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Abstract. In this work we perform an analysis of probabilistic ap-
proaches to recommendation upon a different validation perspective,
which focuses on accuracy metrics such as recall and precision of the
recommendation list. Traditionally, state-of-art approches to recommen-
dations consider the recommendation process from a “missing value pre-
diction” perspective. This approach simplifies the model validation phase
that is based on the minimization of standard error metrics such as
RMSE. However, recent studies have pointed several limitations of this
approach, showing that a lower RMSE does not necessarily imply im-
provements in terms of specific recommendations. We demonstrate that
the underlying probabilistic framework offers several advantages over tra-
ditional methods, in terms of flexibility in the generation of the recom-
mendation list and consequently in the accuracy of recommendation.
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1 Introduction

Recommender systems (RS) play an important role in several domains as they
provide users with potentially interesting recommendations within catalogs of
available information/products/services. Recommendations can rely either on
static information about the content of the available catalogs [16], or on a-
posteriori analysis of past behavior through collaborative filtering approaches
(CF) [7]. CF techniques are effective with huge catalogs when information about
past interactions is available.

To improve the accuracy of CF-based recommendation engines, researchers
have focused on the development of accurate techniques for rating prediction.
The recommendation problem has been interpreted as a missing value prediction
problem [19], in which, given an active user, the system is asked to predict her
preference for a set of items. Since a user is more prone to access items for which
she will likely provide a positive feedback, a recommendation list can be be hence
built by drawing upon the (predicted) highly-rated items.

Under this perspective, a common approach to evaluate the predictive skills
of a recommender systems is to minimize statistical error metrics, such as the
Root Mean Squared Error (RMSE). The common assumption is that small im-
provements in RMSE would reflect into an increase of the accuracy of the recom-
mendation lists. This assumption, however does not necessarily hold. In [4], the
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authors review the most common approaches to CF-based recommendation, and
compare them according to a new testing methodology which focuses on the ac-
curacy of the recommendation lists rather than on the rating prediction accuracy.
Notably, cutting-edge approaches characterized by low RMSE values achieves
performances comparable to naive techniques, whereas simpler approaches, such
as the pure SVD, consistently outperforms the other techniques. In an attempt
to find an explanation, the authors impute the contrasting behavior with a “lim-
itation of RMSE testing, which concentrates only on the ratings that the user
provided to the system” and consequently “misses much of the reality, where all
items should count, not only those actually rated by the user in the past” [4].

The point is that pure SVD rebuilds the original rating matrix in terms of
latent factors, rather than trying to minimize the error on observed data. In
practice, the underlying optimization problem is quite different, since it takes
into account the whole rating matrix considering both observed and unobserved
preference values. To summarize, it is likely to better identify the latent factors
and the hidden relationships between both factor/users and factors/items. It
is natural then to ask whether more sophisticated latent factor models confirm
this trend, and are able to guarantee better results in terms of recommendation
accuracy, even when they provide poor RMSE performances.

Among the state-of-the art latent factor models, probabilistic techniques of-
fer some advantages over traditional deterministic models: notably, they do not
minimize a particular error metric but are designed to maximize the likelihood
of the model given the data which is a more general approach; moreover, they
can be used to model a distribution over rating values which can be used to de-
termine the confidence of the model in providing a recommendation; finally, they
allow the possibility to include prior knowledge into the generative process, thus
allowing a more effective modeling of the underlying data distribution. However,
previous studies on recommendation accuracy do not take into consideration
such probabilistic approaches to CF, which instead appear rather promising un-
der the above devised perspective.

In this paper we adopt the testing methodology proposed in [4], and dis-
cuss also other metrics [6] for assessing the accuracy of the recommendation list.
Based on these settings, we perform an empirical study of some paradigmatic
probabilistic approaches to recommendation. We study different techniques to
rank items in a probabilistic framework, and evaluate their impact in the gener-
ation of a recommendation list. We shall consider approaches for both implicit
and explicit preference values, and show that latent factor models, equipped
with the proper ranking functions, achieve competitive advantages over tradi-
tional techniques.

The rest of the paper is organized as follows: the testing methodology and
the accuracy metrics are discussed in Sec. 2. Section 3 introduces the proba-
bilistic approaches to CF that we are interested in evaluating. The approaches
we include can be considered representative of wider classes which share the
same roots. In this context, our results can be extended to more sophisticated
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approaches. Finally, in Sec. 4 we compare the approaches and assess their effec-
tiveness according to the selected testing methodology.

2 Evaluating Recommendations: A Review

To begin with, we introduce some notation to be used throughout the paper.
User’s preferences can be represented by using a m× n rating matrix R, where
m is the cardinality of the user-set UR = {u1, · · · , un} and n is the cardinality of
the item-set IR = {i1, · · · , in}. We denote by rui (resp. Ru

i when the reference
to the matrix needs to be made explicit) the rating value associated to the
pair 〈u, i〉. Values fall within a fixed integer range V = {0, · · · , V }, where 0
denotes “rating unknown”, and V represents the highest interest value . Implicit
feedback assumes that V = 1. When V > 1, we will denote by rR the average
rating among all those ratings rui > 0 in R. Users tend to express their interest
only on a restricted number of items; thus, the rating matrix is characterized by
an exceptional sparseness factor (e.g., more than 95%).. Let IR(u) denotes the
set of products rated by the user u: IR(u) = {i ∈ I : rui 6= 0}; symmetrically,
we will denote by UR(i) the set of users who have expressed their preference on
the item i.

The general framework for the generation of a recommendation list can be
modeled as follows. We will denote by Lj

u the recommendation list provided by
the system to the user u during a generic session j. Then, the following protocols
applies:

– Let Cju a list of D candidate random items unrated by the user u in the past
sessions 1, . . . , j − 1;

– Associate to each item i ∈ Cju a score pu,ji which represents the user’s interest
for i in session j;

– Sort Cju in descending order given the values pu,ji ;
– Add the first N items from Cju to Lj

u and return the latter to the user.

Simple scoring functions can be obtained considering non-personalized baseline
models which take into account the popularity or the average rating of an items.
More specifically, Top Popular (Top-Pop) recommends items with the highest
number of ratings, while Item Average (Item-Avg) selects items with the highest
average rating. For the purposes of this paper, we assume that each RS is capable
of providing a specific scoring pu,ji . Thus, the testing methodology basically relies
on the evaluation of capability of the RS in providing higher scores for the items
of interest in Cju.

A common framework in the evaluation of the predictive capabilities of a RS
algorithm is to split the rating matrix R into matrices T and S: the first one is
used to train the RS, while the latter is used for validation. It is worth noticing
that, while both T and S share the same dimensions as R, for each pair (u, i) we
have that Su

i > 0 implies Tu
i = 0, i.e. no incompatible values overlap between

training and test set. By selecting a user in S, the set Cju is obtained by drawing
upon IR−IT(u). Next, we ask the system to predict a set of items which he/she
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may like and then measure the accuracy of the provided recommendation. Here,
the accuracy is measured by comparing the top-N items selected by resorting to
the RS, with those appearing in IS(u).

Precision and Recall of the Recommendation List. A first, coarse-grained ap-
proach to evaluation, can be obtained by employing standard classification-based
accuracy metrics such as precision and recall, which require the capability to dis-
tinguish between relevant and not relevant recommendations. Given a user, we
assume a unique session of recommendation, and we compare the recommen-
dation list of N items provided by the RS, according to the protocol described
above, with those relevant items in IS(u). In particular, assuming we can iden-
tify a subset T r

u ⊆ IS(u) of relevant items, we can compute precision and recall
as:

Recall(N) =
1

M

M∑
u=1

|L·
u ∩ T r

u |
|T r

u |

Precision(N) =
1

M

M∑
u=1

|L·
u ∩ T r

u |
N

Relevance can be measured in several different ways. Here we adopt two alter-
native definitions. When V > 1 (i.e., an explicit preference value is available)
we denote as relevant all those items which received a rating greater than the
average ratings in the training set, i.e.,

T r
u = {i ∈ IS(u)|Su

i > rT}

Implicit preferences assume instead that all items in IS(u) are relevant.

Evaluating Users Satisfaction. The above definitions of precision and recall aims
at evaluating the amount of useful recommendations in a single session. A dif-
ferent perspective can be considered by assuming that a recommendation meets
user satisfaction if he/she can find in the recommendation list at least an item
which meets his/her interests. This perspective can be better modeled by a dif-
ferent approach to measure accuracy, as proposed in [5, 4]. The approach relies
on a different definition of relevant items, namely:

T r
u = {i ∈ IS(u)|Su

i = V }

Then, the following testing protocol can be applied:

– For each user u and for each positively-rated item i ∈ T r
u :

• Generate the candidate list Cu by randomly drawing from IR− (IT(u)∪
{i});

• add i to Cu and sort the list according to the scoring function;
• Record the position of the item i in the ordered list:

– if i belongs to the top-k items, we have a hit
– otherwise, we have a miss
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Practically speaking, we ask the RS to rank an initial random sample which also
contains i. If i is actually recommended, we have an hit, otherwise the RS has
failed in detecting an item of high interest for the considered user. Recall and
precision can hence be tuned accordingly:

USRecall(N ) =
#hits

|Ts|
(1)

USPrecision(N ) =
#hits

N · |T r
u |

=
recall(N )

N
(2)

Notice that the above definition of precision does not penalize false positives:
the recommendation is considered successful if it matches at least an item of
interest. However, neither the amount of non-relevant“spurious” items, nor the
position of the relevant item within the top-N is taken into account.

3 Collaborative Filtering in a Probabilistic Framework

Probabilistic approaches assume that each preference observation is randomly
drawn from the joint distribution of the random variables which model users,
items and preference values (if available). Typically, the random generation pro-
cess follows a bag of words assumption and preference observations are assumed
to be generated independently. A key difference between probabilistic and deter-
ministic models relies in the inference phase: while the latter approaches try to
minimize directly the error made by the model, probabilistic approaches do not
focus on a particular error metric; parameters are determined by maximizing the
likelihood of the data, typically employing an Expectation Maximization pro-
cedure. In addition, background knowledge can be explicitly modeled by means
prior probabilities, thus allowing a direct control on overfitting within the infer-
ence procedure [8]. By modeling prior knowledge, they implicitly solve the need
for regularization which affects traditional gradient-descent based latent factors
approaches.

Further advantages of probabilistic models can be found in their easy inter-
pretability: they can often be represented by using a graphical model, which
summarizes the intuition behind the model by underlying causal dependencies
between users, items and hidden factors. Also, they provide an unified frame-
work for combining collaborative and content features [1, 21, 11], to produce more
accurate recommendations even in the case of new users/items. Moreover, as-
suming that an explicit preference value is available, probabilistic models can
be used to model a distribution over rating values which can be used to infer
confidence intervals and to determine the confidence of the model in providing
a recommendation.

In the following we will briefly introduce some paradigmatic probabilistic ap-
proaches to recommendation, and discuss how these probabilistic model can be
used for item ranking, which is then employed to produce the top-N recommen-
dation list. The underlying idea of probabilistic models based on latent factors
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is that each preference observation 〈u, i〉 is generated by one of k possible states,
which informally model the underlying reason why u has chosen/rated i. Based
on the mathematical model, two different inferences can be then supported to
be exploited in item ranking, where the main difference [9], lies in a difference
way of modeling data according to the underlying model:

– Forced Prediction: the model provides estimate of P (r|u, i), which represents
the conditional probability that user u assign a rating value r given the item
i;

– Free prediction: the item selection process is included in the model, which is
typically based on the estimate of P (r, i|u). In this case we are interested in
predicting both the item selection and the preference of the user for each se-
lected item. P (r, i|u) can be factorized as P (r|i, u)P (i|u); the resulting model
still includes a component of forced prediction which however is weighted by
the item selection component and thus allows a more precise estimate of
user’s preferences.

3.1 Modeling Preference Data

In the simplest model, we assume that a user u is associated with a latent
factor Z, and ratings for an item i are generated according to this factor. the
generative model for this mixture is given in Fig. 1(a). The θ parameter here a
the prior probability distribution P (Z), whereas βi,z is the prior for the rating
generation P (R = r|i, z). We shall refer to the Multinomial Mixture Model
(MMM, [14]) to denote that βi,z is a multinomial over V. Forced prediction can
be achieved by

P (r|i, u) =
∑
z

βz,i,rP (z|u) (3)

where
P (z|u) ∝ P (uobs|z)θz

and uobs represents the observed values (u, i, r) in R.
The probabilistic Latent Semantic Analysis approach (PLSA, [9]) spec-

ifies a co-occurence data model in which the user u and item i are conditionally
independent given the state Z of the latent factor. Differently from the previous
mixture model, where a single latent factor is associated with every user u, the
PLSA model associates a latent variable with every observation triplet (u, i, r).
Hence, different ratings of the same user can be explained by different latent
causes in PLSA (modeled as priors {θu}1,...,m in Fig. 1(c)), whereas a mixture
model assumes that all ratings involving the same user are linked to the same
underlying community. PLSA directly supports item selection:

P (i|u) =
∑
z

φz,iθu,z (4)

where φz represents a multinomial distribution over items. The main drawback
of the PLSA approach is that it cannot directly model new users, because the
parameters θu,z = P (z|u) are specified only for those users in the training set.
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Fig. 1. Generative models to preference data.
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(f) URP
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Fig. 1. Generative models to preference data.

We consider two further variants for the PLSA, where explicit preferences are
modeled by an underlying distribution βz,i. In the Aspect Model (AM, [10])
βz,i is a multinomial over V. In this case, the rating probability can be modeled
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as

P (r|u, i) =
∑
z

βr,i,zθu,z (5)

Conversely, the Gaussian Mixture Model (G-PLSA, [8]) models βz,i = (µiz, σiz)
as a gaussian distribution, and provides a normalization of ratings through the
user’s mean and variance, thus allowing to model users with different rating
patterns. The corresponding rating probability is

P (r|u, i) =
∑
z

N (r;µiz, σiz)θu,z (6)

The Latent Dirichlet Allocation [3] is designed to overcome the main
drawback in the PLSA-based models, by introducing Dirichlet priors, which
provide a full generative semantic at user level and avoid overfitting. Again,
two different formulations, are available, based on whether we are interested in
modeling implicit (LDA) or explicit (User Rating Profile, URP[13]) preference
values. In the first case, we have:

P (i|u) =

∫ ∑
z

φz,iθzP (θ|uobs)dθ (7)

(where P (θ|uobs) is estimated in the inference phase). Analogously, for the URP
we have

P (r|u, i) =

∫ ∑
z

βz,i,rθzP (θ|uobs)dθ (8)

The User Communities Model (UCM, [2]) adopts the same inference
formula Eq. 3 of the multinomial model. Nevertheless, it introduces some key
features, that combine the advantages of both the AM and the MMM, as shown
in Fig. 1(b). First, the exploitation of a unique prior distribution θ over the
user communities helps in preventing overfitting. Second, adds flexibility in the
prediction by modeling an item as an observed (and hence randomly generated)
component. UCM directly a free-prediction approach.

Finally, the Probabilistic Matrix Factorization approach (PMF, [18])
reformulates the rating assignment as a matrix factorization. Given the latent
user and item k-feature matrices γu and δi, (where K denotes the number of
the features employed in the factorization), the preference value is generated by
assuming a Gaussian distribution over rating values conditioned on the interac-
tions between the user and the considered item in the latent space, as shown in
Fig. 1(g). In practice, P (r|u, i) is modeled as a gaussian distribution, with mean
γTu δi and fixed variance σ:

P (r|u, i) = N (r; γTu δi, σ
2) (9)

Both the original approach and its bayesian generalizations [17, 20] are charac-
terized by high prediction accuracy.
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3.2 Item Ranking

In this section we discuss how the above described models can be used to provide
the ranking pui for a given user u and an item i in the protocol described in Sec. 2.

Predicted Rating. The most intuitive way to provide item ranking in the recom-
mendation process relies on the analysis of the distribution over preference values
P (r|u, i) (assuming that we are modeling explicit preference data). Given this
distribution, there are several methods for computing the ranking for each pair
〈u, i〉; the most commonly used is the expected value E[R|u, i], as it minimizes
the MSE and thus the RMSE:

pui = E[R|u, i] (10)

We will show in Sec. 4 that this approach fails in providing accurate recommen-
dation and discuss about potential causes.

Item Selection. For co-occurrence preference approaches, the rank of each item
i, with regards to the user u can be computed as the mixture:

pui = P (i|u) =
∑
z

P (z|u)P (i|z) (11)

where P (i|z) is the probability that i will be selected by users represented by the
abstract pattern z. This distribution is a key feature of co-occurrence preference
approaches and models based on free-prediction. When P (i|z) is not directly
inferred by the model, we can still estimate it by averaging on all the possible
users who selected i:

P (i|z) ∝
∑
u

δ(u, i)TP (z|u)

where δT(u, i) = 1 if Tu
i 6= 0.

Item Selection And Relevance. In order to force the selection process to concen-
trate on relevant items, we can extend the ranking discussed above, by including
a component that represents the “predicted” relevance of an item with respect
to a given user:

pui = P (i, r > rT|u)

= P (i|u)P (r > rT|u, i) =
∑
z

P (z|u)P (i|z)P (r > rT|i, z) (12)

where P (r > rT|i, z) =
∑

r>rT
P (r|i, z). In practice, an item is ranked on the

basis of the value of its score, by giving high priority to the high-score items.
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4 Evaluation

In this section we experiment the testing protocols presented in Sec. 2 on the
probabilistic approaches defined in the previous section. We use the MovieLens-
1M1 dataset, which consists of 1, 000, 209 ratings given by 6, 040 users on approx-
imately 3, 706 movies, with a sparseness coefficient 96% and an average number
of ratings 132 per user, and 216 per item. In the evaluation phase, we adopt
a MonteCarlo 5-folds validation, where for each fold contains about the 80% of
overall ratings and the remaining data (20%) is used as test-set. The final results
reported by averaging the values achieved in each fold.

In order to make our results comparable with the ones reported in [4], we
consider Top-Pop and Item-Avg algorithms as baseline, and Pure-SVD as a main
competitor. Notice that there are some differences between our evaluation and
the one performed in the above cited study, namely: (i) we decided to employ
bigger test-sets (20% of the overall data vs 1.4%) and to cross-validate the re-
sults; (ii) for lack of space we concentrate on MovieLens only, and omit further
evaluations on the Netflix data (which however, in the original paper [4], confirm
Pure-SVD as the top-performer); (iii) we decided to omit the “long tail” test,
aimed at evaluating the capability of suggesting non-trivial items, as it is out of
the scope of this paper.2

In the following we study the effects of the ranking function on the accuracy
of the recommendation list. The results we report are obtained by varying the
length of the recommendation list in the range 1− 20 and the dimension of the
random sample is fixed to D = 1000. In a preliminary test, we found the optimal
number of components for the Pure-SVD to be set to 50.

4.1 Expected Value

We start our analysis from the evaluation of the recommendation accuracy
achieved by approaches that model explicit preference data, namely PMF, MMM,
URP, UCM and G-PLSA, where the predicted rating is employed as ranking
function. First of all, the following table summarizes the RMSE obtained by
these approaches:

Approach RMSE #Latent Factors

Item Avg 0.9784 -

MMM 1.0000 20

G-PLSA 0.9238 70

UCM 0.9824 10

URP 0.8989 10

PMF 0.8719 30

1 http://www.grouplens.org/system/files/ml-data-10M100K.tar.gz
2 Notice, however, that it is still possible to perform an indirect measurement of the

non-triviality and correctness of the discussed approaches by measuring the gain in
recommendation accuracy wrt. the Top-Pop recommendation algorithm.
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The results about Recall and Precision are given in Fig. 2, where the respec-
tive number of latent factors is given in brackets. Considering user satisfaction,
almost all the probabilistic approaches fall between the two baselines. Pure-SVD
outperforms significantly the best probabilistic performers, namely URP and
PMF. The trend for probabilistic approaches does not change considering Recall
and Precision, but in this case not even the Pure-SVD is able to outperform
Top-Pop, which exhibits a consistent gain over all the considered competitors.
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Fig. 2. Recommendation Accuracy achieved by probabilistic approaches considering
E[r|u, i] as ranking function

A first summary can be obtained as follows. First, we can confirm that there
is no monotonic relationship between RMSE and recommendation accuracy. All
the approaches tend to have a non-deterministic behavior, and even the best
approaches provide unstable results depending on the size N . Further, ranking
by the expected value exhibits unacceptable performance on the probabilistic
approaches, which reveal totally inadequate in this perspective. More in general,
any variant of this approach that we do not report here for space limitations)
does not substantially change the results.
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4.2 Item Occurrence

Things radically change when item occurrence is taken into consideration. Fig. 3
show the recommendation accuracy achieved by probabilistic models which em-
ploy Item-Selection (LDA,PLSA,UCM and URP) and Item-Selection&Relevance
(UCM and URP). The LDA approach significantly outperforms all the available
approaches. Surprisingly, UCM is the runner-up, as opposed to the behavior ex-
hibited with the expected value ranking. it is clear that the component P (i|z)
here plays a crucial role, that is further strengthened by the relevance ranking
component.
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Fig. 3. Recommendation Accuracy achieved by probabilistic approaches considering
P (i|u) or P (i, r > 3|u) as ranking functions

Also surprising is the behavior of URP, which still achieves a satisfactory
performance compared to Pure-SVD. However, it does not compare to LDA. The
reason can be found in the fact that the inference procedure in the LDA directly
estimates P (i|z), whereas such a component in the URP model is approximated
a-posteriori. This is also proved by the unsatisfactory performance of the MMM
approach which falls short of the expectations. Since the UCM is an extension
of the MMM, it is clear that explicitly inferring the φ component in the model
helps in achieving a stronger accuracy.
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The PLSA model also seems to suffer from from the overfitting issues, as it is
not able to reach the performances of the Pure-SVD. On the other side, if user
satisfaction is not taken into account, the PLSA outperforms the Pure-SVD,
as it follows the general trend of the Top-Pop model. More in general, mod-
els equipped with Item-Selection&Relevance outperform their respective version
which make recommendation basing only on the Item-Selection component.

We also perform an additional test to evaluate the impact of the size of
the random sample in the testing methodology employed to measure user satis-
faction. Results achieved by LDA,Pure-SVD, UCM/URP (Selection&Relevance
Ranking) are given in Fig. 4. Probabilistic approaches outperform systematically
Pure-SVD for each value of D.
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Fig. 4. Recommendation Accuracy achieved by probabilistic approaches considering
K=20 and varying the dimension of the random Sample

4.3 Discussion

There are two main considerations in the above figures. One is that rating pre-
diction fails in providing accurate recommendations. The second observation is
the unexpected strong impact of the item selection component, when properly
estimated.

In an attempt to carefully analyze the rating prediction pitfalls, we can plot
in Fig. 5(a) the contribution to the RMSE in each single evaluation in V by the
probabilistic techniques under consideration. Item-Avg acts as baseline here.
While predictions are accurate for values 3 − 4, they result rather inadeguate
for border values, namely 1, 2 and 5. This is mainly due to the nature of RMSE,
which penalizes larger errors. This clearly supports the thesis that low RMSE
does not necessarily induces good accuracy, as the latter is mainly influenced by
the items in class 5 (where the approaches are more prone to fail). It is clear
that a better tuning of the ranking function should take this component into
account.
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Fig. 5. Analysis of Prediction Accuracy

Also, by looking at the distribution of the rating values, we can see that the
dataset is biased towards the mean values, and more in general the low rating
values represent a lower percentage. This explains, on one side, the tendency of
the expected value to flatten towards a mean value (and hence to fail in providing
an accurate prediction). On the other side, the lack of low-rating values provides
an interpretation of the dataset as a Like/DisLike matrix, for which the item
selection tuning provides a better modeling.

By the way, the rating information, combined with item selection, provides
a marginal improvement, as testified by Fig. 6(a). Here, a closer look at the
UCM approach is taken, by plotting three curves relative to the three different
approaches to item ranking. Large recommendation lists tend to be affected by
the rating prediction.
Our experiments have shown that item selection component plays the most im-
portant role in recommendation ranking. However, better results can be achieved
by considering also a rating prediction component. To empirically prove the ef-
fectiveness of such approach, we performed a final test in which item ranking is
performed by employing an ensemble approach based on the item selection and
relevance ranking. In this case, the components of the ranking come from dif-
ferent model: the selection probability is computed according to an LDA model,
while the relevance ranking is computed by employing the URP model. Fig. 6(b)
shows that this approach outperforms LDA, achieving the best result in recom-
mendation accuracy ( due to the lack of space we show only the trend corre-
spoding to US-Recall).

5 Conclusion and Future Works

We have shown that probabilistic models, equipped with the proper ranking func-
tion, exhibit competitive advantages over state-of-the-art RS in terms of recom-
mendation accuracy. In particular, we showed strategies based on item selection
guarantee significant improvements, and we have investigated the motivations
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behind the failure of prediction-based approaches. The advantage of probabilis-
tic models lies in their flexibility, as they allow switching between both methods
in the same inference framework. The nonmonotonic behavior of RMSE also
finds its explanation in the distribution of errors along the rating values, thus
suggesting different strategies to be developed for providing prediction-based
recommendation.

Besides the above mentioned, there are other significant advantages in the
adoption of probabilistic models for recommendation. Recent studies pointed out
that there is more in recommendation than just rating prediction. A successful
recommendation should answer to the simple question ‘What is the user actu-
ally looking for?’ which is strictly tied with dynamic user profiling. Moreover,
prediction-based recommender systems do not consider one of the most impor-
tant applications from the retailer point of view: suggesting users products they
would not have found otherwise discovered.

In [15] the authors argued that the popular testing methodology based on
prediction accuracy is rather inadeguate and does not capture important aspects
of the recommendations, like non triviality, serendipity, users needs and expec-
tations, and their studies have scaled down the usefulness of achieving a lower
RMSE [12]. In short, the evaluation of a recommender cannot rely exclusively
on prediction accuracy but must take into account what is really displayed to
user, i.e the recommendation list, and its impact on his/her navigation.

Clearly, probabilistic graphical models, like the ones discussed in this paper,
provide several components which can be fruitfully exploited for the estimation
of such measures. Latent factors, probability of item selection and rating proba-
bility can help in better specify usefulness in recommendation. We plan to extend
the framework in this paper in this promising directions, by providing subjective
measures for such features and measuring the impact of such models.
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