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Abstract

This paper presents a hierarchical probabilistic ap-
proach to collaborative filtering which allows the discov-
ery and analysis of both global patterns (i.e., tendency
of some products of being ‘universally appreciated’) and
local patterns ( tendency of users within a community
to express a common preference on the same group of
items). We reformulate the collaborative filtering ap-
proach as a clustering problem in a high-dimensional
setting, and propose a probabilistic approach to model
the data. The core of our approach is a co-clustering
strategy, arranged in a hierarchical fashion: first, user
communities are discovered, and then the information
provided by each user community is used to discover
topics, grouping items into categories. The resulting
probabilistic framework can be used for detecting inter-
esting relationships between users and items within user
communities. The experimental evaluation shows that
the proposed model achieves a competitive prediction
accuracy with respect to the state-of-art collaborative
filtering approaches.

1 Introduction

Recommender Systems (RS) provide users with person-
alized suggestions about new products, services, and in-
formation. According to the collaborative filtering (CF)
approach [1], RS are based exclusively on a database
of user preferences. The underlying assumption of CF
techniques is that users who had shown similar prefer-
ences in the past, will tend to make similar choices in
the future. Traditional CF approaches [2–5] try to fore-
see the preferences of users on previously unseen prod-
ucts, by analyzing and discovering patterns in a high di-
mensional and extremely sparse preference matrix. Re-
cently, generative probabilistic models [6–10] have been
gaining increasing attention, as they offer several advan-
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tages with respect to non-probabilistic techniques: e.g.,
they allow the estimation of predictive distributions, the
possibility to include prior knowledge into the genera-
tive process and a principled framework to select model
structure. Moreover, the inferred latent structure is di-
rectly tied to the generative process and therefore often
easy to interpret.

Collaborative filtering data exhibit global patterns
(i.e. tendencies of some products of being ‘universally’
appreciated) as well significative local patterns (i.e
tendency of users belonging to a specific community
to express similar preference indicators on the same
items). Local preferences affect the performance of RS
especially when the number of users and items grows,
and their importance has been acknowledged by the
current CF literature [11].

Typically, local patterns can be better detected by
means of co-clustering approaches [12–16]. Unlike tra-
ditional CF techniques, which try to discover similari-
ties between users or items using clustering techniques
or matrix decomposition methods, co-clustering ap-
proaches aim to partition data into homogenous blocks
enforcing a simultaneous clustering on both the dimen-
sions of the preference data. This highlights the mutual
relationships between users and items: similar users are
detected by taking into account their ratings on simi-
lar items, which in turn are identified considering the
ratings assigned by similar users.

However, a main weakness of the current ap-
proaches to co-clustering is the static structure enforced
by fixed row/column blocks where both users and items
have to fit. For example, the movies “Titanic” and
“Avatar”, are typically associated with different cate-
gories: the former is about romance, whereas the latter
can be considered an action, sci-fi movie. Assuming
a global and unique partition on the item-set, we can
expect to see the movies into different partitions. How-
ever, that structure would fail to recognize a group of
users who are really into the movies of James Cameron
(the director of both movies). Analogously, any method
associating the two movies with the same partition
would fail in catching the difference in genre.

The issue in the previous example is that different



user groups can infer different interpretations of item
categories. A more flexible structure, where item cat-
egories are conditioned by user categories, would bet-
ter model such situation, by e.g., allowing “Titanic”
and “Avatar” to be observed in the same item category
within the “Cameron” group, and in different categories
outside. Notice that traditional clustering approaches
are not affected by this problem, as they only concen-
trate on local patterns in one dimension of the rating
matrix. The drawback, however, is that they ignore
structural information in the other dimension, which by
the converse can be exploited both for more accurate
prediction and user profiling.

This paper presents a novel probabilistic hierarchi-
cal approach which is able to discover both global and
local trends in data, allowing different user communities
to show different preference values on distinct groups
of items. The proposed schema differs from the pre-
viously proposed coclustering approaches to CF data
because it does not assume the existence of a unique
partition on the item-set: each user community is char-
acterized by having its own set of topics involving items
and user preferences. Following a hierarchical cluster-
ing approach, we initially determine user communities
by gathering together similar users. Then, for each user
community the clustering phase produces a mixture of
topics upon which the item set and the user preferences
are accomodated into categories. Each item group is
characterized by the intracluster consistency property
with respect to the considered user community: each
item and its neighbors, associated by having received
common rating value in the context of the community,
will belong to the same cluster with high probability.

The hierarchical coclustering model does not en-
force any strong assumption on the membership of users
and items improving the flexibility of the model itself.
Each user partecipates to different user communities
with a certain degree and, given a user community, each
item may belong to different item-categories. As a re-
sult, the proposed model summarizes the advantages of
a flexible probabilistic structure for user profiling and a
competitive prediction accuracy on user ratings.

The rest of the paper is organized as follows. In
Sec. 2 we define a formal framework of the collaborative
filtering data, and state of art approaches to rating
prediction will be briefly discussed in Sec. 3. The
hierarchical probabilistic model for CF data is then
presented and formalized in Sec. 4 and its perfomances
are analyzed and discussed in Sec. 5.

2 Background

A RS consists of a set of M users U = {u1, · · · , uM},
which will be indicated for short as the user-set, a set

of N items I = {i1, · · · , iN}, named item-set, and a
collection of rating values expressing the preference of
one user on a corresponding item. Such collection of
preference indicators can be represented as a M × N
rating matrix R, where rui is the rating given by the user
u on the item i. Ratings can be integer values within
a scale 1 (low interest) to V (strong interest). Even in
the case of a very dynamic system, the rating matrix is
typically characterized by an exceptional sparsity rate;
if the rating for the pair (user, item) is unknown we will
assume rui = 0.

Let U(i) the set of users who evaluated the item i,
while we will denote by I(u) the set of all the items
for which the user u has expressed her preference. An
example of rating matrix with M = 7 users and N = 5
items is shown in Fig 1. The goal of a RS is to learn

Figure 1: An example of rating matrix

a preference function p : U × I → {1, · · · , V }, which
associates to each pair (user, item) a rating value within
the admissible range. Let r̂ui denote the predicted
rating for the pair (u, i). Considering the case of users
and products which have provided/received at least
one preference value, several evaluation metrics have
been proposed to quantify the quality of a prediction
algorithm. Denoting by T a test-set collection of triples
(user, item, rating), one of the most referenced methods
to measure the performance of a predictor is the Root
Mean Squared Error, which emphasizes large errors:

RMSE =

√∑
(u,i) ∈ T (rui − r̂ui )2

|T |

In a probabilistic settings, we adopt random vari-
ables R, I, and U denoting a rating, an item and a user
respectively. Then, P (R = r) will denote the proba-
bility to observe a rating with value r, and analogously
P (U = u) will denote the probability that a given rat-
ing has been give by user u. With an abuse of notation,
we shall omit the random variable in the specification.
For example, P (r, u, i) shall denote the joint probability
P (R = r, U = u, I = i).



3 Collaborative Filtering Approaches

In this section we provide a brief discussion of the most
used techniques for rating prediction, namely Baseline,
Nearest Neighbors and Latent Factor models.

Baseline models are basic techniques to compute a
rating prediction and are considered a first step towards
the rating personalization and user profiling. These
first approaches to rating prediction are summarized
in Table 1, where µ denotes the overall mean of the
rating, ri is the average rating given on the item i and,
symmetrically, ru is the average of the ratings given
by the user u. Another simple and effective baseline

Baseline Personalization Prediction r̂u
i

OverallMean None µ
ItemAvg Item-oriented ri

UserAvg User-oriented ru

WeightedCentering Item&User oriented α ri + (1− α)ru

0 ≤ α ≤ 1

Table 1: Baseline Approaches

approach has been proposed in [17], which describes a
set of global effects that might influence user’s ratings.
For example, some users might tend to assign higher or
lower ratings to items respect to their rating average
(which is known as User effect), while some items tend
to receive higher (or lower) rating values than others
(Item effect).

Neighborhood based approaches based on explicit
user feedback are the most commonly used techniques
for generating suggestions and predictions. According
to the item-based version [2], the predicted rating is
computed by aggregating the ratings given by each user
on the most similar items to the considered item. The
iunderlying assumption is that the user might prefer
items more similar to the ones she liked before, because
they might belong to the same category or might share
similar features. More formally:

r̂ui =

∑
j∈ NK(i;u) sij · ruj∑
j∈ NK(i;u) sij

where NK(i;u) is the set of K items rated by the user
u most similar to i, and sij are the similarity coeffi-
cients between the item i and j. Similarity coefficients
are compute on a global basis: two products are con-
sidered similar if they have received similar preference
values from common users. Hence, this strategy fails
in recognizing local item similarity within a same user
community. Some alternative and more effective formu-
lations of the neighborhood based approach have been
proposed in [5,17,18]; the key idea is to determine the in-
terpolation weights simultaneously according to a global
optimization schema, which better reflects intra neigh-
borhood relationships.

The assumption behind Latent Factor models is
that the rating value can be expressed by considering
a set of contributes which represent the interaction be-
tween a user and the target item on a set of features.
Assuming that there are a set of K features which de-
termine the user’s preference on an item, the prediction
can be generated as:

rui =
K∑
z=1

Uu,z Mz,i

where Uu,z is the response of the user u to the feature
z and Mz,i is the response on the same feature by item
i. Several learning scheme have been proposed to over-
come the sparsity of the original rating matrix and to
produce accurate predictions. The learning phase re-
lies either on a gradient descent error-minimzation [3,4]
or a likelihood optimization procedure (based e.g., on
Gibbs Sampling or Expectation Maximization). The
peculiarity of a probabilistic model is the capability of
estimating either the joint probability P (r, u, i) or the
conditional probability P (R = r|u, i). The identifica-
tion of r̂ui for a pair 〈u, i〉 can hence be computed as:

r̂ui = E [r|u, i] =
∑
r

r · P (R = r|u, i)

The pLSA (probabilistic latent semantic analysis,
or Aspect Model) proposed by Hoffman in [13], is the
reference probabilistic approach to CF. The underlying
assumption is that the observed user preferences can
be modeled as a mixture of user communities, and
each user can be included into one or more groups
[13]. Introducing a latent variable Z (ranging over K
possible states) and assuming that user U and item I
are conditionally independent given the state of Z, the
probability of observing rating r for the pair (u, i) can
be computed as:

P (r|u, i) =
K∑
z=1

P (r|i, z)P (z|u)

where P (z|u) represents the interest of u to topic z,
and P (r|i, z) is the probability that a user belonging to
pattern z gives rating r on the item i.

The User Profile Model extends this formulation
by employing Dirichlet priors which provide a full
generative model at the user level [19, 20]; a further
adoption of the Latent Dirichlet Allocation approach
[21] which includes a response variable, in this case the
ratings on an item, has been proposed in [22].

Recently, novel probabilistic approaches [6, 23, 24]
have been proposed to overcome the need for regulariza-
tion and in order to prevent overfitting in matrix factor-
ization methods. In particular, the Probabilistic Matrix



Factorization [6] proposes a generative gaussian model
for ratings, in the low-rank latent space of users and
items. Extensions of this model include bayesian pri-
ors [8] and non-linear matrix factorization with gaussian
processes [25].

Other works focus on combining preference data
and content features [7, 9] to produce more accurate
recommendations and to address the cold-start problem.
The underlying idea is to associate items and users with
content-specific latent factors and thus to use this low-
dimensional feature representations for regularization.

So far, co-clustering approaches exhibited limited
predictive capability (clustering both items and users
makes these approaches more prone to overfitting). In
addition, the high computational burden make them un-
feasible for realistic problems. [12] proposes simultane-
ous clustering of users and items based on an adap-
tation of the Bregman coclustering [26]: given an ini-
tial co-clustering assignment, the user-clusters (rows)
and item-clusters (columns) are alternately optimized
till convergence is achieved. A probabilistic approch to
determine user-item memberships following a cocluster-
ing strategy has been discussed in [13]: the assumption
behind the Two-Sided Clustering Model is that the rat-
ing value is independent of the user and item identities
given their respective cluster memberships. The clus-
tering approach is based on a standard EM likelihood
maximization procedure.

Both these co-clustering approaches assume the
existence of a unique partition over the item-set and
the number of user-communities. Within these models,
each user belongs to exactly a single user-community
and each item belong to a single groups of item.
By contrast, the Flexible Mixture Model (FMM) [14]
extends the two-sided model by allowing an individual
(either a user or an item) to be included in different
clusters, with different degrees of membership. A novel
approach to co-clustering have been proposed in [10];the
resulting model, known as Bi-LDA, integrates Dirichlet
priors and discovers simultaneous groups of users/items
modeled via LDA.

4 A Hierarchical Co-Clustering Approach for
Modeling User Preferences

The starting point in our approach is the observation
that different communities can infer different evalua-
tions of the same item. Specific groups of users tend to
be co-related according to different subsets of features.
However, though semantically-related, two users with
(possibly several) differences in their item ratings would
hardly be recognized as actually similar by any global
model imposing a fixed structure for item categories. In-
dividual user can be intended as a mixture of latent con-

cepts, each of which being a suitable collection of charac-
terizing features. Accordingly, two users are considered
as actually similar if both represent at least a same con-
cept. Viewed in this perspective, the identification of
local patterns, i.e. of proper combinations of users and
items, would lead to the discovery of natural clusters in
the data, without incurring into the foresaid difficulties.
Consider the toy example in Fig. 2, where homogenous
blocks exhibiting similar rating patterns are highlighted.
There are 7 users clustered into two main communities.
Community 1 is characterized by 3 main topics (with
groups d11 = {i1, i2, i3}, d12 = {i4, i5, i6, i7} and d13 =
{i8, i9, i10}), whereas community 2 includes 4 main top-
ics (with groups d21 = {i1, i4, i5}, d22 = {i2, i3, i7},
d23 = {i6, i10} and d24 = {i8, i9}). The novelty is that
different communities group the same items differently.
This introduces a topic hierarchy which in principle in-
creases the semantic power of the overall model.

Figure 2: Example of Local Pattern in CF Data

The generative model for the proposed scheme can
be summarized as follows:

1. Select a user community ck according to the prob-
ability distribution πk;

2. select a user u with probability Pk(u) = P (u|ck)
and an item i with probability Pk(i) = P (i|ck);

3. Choose a topic dh with probability
P (dh|i, ck)P (dh|u, ck);

4. produce the rating r with probability φh(r) =
P (r|dh).

Formally, we can assume that the probability of a
triplet 〈u, i, r〉 is

P (u, i, r) =
K∑
k=1

πkPk(u)Pk(i)P (r|i, u, ck) (4.1)

where

P (r|i, u, ck) =
Hk∑
h=1

φh(r)Pk(dh|i)Pk(dh|u) (4.2)



The latter correspond to a “local” probabilistic la-
tent semantic analysis, provided that the user commu-
nities are known.

The idea, in the above formula, is learning latent
communities from the data as well as a collection
of characterizing concepts for each community. In
particular, each rating can be seen as the outcome of
a mixture of various concepts, where some concepts are
more or less probable according to the cluster where
the user fits. Hence, a data tuple can be thought as
the outcome of the following generative model: firstly
pick a distribution over latent clusters; next, choose the
concepts associated and finally generate the individual
values. Also, notice the role of the πk, k = 1, . . . ,K
prior probabilities in the generative process. In practice,
they model the assumption that observing a pair 〈u, i〉
is not totally random, but it is instead the result of the
grouping of users into communities.

Due to the strong coupling between the user com-
munity latent variable c and the one corresponding to lo-
cal patterns d, the exact inference for the model charac-
terized by the joint probability in Eq. 4.1, which would
maximize both the user community cohesion and the
local topic similarity, is difficult to solve analytically.
Hence, we adopt an approximated solution, based on a
hard clustering policy for user communities, such that
the inference of the parameters can be performed effi-
ciently without compromising the generative semantic
and the flexibility of the model.

We devise a hierarchical approach to the estimation
of the components involved into Eq. 4.1. In practice, our
approach consists in a preliminary discovery structure,
where user communities are detected. Next, for each
user community, a topic model is investigated, and
the most prominent topics are discovered and properly
modeled.

The general scheme of the algorithm is shown
in Alg. 1 and could be summarized as follows: given
a rating matrix R, discover k user communities; then,
for each of those communities, according to an hard
clustering approach, select from U a subset of users that
belong to the considered community and generate a set
of Hk topic models for their ratings.

The hierarchical model for users’ ratings consists
in a set of K user community models and for each of
them a set of Hk topic models which represent local
preference patterns for the member of the considered
community. The user community level specifies the
probabilities γuk = P (ck|u) with k = 1, . . . ,K, which
measure how much the ratings given by the user u
fit the preference behaviour underlined by each of the
communities.

The probability of observing the rating r for the

Algorithm 1 HMbuild
Require: The sets U = {u1, . . . , uM} and I = {i1, . . . , iN}

and the corresponding rating matrix R;
Ensure: a set C = {c1, . . . cK} of user community models

and a subset Dk = {d(k)
1 , . . . , d

(k)
Hk
} for each user

community k
1: C ← GenerateUserCommunities(R);
2: for all community model ck, k = 1, . . . ,K do
3: let Uk = {u ∈ U|p(ck|u) ≥ p(cj |u), j = 1, . . . ,K}, and

Rk the corresponding submatrix of R;
4: Dk ← GenerateTopicModels(Rk );
5: end for

pair (u, i) can be computed considering two schema,
summarized in Alg. 2:

• Hard-Clustering Prediction:

P (r|i, u) =
Hk∑
h=1

φh(r)Pk(dh|i)Pk(dh|u) (4.3)

where k = argmax
j=1,··· ,K

γuj is the cluster that better

represents the previously observed rating of the
user u. This prediction rule relies exclusively on the
information given by the topic model corresponding
to the user’s cluster; thus it might produce low
quality predictions if the user’s community is not
identified with enough confidence.

• Soft-Clustering Prediction:

P (r|i, u) =
∑
k

γuk · P̃ (r|i, u, ck) (4.4)

where the probabilities γuk act as mixture weights
and the distribution over rating values correspond-
ing to the community ck is computed taking into
account both global and local patterns:

P̃ (r|i, u, ck) =
{
P (r|i, u, ck) if u ∈ Uk
P (r|i, ck) otherwise (4.5)

Note that if u ∈ Uk then γuk is the dominant
mixing weight and the distribution over ratings
is refined by considering the corresponding set of
topic models; in the opposite case the distribution
over ratings can be estimated by considering the
probability of observing each rating given an item
within the considered community.

4.1 Modeling User Communities. The discovery
of the communities is accomplished essentially via a
model-fitting procedure based on a maximum-likelihood
estimation. In practice, we assume that the rating



Algorithm 2 HMcomputeRatingsProbability
Require: a pair 〈u, i〉
Ensure: a probability P (R = r|u, i) for each rating value r
1: let c = argmax

j=1,··· ,K
p(ck|u)

2: for all r = 1 to V do
3: if Hard-Clustering then
4: P (R = r|u, i) =

∑Hk

h=1
φh(r)Pk(dh|i)Pk(dh|u)

5: else
6: for all community model ck, k = 1, . . . ,K do
7: if k = c then
8: prob ← Dk .getRatingProbability(r , u, i)
9: else

10: prob ← ck.getRatingProbability(r, i)
11: end if
12: P (R = r|u, i)← P (R = r|u, i) + γuk × prob
13: end for
14: end if
15: end for

matrix R is modelled as a set of user vectors, where each
vector is characterized by the preferences of the user.
Formally, this means that we can model the probability
p(r, i|u) for each triplet 〈r, i, u〉.

The corresponding probability of observing a user
hence corresponds to the joint probability of observing
all his ratings, that is

P (u|Θ,R) =
N∏
i=1

V∏
r=1

(P (i|Θ) · P (r|i,Θ))δ(u,i,r)

where

δ(u, i, r) =
{

1 if rui = r
0 otherwise

This modeling allows us to adopt a maximum likelihood
approach to the estimation of the Θ parameters charac-
terizing the P (i|Θ) and P (r|i,Θ). For example, we can
characterize P (i|Θ) via a bernoullian pdf parameterized
by αi, and P (r|i,Θ) as a multinomial (with factors σri).
Within a ML framework, the estimation of the above
probabilities would produce

αi =
∑M
u=1

∑V
r=1 δ(u, i, r)∑M

u=1

∑N
i′=1

∑V
r=1 δ(u, i′, r)

(4.6)

σri =
∑M
u=1 δ(u, i, r)∑M

u=1

∑V
r′=1 δ(u, i, r′)

(4.7)

A first effect of the above estimates is to adjust the
soft-clustering prediction formula Eq. 4.5 as

P (r|i, u) = β
∑
k

γuk · P (r|u, i, ck) + (1− β)σri

where β is a weighting factor proportional to the number
of ratings |I(u)|. In practice, the estimate σri provides
a higher contribution when the number of ratings given
by a user is low (and hence it acts as a prior).

The component P (r, u, i, ck) and the posteriors γuk
can be estimated by assuming the existence of a set
of communities, where each community models specific
user attitudes. In particular, the probability of observ-
ing a user is given by the mixture

P (u|C) =
K∑
j=1

P (u|cj)πj =
K∑
j=1

N∏
i=1

V∏
r=1

πj (αij · σrij)δ(u,i,r)

where a single community cj is characterized by the
parameters αij = P (i|cj) and σrij = P (r|cj , i). The
expected loglikelihood can hence be defined as:

Q(R; Γ) =
M∑
u=1

K∑
j=1

γuj ·[
N∑
i=1

V∑
r=1

δ(u, i, r) · (logαij + log σrij) + log πj

]

Estimating the parameters by means of an EM proce-
dure yields the following equations:

E-Step:

γuj = P (cj |u) =
P (u|cj) · πj∑K

j′=1 P (u|cj′) · πj′

M-Step:

πj =
∑M
u=1 γuj
M

αij =
∑M
u=1 γuj

∑V
r=1 δ(u, i, r)∑M

u=1 γuj
∑N
i′=1

∑V
r=1 δ(u, i′, r)

σrij =
∑M
u=1 γuj · δ(u, i, r)∑M

u=1

∑V
r′=1 γuj · δ(u, i, r′)

A further advantage of the above formalization
is the possibility of exploiting the above model for
prediction purposes as well as for for structure discovery.
A prediction function in fact can be defined as

r̂ui = E[R|u, i] =
V∑
r=1

r ·
∑
k

σrik · γuk (4.8)

and used as a baseline for the special case described in
step 10 of algorithm 2. We shall see in the following



that the resulting baseline function is even competitive
with state-of-the art approaches.

The above formalization also allows an alternative
gaussian model

P (r|i, cj) = N (vru;µij , σij) =
1√

2πσij
exp

[
− (vru − µij)2

2σ2
ij

]

where vru is the Z-score normalization of r with regards
to user u:

vru =
r − µu
σu

and the means and the variances are estimated as
proposed in [27].

The rating prediction for the pair (u, i) can be hence
computed as:

r̂ui = µu + σu

(
K∑
k=1

γuk · µik
)

(4.9)

and the M-Steps can be rewritten as:

µik =
∑M
u

∑V
r γuk · δ(u, i, r) · vru∑M

u

∑V
r γukδ(u, i, r)

σ2
ik =

∑M
u=1

∑V
r γuk · δ(u, i, r)(vru − µik)2∑M
u=1

∑V
r γukδ(u, i, r)

4.2 Local Community Patterns via Topic Anal-
ysis. The approach to the discovery of local com-
munity patterns is based again on a EM procedure
which aims at maximizing the likelihood of the Rk =
{〈r, u, i〉|p(ck|u) ≥ p(cj |u), j = 1, . . . ,K} rating matrix
associated to a community model ck. In practice, we
can define the expected log-likelihood

Q(Rk; Ψ) =
M∑
u

N∑
i

V∑
r

Hk∑
h

ψk(h; r, i, u) ·

[log φh(r) + logPk(dh|i) + logPk(dh|u)]

where ψk(h; r, i, u) = P (dh|r, i, u, ck). The EM algo-
rithm can hence be defined in terms of the following
formulas:

• E-Step:

ψk(h; r, i, u) =
φh(r)Pk(dh|i)Pk(dh|u)∑
j φj(r)Pk(dj |i)Pk(dj |u)

• M-Steps:

Pk(dh|i) =
∑M
u

∑V
r ψk(h; r, i, u)∑

h′
∑M
u

∑V
r ψk(h′; r, i, u)

Pk(dh|u) =
∑N
i

∑V
r ψk(h; r, i, u)∑

h′
∑N
i

∑V
r ψk(h′; r, i, u)

P (r|dh) = N (r;µdh
, σdh

)

where

µdh
=

∑M
u

∑N
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4.3 Computational aspects. Once the parameters
of the hierarchical model have been estimated, the on-
line complexity for computing predictions scales with
the number of user communities and corresponding top-
ics, while the off-line phase requires more resources. In
fact, the complexity of the learning phase is determi-
nated by the complexity of discovering user communi-
ties, which is linear with the number of observed ratings.

To avoid overfitting, which could deteriorate the
predictive skills of the models on unobserved data we
adopt an Early Stopping criterion: a fraction of the
data has been retained as held-out dataset and the
models have been trained on the remaining part of the
data until the accuracy on the held-out data begins to
increase.

The estimation of the correct number of clusters
is accomplished by resorting to a Cross-Validation ap-
proach based on a penalized Log-Likelihood principle,
as described below. Given a set D of observations (in
our case, the rating matrix R and its subsets Rk), we
aim at finding the model parameters Θ maximizing the
probability P (Θ|D). In logarithmic terms,

log(P (Θ|D)) = logP (D|Θ) + logP (Θ)
= log(L(Θ|D)) + logP (Θ)

The idea in the above formula is to counterbalance two
opposing requirements: the fitting of the data and the
complexity of the model. By modeling P (Θ) can be
modeled as an exponential distribution w.r.t the size of
Θ, we can rewrite the above as

log(P (Θ|D)) ≈ log(L(Θ|D))−m log n

where m is the size of Θ (i.e., the number of model
parameters), and n is the size of D. The evaluation



strategy hence consists in computing log(P (Θ|D)) for
each possible Θ, and in choosing the model where it is
maximal. In particular, the strategy can be summarized
as follows:

1. fix the values Kmin and Kmax;

2. choose the number C of cross-validation trials;

3. for each trial c:

(a) sample a subset Dtrain from D;

(b) for k ranging from Kmin and Kmax:

(c) compute log(P (Θk|Dtrain))c;

4. for each K, average the values log(P (Θk|Dtrain))c

over c;

5. choose the value k∗ such that
log(P (Θk∗ |Dtrain))avg is maximal.

4.4 Discussion. There are several major differences
between the models described in Sec. 3 and the above
formalization. Considering pLSA, the hidden variable z
there is used to discover similar trends in the rating be-
havior and encourages grouping users into user commu-
nities. The prediction relies solely on P (r|i, z) and does
not consider item hierarchies and, hence boosted predic-
tions triggered by similar items. By contrast, the pro-
posed hierarchical approach aims to discover local pat-
terns for each user community. Also, there are two fur-
ther components which boost the prediction accuracy of
the underlying user community model. First, the multi-
nomial prior πj for each user community j, which helps
in preventing overfitting by counterbalancing the con-
tribute of each user u in γuj . The πj component can be
interpreted as a laplacian smoothing based on uniform
Dirichlet priors. Clearly, explicit modeling of such pri-
ors via Bayesian estimation, in the style of [19], can be
adopted. However, as discussed in the next section, the
computational cost would leverage significantly. Also,
the αij component explicitly models the likelihood that
item i has been rated within community j. The latter
also is a major difference, at the user community level,
with respect to the multinomial mixture and the User
Rating Profile models, discussed in [20].

Also, notice that the co-clustering techniques dis-
cussed in the previous section, like the Flexible Mixture
Model, assume the existence of a fixed partition both
for user communities and for item categories. In our
case instead, each user community is characterized by
its own partition over the item-set with a flexible num-
ber of topics. In addition, co-clustering models only
produce prediction on the basis of local contribution

P (r|ck, dh). By contrast, according to Eq. 4.5, our pre-
diction benefits from both local and global information.

A final remark is concerned with the possibility of
considering the proposed approach symmetrical. Our
model starts with user communities and then generates
topics. In theory a dual scheme could be viable as well,
by first generating item categories and then specific user
communities conditioned to item categories. However,
duality only holds if the number of rows and columns of
the rating matrix are of the same order of magnitude.
In fact, the number of model parameters in an item-
based mixture grows linearly to the number of users.
If the number of items is significantly less than the
number of users, this would cause the generation of few
categories charaterized by too many parameters (and
as a consequence the resulting model would be prone to
overfitting).

5 Evaluation

We evaluate the effectiveness of the proposed approach
in two different respects:

• To measure the effectivenss of the User commu-
nity model adopted in the first stage in discoverying
communities fitting the training data. Since each
community should be able to model a user’s pref-
erences, it is interesting to measure the prediction
accuracy of Eq. 4.8 and Eq. 4.9, which exploit the
community mixtures.

• To measure the overall prediction accuracy of the
hierarchical approach, and to compare it to other
well-known approaches in the literature.

Additionally, as a paradigmatic example, we shall in-
spect the informative content of the structures discov-
ered by the hierarchical mode proposed so far. We will
show how the resulting community/topic model can pro-
vide significant informative content about the commu-
nities and the relevant topics discovered.

We used two popular benchmark datasets (Netflix
and Movielens) for rating prediction to validate the pre-
dictive performance of the proposed approach. In short,
Netflix dataset contains over 100 million of ratings given
by 480, 189 users on a set of 17, 770 movies, collected be-
tween October 1998 and December 2005. The Netflix
Prize dataset has been the reference data for empir-
ical comparisons of Collaborative Filtering algorithms
during the last years, mainly for 3 reasons: (i) size of
dataset and sparsness coefficient; (ii) availability of re-
sults from competitive algorithms; (iii) availability of
a baseline score for the prediction error, achieved by a
real RS (the Netflix Cinematch algorithm) on the same
dataset. We exploited a subsample of the whole Netflix



Also, notice that the co-clustering techniques dis-
cussed in the previous section, like the Flexible Mixture
Model, assume the existence of a fixed partition both
for user communities and for item categories. In our
case instead, each user community is characterized by
its own partition over the item-set with a flexible num-
ber of topics. In addition, co-clustering models only
produce prediction on the basis of local contribution
P (r|ck, dh). By contrast, according to Eq. 4.5, our pre-
diction benefits from both local and global information.

A final remark is concerned with the possibility of
considering the proposed approach symmetrical. Our
model starts with user communities and then generates
topics. In theory a dual scheme could be viable as well,
by first generating item categories and then specific user
communities conditioned to item categories. However,
duality only holds if the number of rows and columns of
the rating matrix are of the same order of magnitude.
In fact, the number of model parameters in an item-
based mixture grows linearly to the number of users.
If the number of items is significantly less than the
number of users, this would cause the generation of few
categories charaterized by too many parameters (and
as a consequence the resulting model would be prone to
overfitting).

5 Evaluation

We evaluate the effectiveness of the proposed approach
in three different respects:

• To measure the effectivenss of the EM algorithm
adopted in the first stage in discoverying commu-
nities fitting the training data. Since each commu-
nity should be able to model a user’s preferences, it
is interesting to measure the prediction accuracy of
Eq. 4.8 and Eq. 4.9, which exploit the community
mixtures.

• To measure the overall prediction accuracy of the
hierarchical approach, and to compare it to other
well-known approaches in the literature.

• []=⇒Structure Discovery⇐=[]To inspect informa-
tive content of the structures discovered by the
hiearchical approach proposed so far. Essentially,
we aim at inspecting the communities and the rel-
evant topics discovered, and in finding empirical
confirmations concerning the key ideas explained
in the beginning of Sec. 4.

We used two popular benchmark datasets (Netflix
and Movielens) for rating prediction to validate the pre-
dictive performance of the proposed approach. In short,
Netflix dataset contains over 100 million of ratings given

Nextflix MovieLens
Training Set Test Set Training Set Test Set

Users 435,656 389,305 6,040 6,040
Items 2,961 2,961 3,706 3,308

Ratings 5,714,427 3,773,781 800,168 200,041
Avg ratings (user) 13.12 9.69 132,47 33,119
Avg ratings (item) 1929.90 1274.50 215.91 60.47
Sparseness Coeff 0,9956 0,9643

Table 2: Summary of the Data used for validation.

by 480, 189 users on a set of 17, 770 movies, collected be-
tween October 1998 and December 2005. The Netflix
Prize dataset has been the reference data for empir-
ical comparisons of Collaborative Filtering algorithms
during the last years, mainly for 3 reasons: (i) size of
dataset and sparsness coefficient; (ii) availability of re-
sults from competitive algorithms; (iii) availability of
a baseline score for the prediction error, achieved by a
real RS (the Netflix Cinematch algorithm) on the same
dataset. We exploited a subsample of the above data.
The data is divided into training and test set, where the
latter contains ratings given by a subset of the users in
the training set over the same set of items. Info about
this dataset are summarized inTab. 2.
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Figure 6: ECDF for user and item ratings on NetFlix.

Fig. 6 shows the empirical cumulative densities
for both user and item ratings within the subsample
adopted here. There are some major differences between
the original Netflix dataset and the subsample used
here. For example, we can see from Fig. 6(a) that
over 60% of the users have less than 10 ratings and
the average number of evalutions given by users is 13
(whereas the original dataset exhibits an average 200
ratings). In addition, figure Fig. 6(b) shows that over
50% of the items have received less than 200 ratings,
with an average value of 1929. Again, the average
ratings in the original dataset were 5000. In practice,
the subsample we exploit is more difficult than the
original dataset. 1

1This also explains the difference between the values declared
in the original papers by the comptetiros and the values we were

Table 2: Summary of the Data used for validation.

data, and partition it into training and test set, where
the latter contains ratings given by a subset of the users
in the training set over the same set of items. Info about
this dataset are summarized in Table 2.
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Figure 3: ECDF for user and item ratings on NetFlix.

Fig. 3 shows the empirical cumulative densities
for both user and item ratings within the subsample
adopted here. There are some major differences between
the original Netflix dataset and the subsample used
here. For example, we can see from Fig. 3(a) that
over 60% of the users have less than 10 ratings and
the average number of evalutions given by users is 13
(whereas the original dataset exhibits an average 200
ratings). In addition, figure Fig. 3(b) shows that over
50% of the items have received less than 200 ratings,
with an average value of 1929. Again, the average
ratings in the original dataset were 5000. In practice,
the subsample we exploit is more difficult than the
original dataset. 1

The MovieLens-1M2 dataset consists of 1, 000, 209
ratings given by 6, 040 users on approximately 3, 706
movies; each user in this dataset has at least 20 ratings.
We randomly partition the original data into 80%
training and 20% test set. Again, Table 2 summarizes

1This also explains the difference between the values declared
in the original papers by the competitors and the values we were

able to reproduce on our subsample.
2http://www.grouplens.org/system/files/ml-data-

10M100K.tar.gz

the values exhibited by the subsets. MovieLens has been
a reference dataset for several CF algorithms.

5.1 Predictive Accuracy. We compare our ap-
proach with most algorithms mentioned in Sec. 3. In
particular, we directly implemented the Regularized
SVD [4], pLSA [27], FMM [14], Multinomial Mixture
Model [20] and URP [19]. The summary of our results
can be found in tables 3(a) and 3(b). Other algorithms
not listed here will be discussed separately in the end of
the section.

In a first set of experiments, we evaluate the perfor-
mance achieved by the User Community Models, con-
sidering both the Multinomial and the Gaussian ver-
sion and performed a suite of experiments varying the
number of user communities and compared the obtained
RMSE values with the ones achieved by the Gaussian
pLSA algorithm on the same data.

Experiments on the three models were performed
by retaining the 10% of the training (user,item,rating)
triplets as held-out data; finally 10 attempts have been
executed to determine the best initial configurations.
Predictions for the User Commutity Models are gen-
erated according to Eq. 4.5, because preliminary ex-
periments have shown that it outperforms the Hard-
Clustering prediction rule. Performance results of the
two User Communities Models and pLSA are shown in
Figures 4(a) and 4(b).

Considering Netflix, the multinomial User Commu-
nity approach and the pLSA do not fnota produce a
significant improvement over the Cinematch base, which
is close to 0.95; for both these models the best RMSE
values is achieved by considering 150 user communities.
The average RMSE for the pLSA model is 0.9474 and
only minor improvements on this result are observed
varying the number of clusters. The gaussian User Com-
munity version outperforms both the multinomial model
and pLSA, achieving the best RMSE value of 0.9280
when 30 user communities are employed. The learning
phase corresponding to the best model takes about 30
minutes on a INTEL XEON E5520 at 2.27 Ghz, with an
average of 6 iterations needed to reach convergence. We
were not able to extensively report on FMM and URP
on Netflix, due essentially to the high computational
resources needed by these models. Table 3(a) shows
the best result we were able to compute for FMM. For
URP, the only model we were able to compute reqi-
ured 17,340secs and did not exhibit significant results.
We were able, however, to thoroughly experiment on
MovieLens with these models as well.

Surprisingly, the multinomial User Community
model has a significant worsening on MovieLens. While
the Gaussian model is still competitive, due essentially
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Figure 4: Performance results.

to the z-score normalization exploited in Eq. 4.9, the
mutinomial model seems to suffer more the skeweness
of the dataset.

The hierarchical schema allows us to obtain more
refined results. This approach has been evaluated by
considering both the multinomial and the gaussian ver-
sion on the first layer clustering, and adopting the pro-
cedure for the dynamic estimation of the number of
topics described in Sec. 4.3. Fig. 4(d) and Fig. 4(c)
show the performances achieved by the two version and
the ones achieved by a natural competitor based on la-
tent factors: the regularized SVD. In both the cases,
the hierarchial approach produces a significant improve-
ment over the first clustering layer, outperforming the
SVD model. On Netflix, hierarchical approach pro-
duces RMSE values 0.9222 (multinomial model) and
0.9211 (gaussian model), while the best result achieved
by the SVD model is 0.9275. This situation is also re-
flected in MovieLens where the Reg. SVD produced
0.9345. Again, it’s a surprise to see that in this case
the multinomial hierarchical approach (0.9274) outper-
forms the Gaussian hierarchical (0.9296). This result is

even more surprising, if we consider that the multino-
mial user communities didn’t perform very well in the
first level. It seems that the adoption of specific item
categories boosts the performance significantly.

Figure 4(e) compares all the probabilistic ap-
proaches to co-clustering on MovieLens data. Here
we compare our approaches with FMM, Bregman Co-
clustering [12] and Block Mixture Model [16]. Again,
the hierarchical approaches outperform the other co-
clustering approaches. This gives evidence that con-
ditioning item categories to user communities provides
better structures. Finally, Fig. 4(f) shows the execu-
tion times of these co-clustering approaches. Here, we
employ 10 item categories and vary the number of user
communities.

A final validation qualitatively compares our ap-
proach with some among the most popular and effective
approaches for making recommendations. We focused
on single techniques rather than ensembles or combi-
nations of multiple predictors. Also, we did not take
into account models directly modeling temporal aspects,
such as the Time Effect normalization [17] or the SVD



(a) NextFlix Data

Approaches Best RMSE Parameters
Overall Mean 1.0839
User Avg 1.0368
Item Avg 1.009
Knn Simple 1.0066 K = 15
Scalable Coclustering 0.9862 K = 3 , H = 5
Weighted Centering 0.9707 α = 0.6
Knn with Double Cen. Baseline 0.9637 K = 20
Flexible Mixture Model 0.9540 K = 10 , H = 70
Block Mixture model 0.9477 K = 30 , H = 30
PLSA 0.9474 K = 100
Knn with user effect baseline 0.9453 K = 20
Multinomial Mixture Model 0.9434 K = 10
User Communities Multinomial 0.9391 K = 70
Regularized SVD 0.9275 #features = 100
User Communities Gaussian 0.9274 K = 30
KNN Relationship model 0.9258 K = 20
Hierarchical model Multinomial - Fixed 0.9251 K = 50 , H = 100
Hierarchical model Multinomial - Flexible 0.9222 K = 100
Hierarchical Model Gaussian - Fixed 0.9212 K = 50 , H = 100
Hierarchical Model Gaussian - Flexible 0.9211 K = 30

TABLE I
COMPARATIVE ANALYSIS ON A SAMPLE OF NETFLIX DATA

Approaches Best RMSE Parameters
Overall Mean 1.1150
User Avg 1.0462
URP 0.9869 K = 10
Item Avg 0.9862
User Communities Multinomial 0.9638 K = 4
Multinomial Mix 0.9640 K = 2
Weighted Centering 0.961 α = 0.7
URP - Boosted 0.9568 K = 3
PLSA 0.9468 K = 2
Regularized SVD 0.9345 #features = 8
Block Mixture model 0.9467 K = 10 , H = 7
Scalable Coclustering 0.9416 K = 7, H = 5
User Communities Gaussian 0.9359 K = 2
Flexible Mixture Model 0.9335 K = 10, H = 10
Hierarchical Model Gaussian - Fixed 0.9297 K = 2 , H = 2
Hierarchical Model Gaussian - Flexible 0.9296 K = 2
Hierarchical model Multinomial - Fixed 0.9278 K = 2 , H = 3
Hierarchical model Multinomial - Flexible 0.9274 K = 3

TABLE II
COMPARATIVE ANALYSIS ON MOVIELENS1M

(b) MovieLens-1M Data

Approaches Best RMSE Parameters
Overall Mean 1.0839
User Avg 1.0368
Item Avg 1.009
Knn Simple 1.0066 K = 15
Scalable Coclustering 0.9862 K = 3 , H = 5
Weighted Centering 0.9707 α = 0.6
Knn with Double Cen. Baseline 0.9637 K = 20
Flexible Mixture Model 0.9540 K = 10 , H = 70
Block Mixture model 0.9477 K = 30 , H = 30
PLSA 0.9474 K = 100
Knn with user effect baseline 0.9453 K = 20
Multinomial Mixture Model 0.9434 K = 10
User Communities Multinomial 0.9391 K = 70
Regularized SVD 0.9275 #features = 100
User Communities Gaussian 0.9274 K = 30
KNN Relationship model 0.9258 K = 20
Hierarchical model Multinomial - Fixed 0.9251 K = 50 , H = 100
Hierarchical model Multinomial - Flexible 0.9222 K = 100
Hierarchical Model Gaussian - Fixed 0.9212 K = 50 , H = 100
Hierarchical Model Gaussian - Flexible 0.9211 K = 30

TABLE I
COMPARATIVE ANALYSIS ON A SAMPLE OF NETFLIX DATA

Approaches Best RMSE Parameters
Overall Mean 1.1150
User Avg 1.0462
URP 0.9869 K = 10
Item Avg 0.9862
User Communities Multinomial 0.9638 K = 4
Multinomial Mix 0.9640 K = 2
Weighted Centering 0.961 α = 0.7
URP - Boosted 0.9568 K = 3
PLSA 0.9468 K = 2
Regularized SVD 0.9345 #features = 8
Block Mixture model 0.9467 K = 10 , H = 7
Scalable Coclustering 0.9416 K = 7, H = 5
User Communities Gaussian 0.9359 K = 2
Flexible Mixture Model 0.9335 K = 10, H = 10
Hierarchical Model Gaussian - Fixed 0.9297 K = 2 , H = 2
Hierarchical Model Gaussian - Flexible 0.9296 K = 2
Hierarchical model Multinomial - Fixed 0.9278 K = 2 , H = 3
Hierarchical model Multinomial - Flexible 0.9274 K = 3

TABLE II
COMPARATIVE ANALYSIS ON MOVIELENS1MTable 3: Summary of the comparative analysis (K and

H represent respectively the number of user communi-
ties and item topics)

with temporal dynamics [28]: in fact they exploit tem-
poral information about the preference of the users in a
given period in order to refine predictions in the same
period, while in a typical setting a recommender system
is asked to make suggestions for the future.

Results on Netflix data show that the prediction
accuracy achieved by the proposed model is competitive
to the ones achieved by other popular recent approaches,
such as PMF [6], Bi-LDA [10] and SVD++ [5]: the first
one is reported to achieve on a sample of 1M ratings
of Netflix data an RMSE equals to 0.9253; the latter
achieves 0.9333 on the overall Netflix dataset. As far as
the SVD++ is concerned, although it achieves a 0.904
RMSE value on the considered dataset, the problem
with such an approach is that it takes advantage of
implicit information contained in the test-set.

The model also compares with fLDA [7] and the
Regression-based latent factor models [23], which inte-
grate user/item features and on a 75%−25% split of the
MovieLens-1M achieve 0.9381 and 0.9258 RMSE values.

5.2 Structure Discovery. The hiearchical model
can be used for classical pattern discovery tasks, such as
the identification of the most appreciated items for each
user community, as well a new kind of analysis, in which
we focus on different topics and their impacts on the
rating behaviour of users within the same community.
Table 4 shows a selection from the most significant items
for 10 user communities and their topics. We show 5
communities only, and the 5 most relevant topics within
them. An item i is considered significant with respect to
a topic h within the community k if Pk(dh|i) > Pk(d′h|i)
∀h′ 6= h. For each community we register its prior
probability (in square brackets) and the a-posteriori
interpretation of its topics.

For instance, user community #2 is characterized
by the topics: “Fantasy”, “Sci-Fi”, “Live-Music Perfor-
mance” “Action” and “Drama”. It is worth noticing
how the informative content in the hierarchy allows to
better discriminate among topics and tendencies. By
focusing on the first level only, the same community
would exhibit a global attitude towards action movies
(as “Gladiator”, “Die Hard” and “Terminator 2” are
the most probable items here).

6 Conclusions and Future Works

We proposed a probabilistic model for the discovery of
both global and local patterns from users’ preference
data. Experimental evaluation showed that both the
User Community model (for the discovery of global
patterns) and the hierarchical topic detection model
(for the discovery of local patterns) exhibits prediction
capabilities comparable to state-of-the art approaches.
Also, the proposed approach exhibits high flexibility
in discovering structural patterns capable of providing
suitable interpretations of the users’ preference data.

The proposed approach is suitable for further inves-
tigations in several respects. Foremost, the proposed
strategy can be combined with temporal information
in order to better model user changes in preferences.
Also, the proposed approach allows suitable integra-
tion of prior modeling and Bayesian estimation, for the
”cold-start” issues.
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Community 1 [0.09] Community 2 [0.05] Community 3 [0.17] Community 4 [0.06] Community 5 [0.04]
Topic 1 Curb Your- Star Wars: EpIV Gladiator The Best- It’s a-

Enthusiasm of Friends Wonderful Life
The Office: Series 2 The Incredibles The Shield Friends: S6 Star Wars: EpIV
The Office Special The Princess Bride Star Wars: EpIV Gilmore Girls Ben-Hur
Monty Python’s Lord of the Rings: Saving- Friends: S5 Gone with-
Flying Circus The Two Towers Private Ryan the Wind

Interpr.: Comedy Fantasy Action, war Sitcom Classic

Topic 2 Bruce Springsteen: Doctor Who: Knowing Me- The Life and- Blue’s Clues:
Anthology 1978-2000 Pyramids of Mars Knowing You Times of Frida Kahlo Shapes and Colors
Karajan: Mozart: Doctor Who: Shag Birth of the- Yu-Gi-Oh!
Don Giovanni The Ribos Operation Blues / Blue Skies
Music of the Heart Battlestar Galactica Aladdin Julius Caesar Sesame Street
Music for Montserrat Last Exile Side Out American Dream Black Beauty

Interpr.: Music Sci-Fi Comedy Documentary For children

Topic 3 Glengarry- Harry Connick Jr.: The Secret- Reservoir Dogs Gone in-
Glen Ross Only You Lives of Dentists 60 Seconds
JFK Donna Summer: Live Proof of Life Get Shorty Intolerable Cruelty
Bataan Ben Harper: Live The Ice Storm The Naked Gun Confidence
Changing Lanes Mozart: Don Giovanni Body Story 8MM The Naked Gun

Interpr.: Drama Live performances Drama Crime Crime

Topic 4 Highlander Robin Hood: Equilibrium Amelie A Midsummer-
Prince of Thieves Night’s Dream

The Recruit Proof of Life Ladder 49 Victor / Victoria Chances Are
Ali Mission Impossible II Bad Company Princess Mononoke Fools Rush In
Rambo: First Blood Vanilla Sky Waking Life Sophie’s Choice Mighty Aphrodite

Interpr.: Action Action, famous actors Thriller Romance Comedy, Fantasy

Topic 5 Men in Black Love Story 13 Going on 30 All the Pretty Horses The Parallax View
Alien Resurrection Coffee and Cigarettes Planet of the Apes Romeo Must Die Waterworld
Spider-Man 2 A Walk in the Clouds Men in Black Great Expectations Romeo Must Die
X-Men: Evolution Hannah and- Rosemary- The Manchurian- Swimming-

Her Sisters and Thyme Candidate with Sharks
Interpr.: Action, Sci-Fi Drama, romance Fantasy, Comedy Drama Thriller
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