crucial role here, since we are interested in knowing both the reference
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population of doctors with similar prescribing behavior, and the reason why a
doctor behaviour is considered anomalous in that population. For example, a doc-
tor behavior can be considered anomalous because the number of prescriptions for
a given drug is significantly higher than average or he/she is prone to prescribe
drugs produced by a particular company.

The data we analyze contains information about three different entities:

– doctors: biographic information, along with information about their patients;
– drugs: the active element and the pharmaceutical company that produces the

drug;
– prescriptions: this is the facts table containing information about prescriptions

made by doctors to their patients.

The resulting table contains 2020 tuples, where each tuple represents the num-
ber of prescriptions that a specific doctor made on 106 drugs. To better model
patients’ influence on prescriptions, prescriptions were weighted according to their
age and sex. In practice, tuples are normalized in order to make fair comparisons
among doctors associated with different classes of patients.

By analyzing the data with feature bagging algorithm [29] we found 5 top out-
liers exhibiting a significant outlierness score. Two of these outliers are particularly
interesting to analyze with the explanation techniques, namely tuples 35 and 651.

In particular, the outlierness of tuple 35 is characterized by attributes a26,
a102 and a103. Within the population detected by the intervals for the attributes
a102 and a103, the tuple however exhibits a significantly low value for a26. This is
clearly shown in Figure 11.

A different behavior is instead exhibited by tuple 651, characterized by at-
tributes a1, a2, a5, a6. By selecting the population by means of attributes a1, a2, a5
and studying the distribution for attribute a6 in this population, we can notice
that the value exhibited by tuple 651 is at the upper extreme. Again, this repre-
sents a deviation from the normal behavior in that population, as shown in the
leftmost graph of Figure 11.

6 Conclusions and Future Work

In this paper we devised a technique by which the outlying properties detection
problem can be solved in the presence of numerical attributes, which represents a
step forward with respect to available techniques. The core of our approach was the
definition of a sensible outlierness measure, representing a refined generalization
of that proposed in [5], which is able to quantify the exceptionality of a given
property featured by the given input anomalous object with respect to a reference
data population. Also, we developed algorithms to detect properties characterizing
the anomalous object provided in input. The experiments we conducted confirm
that the presented approach is indeed rather effective.

There are several application scenarios where the proposed technique can be
profitably applied. In all of these scenarios, data basically express measurements
on empirical situations, and the underlying data is made of several numerical at-
tributes describing such measurements. In the doctors scenario, for example, it can
be used to find explanations for anomalous or frauding behavior. Further scenarios
include rank learning problems like in [12]: there, we investigate the problem of
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Fig. 11 Outlier explanations in the Doctors Dataset, for tuples a34 and a651.

detecting rules for characterizing individuals who are selected as exceptional ac-
cording to a specific scoring function (like, e.g., the amount of fraud they commit
in a fraud detection scenario). It is clear that if exceptional objects are outliers,
then the outlier explanation technique described in this paper is a basic building
block for rule learning in that domain.

With reference to the problem statement discussed in the introductory section,
we remark that here we only focus on a single property attribute. We leave to a
future work the investigation of how to extend the technique to cope with multi-
attribute properties.
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