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1 Introduction and Background

Probabilistic topic models, such as the popular Latent Dirichlet Allocation
(LDA) [8], assume that each collection of documents exhibits an hidden the-
matic structure. The intuition is that each document may exhibit multiple top-
ics, where each topic is characterized by a probability distribution over words
of a fixed size dictionary. This representation of the data into the latent-topic
space offers several advantages from a modeling perspective, and topic model-
ing techniques have been applied to different contexts. Example scenarios range
from traditional problems (such as dimensionality reduction and classification)
to novel areas (such as the generation of personalized recommendations).

Traditional LDA-based approaches propose a data generation process that
is based on a “bag-of-words” assumption, i.e. such that the order of the items
in a document can be neglected. This assumption fits textual data, where
probabilistic topic models are able to detect recurrent co-occurrence patterns,
which are used to define the topic space. However, there are several real-world
applications where data can be “naturally” interpreted as sequences, such as
biological data, web navigation logs, customer purchase history, etc. Ignoring
the intrinsic sequentiality of the data, may result in poor modeling: according
to the bag-of-word assumption, co-occurrences are modeled independently for
each word, via a probability distribution over the dictionary in which some
words exhibit a higher likelihood to appear than others. On the other hand,
sequential data may express causality and dependency, and different topics
can be used to characterize different dependency likelihoods. The focus here
is the context where a current user acts and expresses preferences, i.e., the
environment, characterized by side information, where the observations hold.
Our claim is that the context can be enriched by the sequential information,
and the latter allows a more refined modeling. In practice, a sequence expresses
a context which provides valuable information for the modeling.

The above observation is particularly noteworthy when data express pref-
erences made by users, and the ultimate objective is to model a user’s behavior
in order to provide accurate recommendations. The analysis of the sequential
patterns has important applications in modern recommender systems (RSs),
which are significantly focusing on an accurate balance between personaliza-
tion and contextualization techniques. For example, in Internet based stream-
ing services for music or video (such as Last.fm1 and Videolectures.net2), the
context of the user interaction with the system can easily be interpreted by
analyzing the content previously requested. The assumption here is that the
current item (and/or its genre) influences the next choice of the user. In par-
ticular, if a specific user is in the “mood” for classical music (as observed in
the current choice), it is unlikely that the immediate subsequent choice will
depart from the aforementioned mood, in favor of a song of different genre.

1 http://last.fm
2 http://videolectures.net
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Being able to capture such properties and exploiting them in recommendation
strategy can greatly improve the accuracy of the recommendation.

Recommender systems have greatly benefited from probabilistic modeling
techniques based on LDA. Recent works in fact have empirically shown that
probabilistic latent topics models represent the state-of-the-art in the genera-
tion of accurate personalized recommendations [4,5,3]. More generally, proba-
bilistic techniques offer some renowned advantages: notably, they can be tuned
to optimize a variety of loss functions; moreover optimizing the likelihood al-
lows to model a distribution over rating values which can be used to determine
the confidence of the model in providing a recommendation; finally, they allow
the possibility to include prior knowledge into the generative process, thus al-
lowing a more effective modeling of the underlying data distribution. Notably,
when preferences are implicitly modeled through selection (that is, when no
rating information is available), the simple LDA best models the probability
that an item is actually selected by a user so far [4].

Following the research direction outlined above, in this paper we study
the effects of “contextual” information in probabilistic modeling of preference
data. We focus on the case where the context can be inferred from the analy-
sis of the sequence data, and we propose some topic models which explicitly
make use of dependency information. As a matter of fact, the issue has been
dealt with in similar papers (like, e.g. [31]). Here, we summarize and extend
the approaches in the literature, by covering different ways of modeling depen-
dency within preference data. Furthermore, we concentrate on the effects of
such modeling on recommendation accuracy, as it explicitly reflects accurate
modeling of user behavior.

In short, the contributions of the paper can be summarized as follows.

1. We propose a unified probabilistic framework to model dependency in pref-
erence data, and instantiate the framework in accordance to different as-
sumptions on the sequentiality of the underlying generative process.

2. We study and experimentally compare the proposed models, and highlight
relative advantages and weaknesses.

3. We study how to adapt the proposed frameworks to support a recommen-
dation scenario. In particular, for each of the proposed model, we provide
the relative ranking functions that can be used to generate personalized
and context-aware recommendation lists.

4. We finally show that the proposed sequential modeling of preference data
better models the underlying data, as it allows more accurate recommen-
dations in terms of precision and recall.

The paper is structured as follows. In Sec. 2 we introduce sequential mod-
eling according to different dependency assumptions, and specify in Sec. 3
the corresponding item ranking functions for supporting recommendations.
The experimental evaluation of the proposed approaches in then presented in
Sec. 4, in which we measure the performance of the approaches in a recom-
mendation scenario. In Sec. 5 we qualitatively compare the models studied in



4 Nicola Barbieri et al.

this paper with the current literature. Section 6 concludes the paper with a
summary of the findings and a discussion of possible extensions.

2 Modeling Sequence Data

In a general setting, we consider a set I = {1, . . . , N} of tokens, representing
the vocabulary of possible events that can be observed. Example events are
words that can be observed in a document, or items that can be purchased by
a customer. A corpus W = {w1, . . . ,wM} is a collection of traces, where wd =
[wd,1.wd,2. · · · .wd,Nd−1.wd,Nd ] is the sequence of tokens for trace d, and wd,j ∈
I. The set Id ⊆ I denotes all the tokens in wd. We also assume that each
token is characterized by a latent factor, called topic, triggering the underlying
event. That is, a topic set Z = {z1, . . . , zM} is associated to the data, where,
again zd = [zd,1.zd,2. · · · .zd,Nd−1.zd,Nd ] is a latent topic sequence, and zd,j ∈
{1, . . . ,K} is the latent topic associated with token wd,j . By assuming that
Φ and Θ are the distribution functions governing the likelihood of W and Z
(with respective priors β and α), we can express the complete likelihood as:

P (W,Z,Θ,Φ|α,β) = P (W|Z,Φ)P (Φ|β)P (Z|Θ)P (Θ|α)

P (W|Z,Φ) =

M∏
d=1

P (wd|zd,Φ) P (Z|Θ) =

M∏
d=1

P (zd|θd)
(1)

where P (Φ|β) and P (Θ|α) are specified according to the modeling assump-
tions. In particular, in the standard LDA setting where all tokens are inde-
pendent and exchangeable, we have:

P (wd|zd,Φ) =

Nd∏
j=1

P (wd,j |zd,j ,Φ) P (w|k,Φ) =

N∏
s=1

ϕ
δs,w
k,s

P (zd|θd) =

Nd∏
j=1

P (zd,j |θd) P (z|θd) =

K∏
k=1

ϑ
δk,z
d,k

P (Θ|α) =

M∏
d=1

P (θd|α) P (θd|α) =
Γ (
∑K
k=1 αk)∏K

k=1 Γ (αk)

K∏
k=1

ϑαk−1
d,k

P (Φ|β) =

K∏
k=1

P (ϕk|βk) P (ϕk|βk) =
Γ (
∑N
s=1 βk,s)∏N

s=1 Γ (βk,s)

N∏
s=1

ϕ
βk,s−1
k,s

(2)
Here, δa,b represents the Kronecker delta function, returning 1 when a = b
and 0 otherwise. Figure 1(a) graphically describes the generative process. As
usual, the joint topic-data probability can be obtained by marginalizing over
the Φ and Θ components:

P (W,Z|α,β) =

∫
Φ

∫
Θ

P (W|Z,Φ)P (Φ|β)P (Z|Θ)P (Θ|α)dΦdΘ
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In the following, we model further assumptions on both wd and zd, which
explicitly reject the exchangeability assumption and instead rely on the idea of
sequential dependency. We concentrate on three basic models, which in a sense
subsume the core of sequential modeling. Here, a sequence can be modeled as
a stationary first order Markov chain:

– A Markovian process naturally models the sequential nature of the data,
where dependencies among past and future tokens reflect changes over time
that are still governed by similar features;

– the chain is stationary, as a fixed number of tokens is likely to frequently
appear in sequences;

– the order of the chain is 1 because the possibility that two subsequent
tokens share some features is more likely than that of two tokens distant
in time.3

We now analyze each model in turn.
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Fig. 1 Graphical Models

Token-Bigram model. In this model, we assume that wd represents a first-
order Markov chain, where, each token wd,j depends on the most recent token
wd,j−1 observed by far. This is essentially the same model proposed in [31,9],
and the probability of a trace has to be changed from Eq. 2 as

P (wd|zd,Φ) =

Nd∏
j=1

P (wd,j |wd,j−1, zd,j ,Φ) (3)

In practice, a token wd,j is generated according to a multinomial distribution
φzd,j ,wd,j−1

which depends on both the current topic zd,j and the previous
token wd,j−1. (Notice that when j = 1, the previous token is empty and

3 It is also worth noticing that higher order dependencies introduce an unpractical com-
putational overhead, as the number of parameters grows exponentially with the order of the
chain [6, chapter 13].
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the multinomial resolves to φzd,j , representing the initial status of a Markov
chain). The conjugate prior for φ can be defined as:

P (Φ|β) =

K∏
k=1

N∏
r=0

P (φk,r|βk,r) =

K∏
k=1

N∏
r=0

Γ (
∑N
s=1 βk,r.s)∏N

s=1 Γ (βk,r.s)

N∏
s=1

ϕ
βk,r.s−1
k,r.s

Since the Markovian process does not affect the topic sampling, both P (zd|θd)
and P (Θ|α) are defined as in equation 2. The generative model, depicted in
Fig. 1(b), can be described as follows:

– For each trace d ∈ {1, . . . ,M} sample the topic-mixture components θd ∼
Dirichlet(α) and sequence length nd ∼ Poisson(ξ)

– For each topic k ∈ 1, . . . ,K and token r ∈ {0, . . . , N}
– Sample token selection components φk,r ∼ Dirichlet(βk,r)

– For each trace d ∈ {1, . . . ,M} and j ∈ {1, . . . , Nd}
– sample a topic zd,j ∼ Discrete(θd)
– sample a token wd,j ∼ Discrete(φzd,j ,wd,j−1

)

Notice that we explicitly assume the existence of a family {βk,r} with
k = {1, . . . ,K} and r = {0, . . . , N} of Dirichlet coefficients, and of a special
token r = 0 which represents the previous token of the first token of each trace.
As shown in [31], different modeling strategies (e.g., shared priors βk,r.s = βs)
can affect the accuracy of the model.

By algebraic manipulations, the joint token-topic distribution can be sim-
plified into:

P (W,Z|α, β) =

(
M∏
d=1

∆
(
nd,(·) +α

)
∆(α)

) K∏
k=1

N∏
r=0

∆
(
nk(·),r + βk,r

)
∆(βk,r)

 (4)

The latter is the basis for developing a stochastic EM strategy [6, section
11.1.6], where the E step consists in a collapsed Gibbs sampling procedure [18,
6] for estimating Z, and the M step estimates both the predictive distributions
Θ and Φ and the hyper parameters α and β given Z. Within Gibbs sampling,
topics are iteratively sampled, according to the probability:

P (zd,j = k|Z−(d,j),W) ∝
(
nkd,(·) + αk − 1

)
·

nk(·),r.s + βk,r.s − 1∑N
s′=1 n

k
(·),r.s′ + βk,r.s′ − 1

(5)

relative to the topic to associate with the n-th token of the d-th trace, where
wd,j−1 = r and wd,j = s.

Given Z, the parameters Θ and Φ can be estimated according to the
following equations:

ϑd,k =
nkd,(·) + αk∑K

k′=1(nk
′

d,(·) + αk′)
ϕk,r.s =

nk(·),r.s + βk,r.s∑N
s′=1(nk(·),r.s′ + βk,r.s′)

(6)

The estimation of the hyper parameters will be approached later in the paper.
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Topic-Bigram model. A different approach can be taken by assuming that se-
quentiality regards topics, rather than tokens. That is, we can still consider
tokens independent to each other and related to a latent topic. However, since
topics represent the ultimate factors underlying a token appearance in the se-
quence, correlation between topics can better model an evolution of the under-
lying themes. Assuming a first-order Markovian dependency, the probability
of a sequence of latent topics in Eq. 2 can be redefined as:

P (zd|θd) =

Nd∏
j=1

P (zd,j |zd,j−1,θd) (7)

The difference here is in the distribution generating zd,j , which is a multinomial
θd,zd,j−1

parameterized by both a trace d and a previously sampled topic zd,j−1.
The conjugate Dirichlet distributions can be expressed as:

P (Θ|α) =

M∏
d=1

K∏
h=0

Γ (
∑K
k=1 αh.k)∏K

k=1 Γ (αh.k)

K∏
k=1

ϑαh.k−1
d,h.k (8)

P (wd|zd,Φ) and P (Φ|β) are still defined as in Eq. 2. Again, the generative
process is shown in Fig. 1(c) and described below.

– For each trace d ∈ {1, . . . ,M} and topic h ∈ {0, . . . ,K} sample topic-
mixture components θd,h ∼ Dirichlet(αh) and sequence length Nd ∼
Poisson(ξ)

– For each topic k = 1, . . . ,K
– Sample token selection components ϕk ∼ Dirichlet(βk)

– For each d ∈ {1, . . . ,M} and j ∈ {1, . . . , Nd} sequentially,
– sample a topic zd,j ∼ Discrete(θd,zd,j−1

)
– sample a token wd,j ∼ Discrete(φzd,j )

Here, h = 0 is a special topic that precedes the first topic of each trace.

The joint token-topic distribution becomes:

P (W,Z|α, β) =

 M∏
d=1

K∏
h=0

∆
(
nkd,(·) +αh

)
∆(αh)

 K∏
k=1

∆
(
nk(·) + βk

)
∆(βk)

 (9)

and the corresponding collapsed Gibbs sampler works by iteratively sampling
a topic k relative to token wd,j = s of trace d according to the following:

P (zd,j = k|Z−(d,j),W) ∝
n
zd,j−1.k

d,(·) + αzd,j−1.k − 1∑
k′ n

zd,j−1.k′

d,(·) + αzd,j−1.k′ − 1

·
n
k.zd,j+1

d,(·) + αk.zd,j+1 − 1∑
k′ n

k′.zd,j+1

d,(·) + αk′.zd,j+1
− 1
·

nk(·),s + βk,s − 1∑N
s′=1 n

k
(·),s′ + βk,s′ − 1

(10)
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Also, the multinomial parameters can be estimated according to the following
equations:

ϑd,h.k =
nh.kd,(·) + αh.k∑K

k′=1 n
h.k′

d,(·) + αh.k′
ϕk,s =

nk(·),s + βk,s∑N
s′=1 n

k
(·),s′ + βk,s′

(11)

Token-Bitopic model. In the last model, we still relate tokens to past events.
However, the events we are interested in are the recent latent topics which
trigger the past tokens. The generative model is shown in Fig. 1(d). Again,
topic selection probability is defined like in equation 2, whereas token selection
probability can be defined in terms of the multinomial φzd,j ,zd,j−1

(and its
related conjugate):

P (wd|zd,Φ) =

Nd∏
j=1

P (wd,j |zd,j , zd,j−1,Φ) (12)

P (Φ|β) =

K∏
h=0

K∏
k=1

Γ (
∑N
s=1 βh.k,s)∏N

s=1 Γ (βh.k,s)

N∏
s=1

ϕ
βh.k,s−1
h.k,s (13)

These assumptions are at the basis of the following generative process.

– For each trace d ∈ {1, . . . ,M} sample topic-mixture components θd ∼
Dirichlet(α) and sequence length Nd ∼ Poisson(ξ)

– For each topic pair h.k, where h ∈ {0, . . . ,K} and k ∈ {1, . . . ,K}
– Sample token selection components ϕh.k ∼ Dirichlet(βh.k)

– For each d ∈ {1, . . . ,M} and j ∈ {1, . . . , Nd} in sequence:
– sample a topic zd,j ∼ Discrete(θd)
– sample a token wd,j ∼ Discrete(φzd,j ,zd,j−1

)

Once again h = 0 is the special topic which precedes all the first topics of the
traces. As usual, by algebraic manipulations, the joint token-topic distribution
can be expressed as

P (W,Z|α, β) =

(
M∏
d=1

∆
(
nd,(·) +α

)
∆(α)

) K∏
h=0

K∏
k=1

∆
(
nh.k(·) + βh.k

)
∆(βh.k)

 (14)

which induce the following inference steps:

E step: for the token wd,j = s at position j in trace d, sample a topic k
according to the following probability:

P (zd,j = k|Z−(d,j),W) ∝
(
nkd,(·) + αk − 1

)
·

n
zd,j−1.k

(·),s + βzd,j−1.k,s − 1∑N
s′=1 n

zd,j−1.k

(·),s′ + βzd,j−1.k,s′ − 1
·

n
k.zd,j+1

(·),s + βk.zd,j+1,s − 1∑N
s′ n

k.zd,j+1

(·),s′ + βk.zd,j+1,s′ − 1

(15)
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M Step: estimate multinomial probabilities according to the following equa-
tions:

ϑd,k =
nkd,(·) + αk∑K

k′=1 n
k′

d,(·) + αk′
ϕh.k,s =

nh.k(·),s + βh.k,s∑N
s′ n

h.k
(·),s′ + βh.k.s′

(16)

2.1 Log-likelihoods

A crucial component in the inference and estimation steps is the computation
of the data likelihood. In general, the likelihood function is defined as:

P (W) =

M∏
d=1

P (wd) =

M∏
d=1

P (wd,1. · · ·wd,Nd)

=

M∏
d=1

K∑
k=1

P (wd,1. · · ·wd,Nd , zd,Nd = k)

Now, each model differs in the way the P (wd,1. · · · .wd,Nd , zd,Nd) component
is defined.

Token-Bigram. Bayes rule and the first order Markov assumption over tokens
simplifies the above probability into:

logP (W) =

M∑
d=1

log

Nd∏
j=1

∑
k

ϑd,kϕk,wd,j−1.wd,j

 (17)

Topic-Bigram. By algebraic manipulations (see [6, section 13.2] for details),
we obtain

P (wd,1. · · · .wd,Nd , zd,Nd = k) = P (wd,1. · · · .wd,Nd |zd,Nd = k)P (zd,Nd = k)

= ϕk,wd,Nd

∑
h

P (wd,1. · · · .wd,Nd−1, zd,Nd−1 = h)ϑd,h.k

The result is a recursive equation which can be simplified into the following γ
function:

γk(wd; 1) = ϕk,wd,1 ; γk(wd; j) = ϕk,wd,j
∑
h

γh(wd; j − 1)ϑd,h.k

Substituting into the likelihood, yields:

logP (W) =

M∑
d=1

log

(∑
k

γk(wd;Nd)

)
(18)
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Token-Bitopic. The term P (wd,1. · · · .wd,Nd |zd,Nd = k) can be decomposed
according to the assumption of independence among topics:

P (wd,1, . . . , wd,Nd |zd,Nd = k)

=

K∑
h=1

ϑd,hP (wd,1. · · · .wd,Nd |zd,Nd−1 = h, zd,Nd = k)

=

K∑
h=1

ϑd,hϕh.k,sP (wd,1. · · · .wd,Nd−1|zd,Nd−1 = h)

where wd,Nd = s. Again, the latter yields the following recursive equations

γk(wd, 1) = ϕwd,1,ε.k; γk(wd, j) =
∑
h

γh(wd, j − 1)ϑd,hϕwd,j ,h.k

where ε is a special topic, referring to the begin of the trace. The likelihood
can hence be expressed as:

logP (W) =

M∑
d=1

log

(∑
k

γk(wd;Nd)ϑd,k

)
(19)

2.2 Estimating the Hyper parameters

We consider asymmetric Dirichlet priors over the trace topic distributions and
a symmetric prior over the topic distributions. This modeling strategy has been
reported to achieve important advantages over the symmetric version [29]. For
the token-bigram and token-bitopic models, we adopted the procedure for
updating the prior α as described in [18,26]. The topic-bigram model requires
a difference formulation of the latter. Given a state of the Markov chain Z, the
optimal α-hyper parameters can be computed by maximizing the likelihood of
the observed pseudo-counts nh.kd,(·) via the fixed-point iteration method:

αnewh.k = αh.k

∑M
d=1 Ψ(nh.kd,(·) + αh.k)−MΨ(αh.k)∑M

d=1 Ψ(n
h.(·)
d,(·) +

∑K
k′=1 αh.k′)−MΨ(

∑K
k′=1 αh.k′)

(20)

where Ψ(·) indicates the digamma function.

3 Application to Recommender Systems

The general framework introduced above, has a natural interpretation when
dealing with users’ preference data: the set of users defines the corpus, each
user is considered as a trace, the items purchased are considered as tokens
and, finally, the topics correspond, intuitively, to the reason why the users
purchased particular products. In the following, we assume that a user can be
denoted by a unique index d, and a previous history is given by wd of size Nd.
We are interested in providing a ranking for s, the Nd + 1-th choice wd,Nd+1.
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LDA. Following [4] we adopt the following ranking function:

rank(s, d) =

K∑
k=1

P (s|zd,Nd+1 = k)P (zd,Nd+1 = k|θd) =

K∑
k=1

ϕk,s · ϑd,k

It has been shown [4] that LDA, equipped with the above ranking function,
significantly outperforms the most significant approaches to modeling user
preferences. Hence, it is a natural baseline function upon which to measure
the performance of the other approaches proposed in this paper.

Token-Bigram Model. The dependency of the current selection from the pre-
vious history can be made explicit, thus yielding the following upgrade to the
LDA ranking function:

rank(s, d) =

K∑
k=1

P (s|zu,Nd+1 = k,wd)P (zd,Nd+1 = k|θd) =

K∑
k=1

ϕk,r.s · ϑd,k

where r = wu,Nd is the last item selected by user d in her currently history.

Topic-Bigram Model. This situation resembles the forward-backward algo-
rithm for the hidden Markov models [6, section 13.2.2]. In practice, we need
to build a recursive chain of probabilities, representing a hypothetical random
walk among the hidden topics. As above, we can define the following rank:

rank(s, d) =

K∑
k=1

P (wd,Nd+1 = s, zu,Nd+1=k|wd)

=

K∑
k=1

P (wd,1. · · · .wd,Nd+1, zd,Nd+1)

P (wd)

which requires solving P (wd,1. · · · .wd,Nd+1, zd,Nd+1). As shown in the previous
section, the latter can be computed recursively by exploiting the γ function.
Hence, the ranking function can be formulated as:

rank(s, d) ∝
K∑
k=1

γk(wd.s,Nd + 1)

Token-Bitopic Model. Since in this case item selection depends on the previous
topics, by exploiting the γ function, we can define the following:

rank(s, d) = P (wd,Nd+1 = s|wd) ∝
K∑
k=1

P (wd,1. · · · .wd,Nd+1, zd,Nd+1)

=

K∑
k=1

γk(wd.s,Nd + 1)ϑd,k
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4 Experimental Evaluation

In this section we study the behavior of the proposed models, compared to
some baseline models. In particular, we study two main aspects.

– On a general setting, we study how the proposed method perform in terms
of quality. We measure the quality as a function of the likelihood, as ex-
plained in the next section.

– On a more specific setting, we compare the models in the envisaged recom-
mendation application scenario. Here, the quality of a model is measured
indirectly, in terms of the accuracy of the recommendations it boosts. This
is explained in section 4.2.

4.1 Perplexity

Topic models are typically evaluated by either measuring performance on some
secondary task, such as document classification or information retrieval, or by
estimating the probability of unseen held-out traces given some training traces.
Notably, a better model will give rise to a higher probability of held-out traces,
on average.

Since log likelihoods are usually large negative numbers, perplexity is used
instead [18,8], the latter being defined as the reciprocal geometrical mean of
the token likelihoods in the test corpus given the data used to train the model:

Perp(WTest|WTrain) = exp

{
−
∑NTest
d=1 logP (wd|WTrain)∑NTest

d=1 nd

}

Evaluating P (wd|WTrain) is a little tricky, as exact inference would re-
quire integrating over all possible model parameters. In [30] authors discuss
some methods for an accurate inference using a point estimate. In our exper-
iments we adopted the evaluation methods based on document completion.
This method offers the advantage of providing unbiased estimates, as it infers
the missing parameters on a separate part of the document, and then to evalu-
ate the perplexity on the remaining part. In short, the evaluation methodology
can be summarized as follows:

– for each wd ∈ wTest

1. let w
(1)
d and w

(2)
d be an arbitrary split of wd.

2. for s = 1, . . . , S

(a) Sample z(1,s) ∼ P (z(1,s)|w(1)
d ,Wtrain,α,β,Φ) using the Gibbs

Sampling equations;

(b) estimate θ
(s)
d from z(1,s);

3. Approximate P (wd|WTrain) with 1
S

∑
s P (w

(2)
d |θ

(s)
d ,Φ), where the lat-

ter is computed by exploiting the formulas in section 2.1.
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Following [31], in the experiments we use a dataset composed by drawing
150 Psychological Review abstracts from the data made available by Griffith
and Steyvers4. The drawing was made among those documents containing
at least 54 tokens. Also, we preprocessed the data as specified in [31], by
remapping all numbers with the special token NUMBER, and all items with
frequency 1 in the training set or appearing as tokens in the test set but not in
the training set as UNSEEN. The result of the cleaning process is a vocabulary
of 860 item. Starting with the cleaned dataset, we did several random splits
of the dataset, by choosing 100 documents as training data, and the keeping
the remaining ones as test data. The splits roughly maintained the proportion
67-33% on the tokens.

In the following we report the results obtained by the three proposed mod-
els. The results are compared with LDA. We also compare the models with
the DCMLDA model [13]. The latter is a modification of LDA to account for
the tendency of tokens to appear in bursts, that is if a token appears once
in a trace, it is more likely to be appear again. DCMLDA does not model
sequentiality, however burstiness can also be interpreted as non-independence
between tokens. In this respect, it is interesting how the proposed models
compare to it. It is worth noticing, however, that burstiness is not necessar-
ily alternative to sequentiality, as the approaches proposed in this paper can
easily be adapted to model a combination of burstiness and sequentiality.

Figure 2(a) reports the average perplexity on the test data. The values plot
the error bars related to the perplexity values. Figure 2(b) also analyzes the
pairwise comparisons: each of the three methods proposed here is compared
with the baselines, and the difference in perplexity (in average and standard
error) is plotted.

DCMLDA exhibits the best perplexity, as a result of the customized fitting
of token probabilities to a specific document. As a matter of fact, the docu-
ments we are investigating here seem to naturally comply with the burstiness
assumption.

Also, TokenBitopic seems to worsen the performance as the number of top-
ics increase. This behavior is worth further explanation. The model conditions
the probability of appearance of a token to a pair of latent factors. In a sense,
this makes the model comparable to a “fresh” LDA model, where the number
of latent factors is quadratic in K: in practice, a TokenBitopic model with
K = 4 can be deemed similar to an LDA model with K = 16 topics, and each
pair of latent factors is associated to a specific latent factor in the quadratic
LDA model. In Fig. 2(c) we compare the two models: the models show the
same tendency.

For the rest, models clearly outperform LDA. However, the TokenBigram
model requires further explanation. Both the sampling process and the item se-
lection probabilities rely on the frequencies of bigrams. Zero-frequency bigrams
appearing in the test set compromise the evaluation just like zero-frequency
items. We chose to treat them by associating them with a default frequency.

4 http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm
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Fig. 2 Performance on Psychreview data.
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Figure 2(d) shows how this affects the evaluation: Here, NoP corresponds to
keeping the original frequency, whereas P3 associates a frequency which im-
plicitly corresponds to flattening all the zero-frequency bigrams to a default
UNSEEN bigram. The latter is the one reported in Fig. 2(a). The approaches
P1 and P2 correspond to intermediate solutions, where the default frequency
of the (implicit) UNSEEN bigram is lowered.5

Finally, figure 2(e) denotes the running times of the training algorithms on
the training data. Although the TopicBigram model requires less parameters
than the TokenBitopic approach, the learning time of the first one is consid-
erably larger. This is mainly due to the larger number of hyper parameters
(K×K vs K) and to the complexity of the M step for the update of the hyper
parameters α.

4.2 Recommendation Accuracy

In this section we present an empirical evaluation of the proposed models which
focuses on the recommendation problem. Given the past observed preferences
of a users, the goal of a recommender systems is to provide her with person-
alized (and contextualized) recommendations about previously non-purchased
items that meet her interest. We evaluate the proposed techniques by mea-
suring their predictive abilities on two datasets, namely IPTV1 and IPTV2.
These data were collected by analyzing the pay-per-view movies purchased by
the users of two European IPTV providers over a period of several months
[11,1]. The original data have been preprocessed by removing users with less
than 10 purchases. We perform a chronological split of the data by selecting
the final 20% purchases of each user as test data, and using the remaining
data for training purposes. The main features of the datasets are summarized
in table 1.

IPTV1 IPTV2

Training Test Training Test

Users 16,237 16,153 64,334 63,878

Items 759 731 2802 2777

Evaluations 314,042 78,557 1,224,790 306,271

Avg # evals (user) 19 5 19 5

Avg # evals (item) 414 107 437 110

Min # evals (user) 4 1 4 1

Min # evals (item) 5 1 5 1

Max # evals (user) 252 15 497 17

Max # evals (item) 2284 1527 9606 3167

Avg time between two evals

per user 13 days 6 days

per item 9 hours 23 hours

Table 1 Summary statistics on real-life recommendation datasets.

5 Clearly this is where non-parametric methods should be used to provide a gradual step
into the TokenBigram model. The integration of non-parametric techniques in the TokenBi-
gram would better handle cases in which there is less data and it would automatically solve
the treatment of the zero-frequency items.
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The two datasets exhibit a substantial difference in the frequencies of bi-
grams, as shown in Fig. 3: in particular, IPTV2 exhibits frequencies which dif-
fer of an order of magnitude. Hence, by comparing the results of the proposed
algorithms, we can characterize the effects of sparsity on the performances of
the proposed methods.
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Fig. 3 Distributions of bigrams on real-life datasets

Testing protocol. Let WTrain and WTest denote respectively training and test
data. To evaluate the capabilities of the considered approaches in generating
accurate recommendations, we check whether an actual token can be included
into an hypothetical recommendation list containing H items, generated ac-
cording to the model. More specifically the following protocol is adopted, which
is justified and detailed in [4]:

– For each user u, let w′u be the trace associated to u in WTrain, and wu

the trace in WTest (with nu = |wu|). For each token wu,n ∈ wu:
– Generate the candidate list Cu by randomly drawing c items i 6= wu,n

such that i /∈ Iw′u ;
– add wu,n to Cu and sort the list according to the scoring function pro-

vided by the RS;
– Record the position of the wu,n in the ordered list: if it belongs to the

top-H items, we have a hit otherwise, we have a miss.

Recall and precision relative to u can hence be defined based on the number
of hits. Recall can be defined as the number of hits, relative to the expected
number of relevant items (which are all the items in wu). Also, precision
represents the probability that the top-ranked items are actually a hit (and
hence it represents the likelihood of a hit weighted by the size H) of the
recommendation list. In formulas:

Recall(u,H) =
#hits

nu
Precision(u,H) =

#hits

H × nu
=

recall(u,H )

H
(21)

The final precision and recall values are obtained averaging on all users. All
the considered models were run varying the number of topics. We perform
5000 Gibbs Sampling iterations, discarding the first 1000 (burn in period),
and with a sample lag of 30. The length of the candidate random list is set to
250 for IPTV1 and 1000 for IPTV2.
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In the evaluation, we compare the bigram models with some baseline meth-
ods from the current literature. These include the aforementioned DCMLDA
model, and a version of the LDA where, for each user, the tokens represent
(unordered) bigrams rather than single item occurrences. This is in practice
a preprocessing of the data, which produces a different representation of the
dataset upon which the standard LDA model is trained. Clearly, the ranking
function has to be tuned accordingly.

We also provide two further baselines. The first one is a simple bigram
model where the probability of occurrence of an item is modeled as P (wn) =
λfwn + (1− λ)fwn|wn−1

. Here, fi is the relative frequency of i in the training
set, whereas fi|j represents the same frequency conditioned to a preceding
occurrence of j in the sequence. The λ parameter weighs the importance of
the two components, and is tuned in a way proportional to the frequency of
i, as typically low-frequency items do not provide a reliable estimates of the
sequential part.

Finally, we also compare the proposed models to a baseline rooted on ma-
trix factorization [21,25]. The basic idea here is to exploit the matrix factor-
ization for ranking, e.g., by providing an estimate of the probability of the
item appearance [24]. There are some issues to consider when applying matrix
factorization to the case at hand. In our context, matrix factorization is aimed
at modeling item occurrence rather then an explicit rating. In this respect,
non-occurrence of an item has a bivalent interpretation, either as unknown
(the user did not consider the item yet), or negative (she does not prefer it
at all). Thus, the traditional approaches based on explicit preference (such
as [27]) cannot be applied. We experimented with several specific techniques,
including [20,28] and the standard SVD model. In the following, we report
the results of the SVD6, that still outperforms all the other methods, as a
confirmation of the findings in [10,4].

Results. Fig. 4 summarizes the results in recommendation accuracy achieved
over the two considered datasets. For each model, the optimal number of topics
is given in brackets.

On both datasets, the proposed models improve the baselines. Concern-
ing IPTV1, both TopicBigram and TokenBigram achieve a significant margin
with respect to the other competitors. On IPTV2, TokenBigram outperforms
TopicBigram, which is still the runner-up performer.

In summary, the results suggest that:

– The underlying assumption within TokenBiTopic does not involve a re-
markable increase of the predictive capabilities of the model. In practice,
the topic structure of the TokenBiTopic model can be “simulated” by an
LDA model with a quadratic number of topics. As a result, the model
seems more prone to overfitting.

6 Based on the SVDLIBC implementation, http://tedlab.mit.edu/~dr/SVDLIBC/. The
other matrix factorization methods were obtained from the Graphlab Library, http:

//graphlab.org/.
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Fig. 4 Recommendation accuracy.

– Contextual information, with particular reference to sequence modeling,
provides a substantial contribution to recommendation accuracy. This is
proven not only by the models proposed in this paper: even the SimpleBi-
gram baseline model achieves remarkable accuracy. In particular, when the
recommendation list is relative small, the latter achieves an accuracy com-
parable to TokenBitopic. As a matter of fact, all the sequential approaches
seem to provide a better estimate of the selection probability for the user’s
next choice.

– There is a strict correlation between the frequencies exhibited by bigrams
and the performance of the TokenBigram model. IPTV2 exhibits more
frequent bigrams, and hence it is more likely to boost the performances
of the TokenBigram model. By the converse, the TopicBigram exhibits
a better capability in generalizing the dependency between the previous
hidden context and the next choice. Geometrically, while the TokenBigram
model focuses exclusively a restricted area of the topic space, induced by
considering only the previous item, the TopicBigram model is actually
able to identify larger homogeneous region within the topic space and to
estimate the connections (transition probabilities) between them.

– Among the competitors, DCMLDA is rather weak. This is somehow sur-
prising, considering that DCMLDA exhibits the best perplexity in the pre-
vious sets of experiments. A viable explanation of this dichotomy can be
found in the nature of the sequential data explored here, which does not
necessarily support burstiness: notably in a movie rental scenario, once a
movie is rented by a user, it is unlikely that it is rented again in the future

– LDABigram does not provide a substantial improvement either. Again,
this is unexpected, in some sense, as bigrams can be considered contextual
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information as well. It seems that, when bigrams are introduced without
an ordering relationship, the resulting ranking function is weakened.
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Fig. 5 Precision and Recall for different training splits.

In order to analyze the stability of the results, we perform some further
experiments. First, we analyze the robustness of the previous experiment with
regards to different training/test splits. Figure 5 shows the precision/recall
results on three further batches where each user sequence is split respectively
to 50%, 60% and 70% of the size. In these plots, both TokenBigram and
SimpleBigram tend to provide stable results, especially on IPTV2. All other
methods seem to suffer the shrinking of the training partition.

In a second batch of experiments, we are interested in analyzing the ro-
bustness of the results with regards to random variations of the datasets. To
this purpose, we repeat the above experiment on several random samples of
the original dataset, where each sample includes 50% of the whole user set.
Training and test sets for each sample are obtained by splitting each sequence
with the standard 80-20 percentages. Figure 6 shows average recall, as well as
the intervals of variability. It is worth noticing that the TopicBigram model
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Fig. 6 Recall on random selections of users.

exhibits the highest variations (especially on IPTV1). Notwithstanding, the
performances of Fig. 4 are confirmed, thus witnessing a viable robustness of
the proposed methods.

Finally, we confront in Fig. 7 the performance with regards to the number
of latent factors, with a recommendation list fixed at size 20. TokenBiTopic
expresses a wide range of variability in IPTV1, and tends to improve with an
increasing number of topics. The other models are stable, and in general do not
show a large variance. On IPTV2, TopicBigram shows a progressive increase.
However, the slope is progressively decreasing and hence we can expect a
maximum on 50 topics. As for the competitors, SVD degrades as long as the
number of latent factors is increased: a clear sign of overfitting (as also well-
known from the literature). It is worth noticing that, albeit stabler, other
matrix factorization approaches based on regularization (not reported here)
are still weaker than SVD.

The results presented above experimentally show the effectiveness of se-
quential topic models in predicting future users’ choices. However those models
increase significantly the number of parameters to be learned and this implies
an increase in the learning time. In Fig. 8 we plot the learning time (5000
Gibbs Sampling iterations) for different numbers of topics. Again, TopicBi-
gram exhibits a quadratic behavior, due to the Markovian dependency among
topic.

The last two plots in Fig. 8 highlight the contribution of asymmetric priors
in the learning process. As expected, asymmetric priors significantly improve
the accuracy. However, the learning time is greatly affected, as learning these
parameters requires a further iterative fix point procedure to embed in the
main algorithm, as explained in section 2.2.
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Fig. 7 Recall(20) and Precision(20) of the considered approaches varying the number of
topics.

5 Related Work

The generative process, which is common to many extensions of the Latent
Dirichlet Allocation [7], is strongly based on a “bag-of-words” assumption.
Even if this assumption may sound unrealistic, this modeling works really
good in practice. Latent Dirichlet Allocation and similar models combine the
structure-discovery power of dimensionality reduction approaches, such as the
latent semantic indexing [12], with informative priors modeling, which are
estimated by Bayesian inference techniques. The definition of the topic space
and of the projection of each document into this space, provide an effective
tool to infer the semantic concept of each document, or generally entity. In
particular, these approaches support 3 main tasks [16]: topic extraction, word
sense disambiguation and prediction.

Among all the different contexts in which these approaches have achieved
significant results, in this paper we consider the application of probabilis-
tic topic models to the recommendation problem [19]. As mentioned above,
this choice is motivated by some interesting recent findings [4] which can be
summarized as follows: (i) the item-selection probability computed for each
user is a key component for generating accurate item-ranking functions; (ii)
among all competitors, LDA provides the best results measured in precision
and recall of the recommendation list. These promising results motivate us in
exploring extensions of topic models which may provide better representation
of the inherent sequential correlation between items, and thus provide better
performances in predictions. In the following, we are going to briefly review
state-of-the-art probabilistic approaches to sequence data modeling, mainly
focusing on topic approaches.

A simple approach to model sequential data within a probabilistic frame-
work has been proposed in [9]. In their work, the authors present a framework



22 Nicola Barbieri et al.

10 20 30 50

LDA
TokenBigram
TopicBigram
TokenBiTopic

Learning Time on IPTV1

Number of topics

Le
ar

ni
ng

 T
im

e 
(h

ou
rs

)

0
1

2
3

4
5

6
7

10 20 30 50

LDA
TokenBigram
TopicBigram
TokenBiTopic

Learning Time on IPTV2

Number of topics
Le

ar
ni

ng
 T

im
e 

(h
ou

rs
)

0
2

4
6

8
10

12
14

16
18

20

0.25 0.30 0.35 0.40 0.45 0.50 0.55

0.
01

2
0.

01
6

0.
02

0
0.

02
4

Recall vs Precision: Symmetric vs Asymmetric

Recall on IPTV1

P
re

ci
si

on
 o

n 
IP

T
V

1

Asymmetric
Symmetric

10 20 30 50

Asymmetric Priors
Symmetric Priors

Symmetric vs. Asymmetric Priors

Number of topics

Le
ar

ni
ng

 T
im

e 
(h

ou
rs

) 
on

 IP
T

V
1

0
1

2
3

4
5

6
7

Fig. 8 Learning time of the models on IPTV1 and IPTV2 (first row); influence of the hyper
parameters (second row).

based on mixtures of Markov models for clustering and modeling of web site
navigation logs, which is applied for clustering and visualizing user behavior
on a web site. Albeit simple, the proposed model suffers from the limitation
that a single latent topic underlies all the observation in a single sequence.
This approach has been overtaken by other methods based on latent semantic
indexing and LDA. In [31,32], for example, the authors propose extension of
the LDA model which assume a first-order Markov chain for the word gener-
ation process. In the resulting Token-Bigram Model (see Sec. 2) and Topical
n-grams, the current word depends on the current topic and the previous word
observed in the sequence.

The N -gram modeling can be extended by considering different kind of
dependencies between the hidden states of the model. These kind of dependen-
cies are formalized by exploiting Hidden Markov models (HMM) [6, Chapter
13], which are a general reference framework both for modeling sequence data
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and for natural language processing [23]. HMMs assume that sequential data
are generated using a Markov chain of latent variables, with each observation
conditioned on the state of the corresponding latent variable. The resulting
likelihood can be interpreted as an extension of a mixture model in which the
choice of mixture components for each observation is not selected indepen-
dently but depends on the choice of components for the previous observation.
In [17], authors explore this direction, and propose an Hidden Topic Markov
Model (HTMM) for text documents. HTTM defines a Markov chain over la-
tent topics of the document. The corresponding generative process, depicted
in Fig. 9(a), assumes that all words in the same sentence share the same topic,
while successive sentences can either rely on the previous topic, or introduce
a new one. The topics in a document form a Markov chain with a transition
probability that depends on a binary topic transition variable ψ. When ψ = 1,
a new topic is drawn for the n-th sentence, otherwise the same previous topic
is used.

The LDA Collocation Model [16] introduces a new set of random variables
(for bigram status) x which denotes whether a bigram can be formed with
the previous word token. More specifically, as represented in Fig. 9(b), the
generative process specifies for each word both a topic and a collocation sta-
tus. The collocation status adds a more flexible modeling than Token Bigram
model which always generates bigrams and, according to this formulation, the
distribution on bigram does not depend on the topic. The introduction of the
collocation status enrich the generative semantic of the model and this idea
can be applied to all the approaches proposed in Sec. 2.

All the previously discussed models approach the problem of sequence mod-
eling by inferring the underlying latent topic and then generate a sequence of
words according to this distribution. This perspective does not take into ac-
count the fact that words in a text document may exhibit both syntactical
and semantic correlations. A Composite Model, which captures both seman-
tic and syntactic roles, has been proposed in [15]. The graphical model for
the generation of a document, given in Fig. 9(c), clarify this concept. The
semantic/syntactic dependencies among words are modeled by employing two
different latent variables, namely Z and C; while the semantic layer follows a
simple LDA model, the syntactic one is instantiated by modeling transitions
between the set of classes C through a hidden Markov model. One of these
classes corresponds to the semantic class and, when is observed, enables the
generation of the word according the current topic. Other classes capture word
co-occurrences that are due to syntactic aspects of the modeled language.

Textual documents exhibit a natural sequential structure: people develop
documents by building upon a main semantic concept, and by interleaving
several segments/subsections, which express related topics, in a coherent logical
flow. As described above, HTMM models topic cohesion at the level of phrases
(words within the same sentence share the same latent topic), but does not
model directly a smooth evolution between topics in different segments that
frame a document. Sequential LDA [14] is a variant of LDA which models a
sequential dependency between sub-topics: the topic of the current segment is
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Fig. 9 HTMM, Collocation and Composite Graphical Model for the generation of a docu-
ment

closely related to the topic of its antecedent and subsequent segments. This
smooth evolution of the topic flow is modeled by using a Poisson-Dirichlet
process.
The sequential structure is not limited exclusively to words, but it can affect
also sentiments. Dependency-Sentiment-LDA [22] builds on the assumption
that sentiments are expressed in a coherent way. Conjunctive words, such as
“and” or “but”, can be used to detect sentiment transitions, and the sentiment
of a word is dependent on the sentiment of its previous one.

6 Conclusion and Future work

In this paper we studied three extensions of the LDA model which relax the
bag-of-word assumption by hypothesizing that the current observation de-
pends on previous information. For each of the proposed model we provided
a Gibbs Sampling parameter estimation procedure and an experimental eval-
uation was accomplished by studying the models both from a model fitting
and an applicative perspective. In particular, the proposed models provide a
better framework for modeling contextual information in a recommendation
scenario, when the data exhibits intrinsic temporal dependency.

We believe that the models and results presented in this paper open two
interesting research directions. On the one side, it would be interesting to
generalize the notion of “contextual information”: in this paper, a context
was represented by temporal dependency. However, there are other observable
features that can contribute in the likelihood of observing an item in a user’s
trace, such as geographical location, tags etc.

Even further, the interaction of a user in a social network is having an
increasing impact in her behavior. Analyzing the influence of the neighbors in
a network [2] can help to better evaluate both the temporal dependencies and
the likelihood of an item to be selected.

Acknowledgements. We would like to thank Charles Elkan for kindly providing
the Matlab code for the DCMLDA model.
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notation description

M # Traces

N # Distinct tokens

K # Topics

W Collection of traces, W = {w1, . . . ,wM}
Nd # tokens in trace d

wd Token trace d, wd = {wd,1.wd,2. · · · .wd,Nd−1.wu,Nd}
wd,j j-th token in trace d

Z Collection of topic traces, Z = {z1, . . . , zM}
zd Topics for trace d, zd = {zd,1.zd,2. · · · .zd,Nd−1.zd,Nd}
zd,j j-th topic in trace d

nkd,s number of times token s has been associated with topic k for trace d

nd,(·) vector nd,(·) = {n1
d,(·), . . . , n

K
d,(·)}

nkd,(·) number of times topic k has been associated with trace d in the whole data

nk(·),r vector nk(·),r = {nk(·),r.1, . . . , n
k
(·),r.N}

nk(·),r.s number of times topic k has been

associated with the token pair r.s in the whole data

nk(·) vector nk(·) = {nk(·),1, . . . , n
k
(·),N}

nk(·),s number of times token s has been associated with

topic k in the whole data

nkd,(·) vector nkd,(·) = {nk.1d,(·), . . . , n
k.K
d,(·)}

nh.kd,(·) number of times that topic pair h.k has been

associated with the trace d

n
h.(·)
d,(·) number of times that a topic pair, that begins with topic h,

has been associated with the trace d

nh.k(·) vector nh.k(·) = {nh.k(·),1, . . . , n
h.k
(·),N}

nh.k(·),s number of times that topic pair h.k has been

associated with the token s in the whole data

α (LDA, TokenBigram and TokenBitopic Model) hyper parameters

for topic Dirichlet distribution α = {α1, . . . , αK}
(Topic Bigram Model) set of hyper parameters

for topic Dirichlet distribution α = {α0, . . . ,αK}
αh hyper parameters for topic Dirichlet distribution αh = {αh.1, . . . , αh.K}
β (LDA and TopicBigram Model) set of hyper parameters for token Dirichlet

distribution β = {β1, . . . ,βK}
(TokenBigram Model) set of hyper parameters for token Dirichlet

distribution β = {β1,1, . . . ,βK,1, . . . ,β1,2, . . . ,βK,2, . . . ,βK,N}
(TokenBitopic Model) set of hyper parameters for token Dirichlet

distribution β = {β1.1, . . . ,βK.1, . . . ,β1.2, . . . ,βK.2, . . . ,βK.K}
βk hyper parameters for token Dirichlet distribution βk = {βk,1, . . . , βk,N}
βk,s hyper parameters for token Dirichlet distribution βk,s = {βk,s.1, . . . , βk,s.N}
βh.k hyper parameters for token Dirichlet distribution βh.k = {βh.k,1, . . . , βh.k,N}
Θ matrix of parameters θd

θd mixing proportion of topics for trace d

ϑd,k mixing coefficient of the topic k for trace d

ϑd,h.k mixing coefficient of the topic sequence h.k for the trace d

Φ (LDA and TopicBigram Model) matrix of parameters ϕk = {ϕk,s}
(TokenBigram Model) matrix of parameters ϕk = {ϕk,r.s}
(TokenBitopic Model) matrix of parameters ϕh.k = {ϕh.k,s}

ϕk,s mixing coefficient of the topic k for the token s

ϕk,r.s mixing coefficient of the topic k for the token sequence r.s

ϕh.k,s mixing coefficient of the topic sequence h.k for the token s

Z−(d,j) Z− {zd,j}

∆(q) Dirichlet’s Delta ∆(q) =

∏P
p=1 Γ (qp)

Γ
(∑P

p=1 Γ (qp)
)

Table 2 Summary of the notation used


