
Influence-based Network-oblivious
Community Detection

Nicola Barbieri
Yahoo Labs, Barcelona, Spain

barbieri@yahoo-inc.com

Francesco Bonchi
Yahoo Labs, Barcelona, Spain

bonchi@yahoo-inc.com

Giuseppe Manco
ICAR-CNR, Rende, Italy

manco@icar.cnr.it

Abstract—How can we detect communities when the social
graphs is not available? We tackle this problem by modeling
social contagion from a log of user activity, that is a dataset of
tuples (u, i, t) recording the fact that user u “adopted” item i
at time t. This is the only input to our problem. We propose
a stochastic framework which assumes that item adoptions are
governed by un underlying diffusion process over the unobserved
social network, and that such diffusion model is based on
community-level influence. By fitting the model parameters to
the user activity log, we learn the community membership and
the level of influence of each user in each community. This allows
to identify for each community the “key” users, i.e., the leaders
which are most likely to influence the rest of the community to
adopt a certain item. To the best of our knowledge, this is the
first work studying community detection without the network.

I. INTRODUCTION

While the literature on community detection methods is
wide (see, e.g., [1]), the applications are mainly limited to
simple data analysis for social sciences. This is due to a fun-
damental observation: the players which would benefit more
from knowing the community structure of a social network,
e.g., companies advertising or developing web applications,
often do not have access to the whole network! It is a matter of
fact that the social network platforms are owned by third party
such as Facebook or Twitter, which have realized that their
proprietary social graph is an asset of inestimable value [2].
Thus they keep it secret, for sake of commercial competitive
advantage, as well as due to privacy legislation.

In this paper we tackle the ambitious problem of inferring
the community structure when the social graph is not available.
A first step towards this goal, is to analyze the alternative
dynamics and data that we can exploit. A company advertising
or developing applications over an on-line social network owns
the log of user activity that it produces. In general, we might
think of the activity log D as a set of tuples (u, i, t) which
records the timestamp at which the user u “acted on” or
“adopted” the item i: for instance, user u bought song i, user
u clicked on ad i, user u rated movie i, user u liked photo i.

The key idea at the basis of this paper, is to exploit the
phenomenon of social contagion to detect communities by
analyzing, exclusively, the activity log D.

The basic assumptions are that (i) information can spread
only by exploiting the social connections among users, and that
(ii) the network has a community structure, where communi-
ties are densely connected internally, and loosely connected
externally. As a consequence, social contagion acts mainly

locally inside each community: if we see a group of users
acting on item i in a short time frame, and we observe this
occurring on various different items, then we can infer that
these users are connected in some social network, that they
communicate and can influence each other.

One possible approach to solve the network-oblivious com-
munity detection problem could be to first use the log D
to infer the overall structure of the network, and then ap-
ply some standard community detection techniques over the
reconstructed social network. However, methods for network
reconstruction [3], [4] are inherently quadratic in the number
of nodes and thus not easily scalable. Moreover, if the com-
munity detection is the ultimate goal then, as we show in our
experiments in Section VI, it is more effective to go directly
for it, without passing from network reconstruction.

In this paper, we propose a general framework for directly
detecting communities in a network-oblivious setting, with-
out attempting to reconstruct the network. In particular, our
proposal assumes that item adoptions are governed by un
underlying stochastic diffusion process over the unobserved
social network, and that such diffusion model is based on
community-level influence. By fitting the model parameters to
the user activity log D, we learn the community membership
and the influence level of each user in each community.

The general framework can be instantiated with different
choices of diffusion models. In this paper we propose two
models. First we extend to the community level of the classic
(discrete time) Independent Cascade model [5]. The key idea
is to assume that each user exerts the same degree of influence
over a whole community. Then, we provide a fine-grained
modeling, by directly focusing on activation times. Here we
assume that each user induces a fixed delay on the activation
times of social peers within the same community.

Finally, our method not only is aimed at detecting commu-
nities by exploiting social influence evidence, as a by-product
it also defines the level of influence of each user in each
community. This allows to identify for each community the
“key” users, i.e., the leaders which are most likely to influence
the rest of the community to adopt a certain item. Those might
be the users to target in a viral marketing campaign [5].

II. RELATED WORK

Social contagion. The term social contagion refers to the
spread of new practices, beliefs, technologies and products
trough a population, driven by social influence. It is a very
central theme in social sciences and recently it has attracted
a lot of interest in the data mining community, mainly fueled



by the seminal work by Domingos and Richardson [6] and
Kempe et al. [5] which studied how to exploit social influence
for “word-of-mouth” driven viral marketing applications.

Other researchers have considered the social network and
the log of past user activity jointly, and studied important
problems such as learning the strength of social influence
along each arc [7], or how to distinguishing real social
influence from “homophily” [8].

More related to our work, is the work by Gomez-Rodriguez
et al. [4]. Here, the social network is not given in input, and the
problem is how to reconstruct the unobserved network starting
from the log of users activity. In the proposed algorithm,
named NetRate, if the node u succeeds in activating v,
then the contagious of the latter happens after an incubation
time sampled from a chosen distribution, which is defines the
conditional likelihood of transmission between each pair of
nodes and actually depends on the difference of their activation
times.

Communities and social contagion. The study of social
contagion is intrinsically connected to the problem of un-
derstanding the community structure of networks. In fact,
individuals tend to adopt the behavior of their social peers,
so that social contagion happens first locally, within close-
knit communities, and spreads virally only when it is able
cross the boundaries of these densely connected clusters of
people. Regardless the wide literature on community detection
algorithms (see [1]), there has not been much research at the
intersection of community detection and social contagion.

Wang et al. [10] study the problem of finding the top-k
influential users in mobile social networks. They propose to
first detect communities and then assume that the influence of
a user is limited to her community. In this work communities
are only a way to reduce the search space of the problem of
finding influential users, not the goal. Moreover the setting is
very different from ours: in their framework both the social
network and the influence strength are given in input, while
in our case none of the two is known a priori.

In our previous work [11] we study the following problem:
given both the social graph and the log of user activity as
input, the goal is to detect communities that “explain” well
the two pieces of input. In simpler terms, the idea is to do
better community detection using the additional information
contained in the activity log. Towards this goal, we propose
the Community-Cascade Network (CCN) model, a stochastic
mixture membership generative model that can fit, at the same
time, the social graph and the log of user activity. The present
work also collocates itself in the intersection of community
detection and social contagion, but it differs from [11], as
here we tackle the problem of community detection without
the network.

III. A GENERAL FRAMEWORK FOR INFLUENCE-BASED
NETWORK-OBLIVIOUS COMMUNITY DETECTION

Notation. We are given a log of past user activity D defined
as a relation (User, Item, T ime) where each tuple (u, i, t)

indicates that the node u acted on item i at the time t. We
let V denote the set of all users, i.e., the projection of D
over the first column, I denote the universe of items, i.e., the
projection of D on the second column, and we assume the
time is an integer t ∈ [0, T ]. We also use Di to denote the
overall activity on item i, that is the selection of the tuples of
D where Item = i. We call it the propagation trace of i. The
projection of Di on the first column is denoted as Ci.

Let tu(i) represent the action time of the user u for the trace
Di; with tu(i) = ∞ if u does not act on i by time T . We
denote the time delay between the action of two users u, v on
the item i as ∆u,v(i) = tu(i)− tv(i). We also define ∆u(i) =
T − tu(i). When i is clear from the context, we simply write
∆u,v and ∆u. Finally, let Ci,t denote the set of users who have
acted on the trace i by time t, i.e Ci,t = {u ∈ V : tu(i) < t}.
Framework overview. Given only the user activity log D,
our goal is to detect communities in an unobserved network
whose set of nodes correspond to the set of users V of D. By
communities we mean – as usual in the literature – clusters of
nodes of a social network that exhibit high internal and low
external link density. While detecting communities, we also
aim at learning, for each community, the “key” users who are
most likely to influence the adoption of a certain item i.

One possible approach is to forget about the existence of
an underlying unobserved social network. Instead, just tackle
the problem with a standard clustering approach: V is the
set of objects to be clustered, and the actions of each user
in V (which item i is adopted and at which time t) is its
description. Another possible approach, as already stated in
the introduction, is to focus on social influence to reconstruct
the social network from the user activity log D, following the
framework of [3], [4]. Then apply some standard community
detection algorithm to the reconstructed network.

We can consider these two approaches as the two opposite
extremes of the spectrum: One totally ignoring the existence
of the network effect, the other one explicitly reconstructing
the network. Our proposal collocates in between these two
extremes: although it does not attempt a direct reconstruction
of the network, our approach is aware that information spreads
over social connections. Thus the assumption behind our
framework is that the unobserved network naturally shapes
the process of information diffusion. A high-level overview of
our framework is as follows:
• We assume the existence of an unobserved social network

having a modular structure (as typical of social networks).
This means that communities exist, densely connected
internally, and loosely connected with other communities.
• We assume that item adoptions are governed by un un-

derlying stochastic diffusion process over the unobserved
social network. In particular, the diffusion model is based
on community-level influence.
• Each user is associated with a level of membership and

a level of influence in each community. These are the
parameters of the diffusion model. The adoption of an
item i by a user u depends on the influence exerted by



other members of the community on u for adopting i.
• By fitting the model parameters to the user activity log
D, we learn the community membership and influence
levels.

This general framework can be instantiated to different
community-level influence diffusion models. We will intro-
duce two such models in Section IV and V respectively. We
conclude this section by presenting the EM-like algorithm for
fitting the model parameters to the user activity log.
Modeling the likelihood. We assume that each propagation
trace is independent from the others, and we adopt a maximum
a-posteriori perspective. That is, we hypothesize that action
probabilities adhere to a mathematical model governed by a
set of parameters Θ. Following the standard mixture modeling
approach [12], we assume that users’ actions can only happen
relative to a community of membership. That is, we assume
that a hidden binary variable zu,k denotes the membership of
user u to community k, with the constraints

∑K
k=1 zu,k = 1.

Thus, Θ can be partitioned into {π1, . . . , πK ,Θ1, . . . ,ΘK},
where Θk represents the parameter set relative to community
k, and πk ≡ P (zu,k = 1). We can express the likelihood
of the data as L(Θ;D) =

∏
u

∑K
k=1 P (u|Θk)πk, which can

be optimized by resorting to the traditional EM algorithm:
Consider the complete-likelihood

P (D,Z,Θ) = P (D|Z,Θ) · P (Z|Θ) · P (Θ) (1)

where

P (D|Z,Θ) =
∏
u∈V

K∏
k=1

P (u|Θk)zu,k , P (Z|Θ) =
∏
u∈V

K∏
k=1

π
zu,k

k ,

and P (Θ) represents the prior relative to the parameter set
Θ. By standard manipulation of Eq. 1, the Complete-Data
Expectation Likelihood [12] is given by:

Q(Θ; Θ′) = EZ[logP (D,Z,Θ)|D; Θ′]

=
∑
u∈V

K∑
k=1

γu,k {logP (u|Θk) + log πk}+ logP (Θ)
(2)

where γu,k ≡ P (zu,k = 1|u,Θ′).
Optimizing the latter can be accomplished by resorting to

the EM algorithm: starting with an initial random assignment
Θ, the algorithm iteratively performs two steps until conver-
gence:
• (E Step) Given Θ, estimate γu,k for each u, k as

γu,k =
P (u|Θk)πk∑k
k=1 P (u|Θk)πk

• (M step) Given γu,k, find the optimal Θ that maximizes
Eq. 2.

This general scheme is parametric to both the prior P (Θ)
and the component P (u|Θk). We model the former in a way
similar to [13], in order to allow an automatic estimation of
the optimar number K of communities. As for the latter, it
depends on the way we model the probability P (a) for given
actions a ≡ (u, i, t). We explore two different alternatives.

1) The probability that u adopts i is the result of a
bernoullian process on i, i.e., P (a) ≡ P (i|u, t), and
time proceeds in discrete steps.

2) The final model does not consider whether a user adopts
i, but when the adoption happens, i.e. P (a) ≡ P (t|i, u).

We next explore each strategy in turn. We consider only binary
activations: at a given timestamp, each user is either active or
inactive, and an active user cannot become inactive again.

IV. COMMUNITY-LEVEL INDEPENDENT CASCADE MODEL

When the social relationships are explicit, it is possible to
define a propagation model which describes how adoptions
spread across the network [5] and to model information propa-
gation and community structure suitably [11]. In these models,
a users tendency to become active increases monotonically as
more of its social peers become active. We next adapt this
concept to a network-oblivious situation, where we assume
that the user’s tendency to become active depends on the
influence exterted within the community of membership.

The Community-Independent Cascade (C-IC) model draws
from the Independent Cascade model (IC) [5], and models the
idea that each user exerts the same degree influence over mem-
bers of each community. Time unfolds in discrete timestamps.
As in IC, when a user v becomes active, say at time t, it is
considered contagious and has a single chance of influencing
each inactive neighbor u, independently of the history thus
far. We assume that v exerts her influence “globally”, with a
strength pkv ∈ [0, 1] which depends on the community k of the
targeted node. The idea is that the community-level influence
of each user v is higher in the community she belongs to.
According to this principle, we assume that information mainly
propagate locally and spread across communities thanks to
the presence of users who exhibit high degree of “external”
influence.

Following [14] we adopt a delay threshold ∆ to define
influencers. Specifically, we define F+

i,u = {v ∈ V |0 ≤
tu(i) − tv(i) ≤ ∆} as the set of users who potentially
influenced u in the adoption of i. Similarly we define the set
F−i,u = {v ∈ V |tu(i) − tv(i) > ∆} of users who definitely
failed in influencing u over i. Then, we can specify P (u|Θk)
as

P (u|Θk) =
∏
i

P+(i|u,Θk) · P−(i|u,Θk), (3)

where P+(i|u,Θk) represents the probability that some of the
potential influencers activated u and P−(i|u,Θk) the proba-
bility that none of the “out-of-react” influencers succeeded:

P+(i|u,Θk) = 1−
∏

v∈F+
i,u

(1− pkv)

P−(i|u,Θk) =
∏

v∈F−i,u

(1− pkv)

We can then specify the complete-data likelihood through:

P (D|Z,Θ) =
∏
i,u,k

1−
∏

v∈F+
i,u

(1− pkv)


zu,k

·

 ∏
v∈F−i,u

(1− pkv)


zu,k



Learning influence weights. The analytical optimization of
Q(Θ; Θ′) is still difficult. We resort to the explicit modeling
of the influencers as hidden data to simplify the optimization
procedure. That is, let wi,u,v be a binary variable such that
wi,u,v = 1 if v triggered the adoption of the item i by u, and
let W denote the set of all possible wi,u,v such that v ∈ F+

i,u.
Then, we can rewrite the complete-data likelihood relative to
W as

P (D,Z,W,Θ) = P (D,W|Θ,Z) · P (Z|Θ) · P (Θ),

where

P (D,W|Θ,Z) =
∏
i,u,k

∏
v∈F−i,u

(1− pkv)zu,k

·
∏
i,u,k

∏
v∈F+

i,u

(
pkv
)wi,u,v·zu,k

(
1− pkv

)(1−wi,u,v)·zu,k

As a consequence, the contribution to Q(Θ; Θ′) in the second
row of Eq. 2 can be rewritten as

∑
u

∑
k

γu,k

log πk +
∑
i

∑
v∈F−i,u

log(1− pkv)

+
∑
i

∑
v∈F+

i,u

ηi,u,v,k log pkv + (1− ηi,u,v,k) log(1− pkk)


where ηi,u,v,k is the “responsibility” of the user v in triggering
u’s adoption in the context of the community k:

ηi,u,v,k = P (wi,u,v = 1|u, i, zu,k = 1,Θ′)

=
pkv

1−
∏

w∈F+
i,u

(1− pkw)
.

Finally, optimizing Q(Θ; Θ′) with respect to pkv yields

pkv =

∑
〈u,i〉

v∈F+
i,u

γu,k · ηi,u,v,k

S+
v,k + S−v,k

, (4)

with S+
v,k =

∑
〈u,i〉

v∈F+
i,u

γu,k and S−v,k =
∑

〈u,i〉
v∈F−

i,u

γu,k.

V. MODELING TEMPORAL DYNAMICS

C-IC does not explicitly model temporal dynamics, as it
focuses on modeling just binary activations by employing a
discrete-time propagation model. Here we present an alter-
native modeling that exploits time delays to characterize the
overall diffusion process.

Given an observation window [0, T ], the idea is to explicitly
model the likelihood of the time at which each user adopted
each item, or the likelihood that the considered adoption
did not happen within time T . This approach assumes that
there is a dependency between the adoption time of the
influencer and the one of the influenced. In NetRate [4],
previously described in Sec. II, this dependency in modeled by
a conditional likelihood f(tu|tv, αv,u) of transmission, which
depends on the delay ∆v,u. The likelihood of a propagation
can be formulated by applying standard survival analysis [15],
in terms of survival S(tu|tv, αv,u) (modeling the probability

that a user survives uninfected at least until time tu) and hazard
functions H(tu|tv, αv,u) (modeling instantaneous infections).

We reformulate this framework into a community-based
scenario. The Community-Rate (C-Rate) propagation model
is characterized by the following assumptions:

• User’s influence is limited to the community she belongs
to. That is, the user is likely to influence/be influenced
by members of the same community, while the effect
of influence is marginal on members of a different
community.

• Information diffusion from the user v to v within the k-th
community is characterized by the density f(tu|tv, αv,k),
where αv,k is related to the expected delay on the activa-
tions that v triggers within community k. The probability
of contagion depends on the time delay ∆v.u.

The parameter αv,k has a direct interpretation in terms of
influence: high values of αv,k cause short delays, and as a
consequence denote v as strongly influential within k.

On the basis of the above observations, we can adapt the
NetRate model to fit the scheme of Sec. III, by plugging

P (u|Θk) =
∏

i:u6∈Ci

∏
v∈Ci

S(T |tv(i), αv,k)·∏
i:u∈Ci

∏
v∈Ci,tu(i)

S(tu(i)|tv(i), αv,k)

∑
v∈Ci,tu(i)

H(tu(i)|tv(i), αv,k)

(5)

Learning. Again, instead of directly optimizing the above
likelihood, we introduce the latent binary variable wi,u,v

denoting the fact that u has been infected by v on i. Then, the
likelihood can be rewritten by defining

P (D,W|Z,Θ) =
∏
〈u,i〉6∈D

∏
k

∏
v∈Ci

S(T |tv(i), αv,k)zu,k

·
∏
〈u,i〉∈D

∏
k

∏
v∈Ci,tu(i)

H(tu(i)|tv(i), αv,k)wi,u,vzu,k

· S(tu(i)|tv(i), αv,k)zu,k

and replacing P (D|Z,Θ) with the above component in the
likelihood. In the following we adopt the exponential distribu-
tion f(tu|tv, αv,k) = αv,k exp {−αv,k∆v,u}, which enables
S(tu|tv, αv,k) = exp {−αv,k∆v,u} and H(tu|tv, αv,k) =
αv,k. 1 Then,

Q(Θ; Θ′) ∝
∑
u,k

γu,k log πk −
∑
〈u,i〉6∈D

∑
k

∑
v∈Ci

γu,k∆vαv,k

+
∑
〈u,i〉∈D

∑
k

∑
v∈Ci,tu(i)

ηi,u,v,kγu,k logαv,k

−
∑
〈u,i〉∈D

∑
k

∑
v∈Ci,tu(i)

γu,k∆u,vαv,k,

1Similar formulations can be obtained by adopting different densities and
are omitted here for lack of space.



and the probability of observing v as an influencer on u, i is
given by:

ηu,i,v,k =
H(tu(i)|tv(i), αv,k)∑

v′∈Ci,tu(i)
H(tu(i)|tv(i).αv′,k)

.

Finally, optimizing Q(Θ; Θ′) yields

αk,v =

∑
〈u,i〉∈D

v∈Ci,tu(i)

ηi,u,v,kγu,k∑
〈u,i〉6∈D
v∈Ci

γu,k∆v +
∑

〈u,i〉∈D
v∈Ci,tu(i)

γu,k∆u,v
(6)

VI. EXPERIMENTAL EVALUATION

In this section we report our experimental analysis aimed at
assessing the effectiveness of the proposed framework. Due to
space limitations, we only use synthetic data with a predefined
community structure, and we deal with real-world data in a
forthcoming extended version of this paper.

Synthetic Datasets. We generate synthetic data in two steps.
First, we generate a network which exhibits a known com-
munity structure, as well as structural features typical of real
networks. To this aim, we use the generator of benchmark
graphs described in [16], which generates directed unweighted
graphs with possibly overlapping communities. The process of
network generation is controlled by the following parameters:
number of nodes (1, 000); average in-degree (10); maximum
in-degree (150); min/max community size (50/750). The four
networks differ on the ratio µ, which controls for each node
how many v neighbors do not share any community with v.
We use four values for µ (0.001, 0.01, 0.05 and 0.1) obtaining
four networks, named S1, S2, S3, and S4 respectively.

Given a network G = (V,E), the next step is to generate
synthetic propagation cascades spreading over G. For each
community k, an initial dummy node is connected to all nodes
within the considered community, with a random influence
weight sampled from [0.02, 0.05]. For each trace we generate
a random permutation of the dummy nodes and, after selecting
the first one, the n− th community-node is picked randomly
with probability βn. This initialization step determines the
degree to which the trace to be generated will be local/global.
At time t = 0, the dummy nodes determine the activation
of real nodes, from which we start the subsequent diffusion
process. At this stage, information can spread on the network
by exploiting the links. The strength of each link is determined
by considering both the outdegree (κout· ) of the source and the
indegree (κin· ) of the destination:

weight(u, v) ∝ λ · κ
out
u

κout
κinv
κin

+ (1− λ) · rand(0.1, 1)

where κout and κin are the maximum out-degree and in-degree
respectively, and λ introduces a random effect.

In the propagation process, the weight of each link repre-
sents a bernullian probability of infection. For each link we
also generate a typical infection rate αu,v , sampled from a
Gamma distribution (shape=2, scale=0.3).

To summarize, the synthesized data depends on µ, the de-
gree of propagation overlap β and the number of propagation

TABLE I: Statistics for the synthetic data: four networks
corresponding to four values of µ.

S1 S2 S3 S4
# of communities (K) 9 7 11 6
avg # of adoptions 56k 59k 82k 370k
avg trace length 38 38 54 256
avg % of communities
traversed by a trace

17% 24% 24% 82%

cascades |I|. In this first experiment, we fix λ = 0.9, β = 0.2
and |I| = 1, 500, and vary the µ parameter as discussed
above. For each network, we randomly generate 5 propagation
logs. The main properties of the synthetic generated data are
summarized in Tab. I.

Baselines. The C-IC and C-Rate techniques are compared to
some baseline models. The first two baselines builds on the
idea of network reconstruction. Given a log of past propagation
D we can apply either NetRate or the Independent Cascade
inference procedure [17] (assuming the complete graph). Both
algorithms provide a set of link weights as output, and
higher weights witness the existence of strong connections.
We reconstruct the network by applying a sparisification
procedure based on the identification of a threshold value,
accomplished by analyzing the distribution of the weights.
Finally, communities are discovered by applying the Metis
algorithm [9], which is reported to achieve good performances
and is fast. These baselines are denoted as NetRate/Metis and
IC/Metis.

A further baseline is a standard clustering algorithm that
groups users according to their adoptions. The algorithm is
based on a multinomial EM procedure. This baseline can be
exploited for detecting communities, but does not measure the
degree of influence of a user within a community, like instead
the algorithms proposed in this paper do.

Results. We measure the quality of the discovered commu-
nities w.r.t. the known ground truth communities using the
Adjusted Rand Index [18], as well as the F-Measure and the
Normalized Mutual Information [19]. For all the considered
approaches, we report the average quality indices, as well as
standard deviation relative to the 5 propagation logs, in Fig. 1.
As we can see on the figure, both C-IC and C-Rate perform
particularly well on all four networks. The performances
degrade on the s4 network, where the IC/Metis method is
predominant but still comparable to the performances of C-
Rate. However, it should be noted that the two baselines (as
expected) have running times which are an order of magnitude
larger and do not scale to large network. For these methods, the
Metis algorithm does not affect the performance significantly,
and the computational burden is essentially due to the network
inference phase.

Finally, the quality of the Multinomial EM algorithm is
extremely unstable, contrary to all other methods. This is
a clear sign of the relevant role of the influencers when
associating a user to a community: influencers tend to better
explain the activation of a user on a given item, and hence
tend to reduce the variability in the membership assignments.

In a second batch of experiments, we measure the effects of
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Fig. 1: Summary of the evaluation on synthetic data.
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Fig. 2: Robustness and scalability.

the mixing parameter β on C-IC and C-Rate. Higher values
of β cause a trace to spread over multiple communities: as a
consequence, we can measure the robustness of the algorithms
by varying such a parameter. For these experiments, we use
the s3 network, and we generate 1, 000 traces by ranging the β
within [0.3, 0.8]. The first plot of Fig. 2 reports the Normalized
Mutual Information. It can be noticed that the performances
do not significantly change: the algorithms can still separate
communities and associate users with them, even when the
average number of communities traversed by a single trace
(denoted by the red line in the plot) increase. Rather, a higher
mixing parameter affects inference times, as shown by the
second plot. The algorithms require more iterations to reach
convergence, as a consequence to the fact that separations need
to be reconstructed iteratively.

A final experiment measures the scalability of the proposed
algorithms for increasing values of |I|. In the last plot of Fig. 2
we show the running times on three log traces of increasing
size, relative to the s3 network. Both the algorithms scale

linearly on the number of traces, and the general trend, where
C-IC seems more efficient than C-Rate, is confirmed.

VII. CONCLUSIONS AND FUTURE WORK

We proposed a general framework for detecting communi-
ties in a network-oblivious setting. The general framework is
based on a the assumption that item adoptions are governed by
un underlying stochastic diffusion process over the unobserved
social network, and that such diffusion model is based on
community-level influence. We instantiated the diffusion pro-
cess by adopting two models which focus on both the influence
exerted by a user in a given community, and the likelihood of a
user to belong to that community. The experiments show that
both models are robust and effective, and be can profitably
employed to discover communities and regions of influence
in situations where the social connections are not visible.

In this treatment, we did not cover the case where contagion
can happen as the result of a cumulative effect. Again, two
different modeling perspective can be assumed, based either
on adaptations of the Linear Threshold model [20], [5] for the
case of discrete time, or of the Cox survival model [15] for
the case of continuous time. We plan to study and compare
these models our future work.
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