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Abstract The study of influence-driven propagations in social networks and
its exploitation for viral marketing purposes have recently received a large
deal of attention However, regardless the fact that users authoritativeness,
expertise, trust and influence are evidently topic-dependent, the research on
social influence has surprisingly largely overlooked this aspect.

In this article we study social influence from a topic modeling perspec-
tive. We introduce novel topic-aware influence-driven propagation models that,
as we show in our experiments, are more accurate in describing real-world
cascades than the standard (i.e., topic-blind) propagation models studied in
the literature. In particular, we first propose simple topic-aware extensions of
the well-known Independent Cascade and Linear Threshold models. However,
these propagation models have a very large number of parameters which could
lead to overfitting.

Therefore we propose a different approach explicitly modeling authorita-
tiveness, influence and relevance under a topic-aware perspective. Instead of
considering user-to-user influence, the proposed model focuses on user authori-
tativeness and interests in a topic, leading to a drastic reduction of the number
of parameters of the model. We devise methods to learn the parameters of the
models from a dataset of past propagations. Our experimentation confirms the
high accuracy of the proposed models and learning schemes.
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1 Introduction

Social influence and the phenomenon of influence-driven propagations in so-
cial networks have received tremendous attention in the last years, fueled by
a variety of applications, such as viral marketing [8,23], personalized recom-
mendations [26], feed ranking [12], and the analysis of Twitter [29,1] just to
name a few. One of the key computational problems in this area is the iden-
tification of a set of influential users, which are more likely to produce large
influence-driven cascades: these are the users that should be “targeted” by a
viral marketing campaign. This problem has received a good deal of attention
by the data mining research community in the last decade [4], but quite sur-
prisingly, the characteristics of the item being the subject of the viral marketing
campaign has been left out of the picture.

Kempe et al. [13] formalize the influence maximization problem for a
generic item: for a given budget k, find k “seed” nodes in the network, such
that by activating them we can maximize the expected number of nodes that
eventually get activated, according to a chosen propagation model, that governs
how influence diffuses or propagates through the network. Kempe et al. [13]
mainly focus on two propagation models – the Independent Cascade (IC) and
the Linear Threshold (LT) models. Following this seminal work, a substantial
research effort has been dedicated to develop algorithms for influence maxi-
mization under these two propagation models (see Section 2). However, these
propagation models suffer various limitations when it comes to model real-
world cascades: e.g., the discrete treatment of time and the very large number
of parameters. The latter is a serious issue both for efficiency and scalability,
but more importantly, for the risk of overfitting.

In this paper we start from the observations that (i) users have different
interests, (ii) items have different characteristics and (iii) similar items are
likely to interest the same users. Following these observations, we take a topic-
modeling perspective to jointly learn items characteristics, users’ interests and
social influence. This results in new propagation models that experimentally
are proven to be more accurate in describing real-world cascades.

More in details the contributions of this article are as follows:

– We extend the classic IC and LT models to be topic-aware. The propagation
models we obtain are dubbed Topic-aware Independent Cascade (TIC)
model and Topic-aware Linear Threshold (TLT) model.

– For the problem of influence maximization, we show that the objective
function to maximize, i.e., the expected spread, remains monotone and sub-
modular for both TIC and TLT models. Thus the simple greedy algorithm
provides a (1− 1/e− φ)-approximation of the optimal solution.
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– We devise an expectation maximization (EM) approach for estimating the
parameters of the TIC model.

– Starting from a discussion on the limits of the TIC and TLT mod-
els, we introduce a new influence propagation model, dubbed AIR
(Authoritativeness-Interest-Relevance). Instead of considering user-to-user
influence, the proposed model focuses on user authoritativeness and inter-
ests in a topic, leading to a drastic reduction of the number of parameters
of the model, with benefits in terms of reduced risk of over-fitting and
reduced learning time.

– We devise a generalized expectation maximization (GEM) approach to learn
the parameters that maximize the likelihood for the AIR model.

– Our experiments on real-world social networks show that topic-aware in-
fluence propagation models outperform the traditional “topic-blind” IC
model in predicting adoption of a specific item, thus in modeling real-world
cascades.

– The benefits of keeping in consideration the characteristics of the item be-
ing propagated, are confirmed by our experiments on influence maximiza-
tion: topic-aware methods exhibit a consistent gain over state-of-the-art
approach that just considers a generic item, ignoring its characteristics.

Although topic-wise social influence has been studied before, to the best of
our knowledge we are the first to study it within the context of viral marketing
and the influence maximization problem, and to propose topic-aware influence
propagation models.1 The collocation of our contribution within the state of
the art is discussed in details in the next section. In Section 3 we introduce
the TIC and TLT models, while Section 4 is devoted to the AIR model. Sec-
tion 5 reports our experimental analysis. Section 6 discusses future work and
concludes the article.

2 Background and Related Work

In this section we provide the needed background for introducing the contri-
butions of this article, while discussing their collocation within the state of the
art.

2.1 Influence maximization

Suppose we are given a social network, that is a directed graph whose nodes
are users and arcs represent social relations among the users. Suppose we are
also given the estimates of reciprocal influence between individuals connected
in the network, that is a weight (or probability) pv,u associated top each arc

1 Note that the present manuscript is an invited extended version of our paper presented
at the ICDM 2012 conference with the same title [21].
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(v, u). As said in the previous section, a basic computational problem is that
of selecting the set of initial users that are more likely to influence the largest
number of users in the social network. The first algorithmic treatment of the
problem was provided by Domingos and Richardson [8,23], who modeled the
diffusion process in terms of Markov random fields, and proposed heuristic
solutions to the problem.

Later, Kempe et al. [13] studied influence maximization as a discrete op-
timization problem focusing on two fundamental propagation models, named
Independent Cascade Model (IC) and Linear Threshold Model (LT). In both
these models, at a given timestamp, each node is either active (an adopter of
the innovation, or a customer which already purchased the product) or inac-
tive, and each node’s tendency to become active increases monotonically as
more of its neighbors become active. An active node never becomes inactive
again. Time unfolds deterministically in discrete steps. As time unfolds, more
and more of neighbors of an inactive node u become active, eventually making
u become active, and u’s decision may in turn trigger further decisions by
nodes to which u is connected.

In the IC model each arc (u, v) has an associated probability pv,u that can
be considered as the strength of the influence of v over u. When a node v first
becomes active, say at time t, it is considered contagious. It has one chance
of influencing each inactive neighbor u with probability pv,u, independently of
the history thus far. If the tentative succeeds, u becomes active at time t+ 1.

In the LT model, each node u is influenced by each neighbor v according
to a weight pv,u, such that the sum of incoming weights to u is no more than
1. At the beginning of the propagation each node u chooses a threshold θu
uniformly at random from [0, 1]. At any timestamp t, if the total weight from
the active neighbors of an inactive node u is at least θu, then u becomes active
at timestamp t+ 1.

In both the models, the process repeats until no new node becomes active.
Given a propagation model m (e.g., IC or LT) and a seed set S ⊆ V , the
expected number of active nodes at the end of the process is denoted by
σm(S). The influence maximization problem requires to find the set S ⊆ V ,
|S| = k, such that σm(S) is maximum.

Kempe et al. show that under both the IC and LT propagation models,
the problem is NP-hard [13]. Kempe et al., however, show that the function
σm(S) is monotone (i.e., σm(S) ≤ σm(T ) whenever S ⊆ T ) and submodular
(i.e., σm(S ∪ {w})− σm(S) ≥ σm(T ∪ {w})− σm(T ) whenever S ⊆ T ). When
equipped with such properties, the simple greedy algorithm that at each it-
eration greedily extends the set of seeds with the node providing the largest
marginal gain, produces a solution with provable approximation guarantee
(1− 1/e) [20].

Though simple, the greedy algorithm is computationally prohibitive, since
the step of selecting the node providing the largest marginal gain is #P-hard
under both the IC and the LT model. In their paper, Kempe et al. run Monte
Carlo simulations for sufficiently many times to obtain an accurate estimate
of the expected spread. In particular, they show that for any φ > 0, there is a
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δ > 0 such that by using (1+δ)-approximate values of the expected spread, we
obtain a (1− 1/e−φ)-approximation for the influence maximization problem.
However, running many propagation simulations is extremely costly on very
large real-world social networks. Therefore, following [13], considerable effort
has been devoted to develop methods for improving the efficiency of influence
maximization [14,15,5,10,24,6].

The approaches discussed above, assume a weighted social graph as input
and do not address how the link influence weights (or probabilities) can be
obtained; [25,28,9,30] instead focus on the latter problem and propose specific
solutions. Saito et al. [25] for example, study how to learn the probabilities
for the IC model from a set of past propagations. They formalize this as a
likelihood maximization problem and then apply the Expectation Maximiza-
tion (EM) algorithm to solve it. We will extend this contribution to deal with
topic-wise influence in Section 3.1.

Goyal et al. [9] also study the problem of learning influence probabilities
but under a different model, i.e., an instance of the General Threshold Model.
They extend this model by introducing temporal decay, as well as factors such
as the influenceability of a specific user, and influence-proneness of a certain
action. They also show that their methods can be used to predict whether a
user will perform an action and when, and this prediction has higher accuracy
(i.e., it’s easier) for users with higher influenceability scores.

2.2 Topic modeling

Probabilistic Topic models [3,27,2] include a suite of techniques which widely
used in text analysis. They provide a low-dimensional semantic representation
that allows the discovering of global relationships within data by exploiting
co-occurrence. The key idea at the basis of topic modeling, is to introduce an
hidden variable Z for each co-occurrence of words within a corpus of docu-
ments. This hidden variable can range among K states and each topic (i.e.,
state of the latent variable) represents an abstract interest/pattern and intu-
itively models the underlying cause for each data observation.

Given a corpus, the assumption behind this family of techniques is that
each document may exhibit multiple topics and each word in the document is
generated by a particular topic. More specifically, each document is represented
as a mixture of topics, where each topic induces a distribution over words of
the considered dictionary.

Among the probabilistic approaches for topic modeling, besides mixture
models that are widely investigated in the literature [7], Probabilistic Latent
Semantic Analysis (pLSA) [11] is considered the progenitor of a wide range of
recent approaches, which include e.g. the popular Latent Dirichlet Allocation
(LDA) [3]. A probabilistic topic model specifies a generative process for doc-
uments which, at high level, can be summarized as follows:: (i) to generate a
new document, we generate a distribution over topics; then, (ii) for each word
to be generated we (a) choose a topic by drawing upon the document-specific
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distribution over topics and finally (b) generate a word from the topic-specific
distribution over tokens in the dictionary.

The difference between pLSA and LDA relies on how the document-specific
distribution over topics is generated: while in pLSA the topic-mixture weights
are directly modelled in the inference process, in LDA this distribution is
drawn from a Dirichlet distribution with a corpus specific hyperparameter α.
This further level of abstraction make easier the generalization of the model
to new (unobserved) documents.

2.3 Topic-aware influence analysis

Regardless the fact that users authoritativeness, expertise, trust and influence
are evidently topic-dependent, the research on social influence has surprisingly
largely overlooked this aspect. To the best of our knowledge only few papers
have looked at social influence from the topics perspective [28,29,17,16].

Tang et al. [28] study the problem of learning user-to-user topic-wise in-
fluence strength. The input to their problem is the social network and a prior
topic distribution for each node, which is given as input and inferred sepa-
rately. As a consequence, they do not consider the simultaneous learning of
topics and topic-wise influence. Further, their main focus is expert finding,
and hence they do not propose any propagation model, nor study influence
maximization. They instead deal with the efficiency problem by devising a
distributed learning algorithm under the Map-Reduce programming model.

A probabilistic model for the joint inference of the topic distribution and
topic-wise influence strength has been proposed by Liu et al. [17]. Here the
input is an heterogenous social network with nodes that are users and docu-
ments. The goal is to learn users’ interest (topic distribution) and user-to-user
influence. Gibbs-Sampling algorithm is used to estimate both topic distribu-
tion and influence weights.

Lin et al. [16] study the joint modeling of influence and topics, by adopt-
ing textual models. According to the generative semantic of the proposed
approach, each document is generated by a mixture model on topics. The
topic sampling process takes into account document-to-documents non neg-
ative weights which models influence (in this case topic-inheritance), while
novel aspects of the document are modeled by the evolution component.

Weng et al. [29] analyze topic-wise influence in Twitter by means of a two-
step process. First, topics of interest for each user are extracted by means of
LDA and topic-specific relationship networks are constructed. Then, in order
to measure the influence of each user, they propose TwitterRank, an extension
of the PageRank algorithm taking into account both the topic similarity and
the social link structure.

What mentioned before for [28] holds for [17][16][29] too: none of these
papers define an influence propagation model nor study the influence max-
imization problem, as we do in the present article. In conclusion, our work
collocates in the intersection of the area of research on influence propagation
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and maximization with the area of topic-modeling and, to the best of our
knowledge, it is the first work proposing topic-aware propagation models and
algorithms to learn social influence strength and the topics jointly.

3 Simple Topic-aware Propagation Models

As a first step towards topic-aware modeling of social influence, we extend
the classic Independent Cascade (IC) and Linear Threshold (LT) models to
their topic-aware versions. The two standard (i.e., topic-blind) models were
introduced in the previous section.

Topic-aware Independent Cascade Model (TIC). In the topic-aware
version of the IC model the user-to-user influence probabilities depend on the
topic. Therefore, for each arc (v, u) ∈ E and each topic z ∈ [1,K] we are given
a probability pzv,u, representing the strength of the influence exerted by user v
on user u on topic z. Moreover for each item i that propagates in the network,
we have a distribution over the topics, that is for each topic z ∈ [1,K] we are

given γzi = P (Z = z|i), with
∑K

z=1 γ
z
i = 1.

In this model a propagation happens like in the IC model: when a node
v first becomes active on item i, has one chance of influencing each inactive
neighbor u, independently of the history thus far. The tentative succeeds with
a probability that is the weighted average of the link probability w.r.t. the
topic distribution of the item i:

piv,u =

K∑
z=1

γzi p
z
v,u. (1)

Similarly we can formulate a topic-aware version of the LT model.

Topic-aware Linear Threshold Model (TLT). For each arc (v, u) ∈ E
and each topic z ∈ [1,K] we are given a weight pzv,u, such that the sum of
incoming weights in each node and for each topic is no more than 1. Each
node u chooses a threshold θu uniformly at random from [0, 1]. At time t, a
node u which is not yet active on item i, is submitted to an influence weight

W t
i (u) =

K∑
z=1

∑
v∈Fi(u,t)

γzi p
z
v,u. (2)

where Fi(u, t) denotes the set of users that have a link to u and that at time
t have already adopted the item i. If W t

i (u) ≥ θu, then u will activate on item
i at time t+ 1.

Observation 1 For both the TIC and TLT models the submodularity of the
expected spread σm(S) is directly inherited from the IC and LT models, respec-
tively. In fact, in both cases only the model parameters are topic-aware, while
the overall mechanism of propagation does not change. In particular, given an
item i just let pv,u :=

∑K
z=1 γ

z
i p

z
v,u (Eq. 1) to reduce from TIC to IC and from

TLT to LT.
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notation description
G = (V,E) directed social graph
(v, u) ∈ E an arc from user v ∈ V to user u ∈ V
σm(S) expected spread of S ⊆ V under model m
I the universe of items (index i)
i index over the item-set
K number of topics

z ∈ [1,K] a topic
pzv,u strength of influence of v on u, on topic z
γzi topic distribution for item i
ϑzu topic distribution for user u
D input DB of propagations (propagation log)

(v, i, t) ∈ D user v adopts item i at time t
ti(v) the time at which v adopts item i
Di(t) {v ∈ V |ti(v) = t}

ti and ti min and max t s.t. Di(t) 6= ∅
Ci(t)

⋃
t′≤tDi(t

′)

Fi(u, t) {v ∈ V |(v, u) ∈ E ∧ v ∈ Ci(t)}
W t
i (u) total influence for item i on u at time t
pzv authoritativeness of user v in topic z
ϕzi relevance of item i in topic z
∆ influence window

Table 1: Some of the notation used

Essentially what Observation 1 states is that the mechanism of propaga-
tion does not change between IC, LT and their topic-aware counter-part. What
changes is the fact that, while in the classic model there is no distinction among
different items, in the topic-aware models different items induce different influ-
ence strength over the links. Given a specific item i and its topic-distribution
γi, we just can “re-compute” the links strength as pv,u :=

∑K
z=1 γ

z
i p

z
v,u and

then apply the standard, topic-blind, models.
Hence it holds the following.

Proposition 1 The expected spread σm(S) remains monotone and submodu-
lar for m =TIC or m =TLT.

Proof The proof follows directly from the proofs for IC and LT in [13] and
Observation 1.

A direct corollary is that the greedy algorithm provides an (1− 1/e− φ)-
approximation for the influence maximization problem also under the TIC and
TLT propagation models [13].

Next we define an Expectation Maximization (EM) method for learning
the parameters of the TIC model.

3.1 Learning topic-aware influence

The problem of learning the parameters of the TIC models takes in input the
social graph G = (V,E), a log of past propagations D, and an integer K. The
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propagation log is a relation (User,Item,Time) where a tuple (u, i, t) ∈ D
indicates that user u adopted item i at time t. We assume that no user adopts
the same item more than once. Moreover we assume that the projection of D
on User is contained in the set of nodes V of the social graph G. We let I
denote the universe of items, i.e., the projection of D on the second column.
We also use Di to denote the propagation trace of i, that is the selection of
the tuples of D where Item = i, while Di(t) will denote the set of users that
adopted i at time t, and Ci(t) =

⋃
t′≤tDi(t

′). Finally we use ti and ti to denote
the first and last timestamp of adoption of item i.

The output of the learning problem is the set of all parameters of the TIC
propagation model, which we denote Θ: these are γzi and pzv,u for all i ∈ I,
(v, u) ∈ E, and z ∈ [1,K].

Assuming that each propagation trace is independent from the others, the
likelihood of the data given the model parameters Θ, can be expressed as:

L(Θ;D) =
∑
i∈I

logL(Θ;Di). (3)

Saito et al. [25] assume that the input propagations have the same shape as
they were generated by the IC model itself. This means that the propagation
trace of an item i must be a sequence of sets of users Di(0), . . . , Di(n), corre-
sponding to the discrete time steps of the IC propagation. Moreover for each
node u ∈ Di(t) there exists a neighbor v of u such that v ∈ Di(t− 1). This is
obviously not the case in real-world propagation traces with continuous time.

Following [18] we adopt a delay threshold ∆ to define influencers. Specif-
ically, suppose that u adopted i at time ti(u), and let ti(u) = ∞ if u does
not adopt i, then we define F+

i,u as the set of u’ neighbors that potentially
influenced u in the selection of i:

F+
i,u = {v|(v, u) ∈ E, 0 ≤ ti(u)− ti(v) ≤ ∆}.

The set F−i,u of u’s neighbors who definitely failed in influencing u over i is
defined similarly:

F−i,u = {v|(v, u) ∈ E, ti(u)− ti(v) > ∆}.

The main difference between the IC model and TIC, is that while in the
former the probability that user v will succeed influencing u is the same for
every item i, in the latter piv,u is a mixture over the user-to-user influence

probabilities, where the mixture weights γiz and the influence probabilities
pzv,u are the parameters to be learned. However, directly unpacking pv,u in
order to expose γzi and pzv,u would lead us to a likelihood formulation which
is not tractable in a closed form. We can tackle this problem by resorting
to the “complete data” approach [7], which allows us to provide an effective
closed form estimation of the parameters γzi and pzv,u. The likelihood of a
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propagation trace Di within the z-th component of the model can be defined
as P (Di|z;Θ) =

∏
u P

i,z
u,+P

i,z
u,−, where

P i,z
u,+ = 1−

∏
v∈F+

i,u

(1− pzv,u) and (4)

P i,z
u,− =

{∏
v∈F−i,u

(1− pzv,u) if F−i,u 6= ∅,
1 otherwise.

(5)

We resort to the “complete data” approach [7], by assuming that an un-
known binary vector yi encodes the information about the generating com-
ponent. In practice, an item propagates from v to u in a specific (unknown)
topic. As a consequence, the complete data likelihood can be defined as

L(Θ;Di,Y) = P (Di|Y, Θ)P (Y|Θ)

=

k∑
z=1

yizP (Di|z;Θ)πz

In the rest of the paper, following the standard EM notation, Θ̂ will repre-
sent the current estimate of the set of parameters Θ. According to the above
formulation, the Complete Expectation-Likelihood [7] is given by:

Q(Θ; Θ̂) =
∑
i

K∑
z=1

Qi(z; Θ̂)

{
log πz +

∑
u

logP i,z
u,+ +

∑
u

logP i,z
u,−

}
(6)

Eq. 6 is still untractable in closed form, and it requires a further approx-
imation step in the style of [25]. The trick here is in considering that, if the
actual activators are knows, then Eq. 5 can be rewritten in a more tractable
format, by assuming a set of bernoulli trials over all possible activators. For
each active node v wrt the generic item i, the attemp to activate u succeeds
with probability

Ri
z(u, v; Θ̂) =

p̂zv,u

P̂ i,z
u,+

(7)

where p̂ and P̂ denote the current estimates in Θ̂. Q(Θ; Θ̂) can hence be
rewritten as

Q(Θ; Θ̂) =
∑
i

K∑
z=1

Qi(z; Θ̂)

{
log πz +

∑
u

∑
v∈F+

i,u

{
Riz(u, v; Θ̂) log pzv,u +

(
1−Riz(u, v; Θ̂)

)
log(1− pzv,u)

}

+
∑

v∈F−i,u

log(1− pzv,u)


 (8)
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Algorithm 1: EM inference of parameters for TIC

Input : Social graph G = (V,E), data D, and K ∈ N+.
Output: The set of all parameters of TIC, Θ, that is:

∀(v, u) ∈ E,∀i ∈ I, ∀z ∈ [1,K] : pzv,u, πz and γzi .
init(πz , pz

v,u );

repeat
forall the i ∈ I do

forall the z = {1, · · · ,K} do
Qi(z; Θ̂)← P (Di|z;Θ̂)πz∑

z̃ P (Di|z̃;Θ̂)πz̃
;

forall the (u, v) ∈ E do

Riz(u, v; Θ̂)←
pzv,u

P
i,z
u,+

;

end

end

end

E
-s
te
p

M
-s
te
p

forall the z = {1, · · · ,K} do
πz ← 1

|I|
∑
i∈I Qi(z; Θ̂);

forall the (u, v) ∈ E : S+
v,u 6= ∅ do

pzv,u ← 1

κ+v,u,z+κ
−
v,u,z

∑
i∈S+

v,u
Qi(z; Θ̂)Riz(u, v; Θ̂)

end

end

until convergence;

where πz is the prior probability that a generic item is assigned to topic z.
The mixture parameters γzi , which define the TIC model in Eq. 1, are given

by the values of Qi(z; Θ̂) at the end of the learning procedure.
Let S+

v,u = {i|v ∈ F+
i,u}, and similarly S−v,u = {i|v ∈ F−i,u}. Moreover let

κ+v,u,z =
∑

i∈S+
v,u

Qi(z; Θ̂), and κ−v,u,z =
∑

i∈S−v,u

Qi(z; Θ̂).

The Expectation-Maximization method for learning the parameters of the TIC
model is given in Algorithm 1: it starts with a random initialization of parame-
ters πz (ensuring that

∑
z πz = 1) and pzv,u for all pair 〈v, u〉 such that S+

v,u 6= ∅.
Then it alternates the E-step and the M-step, measuring at each iteration the
gain of log-likelihood (Eq. 8) w.r.t. the previous iteration. When the gain is
below a given threshold, the algorithm has converged.

3.2 Dealing with new items in TIC

TIC model assumes that for each item we are given distribution over the
topics and we have shown how to estimate this distribution by log-likelihood
maximization. However, an interesting case is to apply the model to a new item
never seen before, e.g., when we want to push a new product in the market.
In this case we cannot directly apply the parameter estimation procedure
described above, since no propagation trace of the new item is available yet.
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We have to rely on background knowledge about the item. For instance, the
marketing expert might directly define the distribution over the topics for the
given new item. Alternatively, item features (e.g., genre, price, etc.) might be
available, or a small set of initial adopters might have provided tags.

In the most general setting, let us assume that multiple descriptions, in
the form of sets of tags from a vocabulary T , exist for item i. Let wi denote
the bag of tags obtained by joining all the descriptions of i and let wn denote
the n-th tag in wi. Then, we can extend the expected-likelihood formulation
in order to take into account tag-assignments for items and maximize their
likelihood. Let βwn,k denote the probability of observing the n-th tag in the
k-mixture: βwn,k = P (wn|zk). Assuming that influence probabilities and tags
assignments are conditionally independent given the topic, the probability that
the trace of item i will be generated by the z-th component is:

P (Di|z;Θ) =
∏
u

P i,z
u,+P

i,z
u,−

wi∏
n=1

β
N(wn,i)
wn,k

where N(wn, i) is the number of times that the tag wn has been assigned to
the item i. Then, the Complete-Data expectation likelihood becomes:

Q(Θ; Θ̂)′ = Q(Θ; Θ̂) +
∑
i

K∑
z=1

Q(z; i, Θ̂)

|wi|∑
n=1

N(wn, i) log βwn,k

and in the M-step we need to update the β distribution as:

βwn,k =
1 +

∑
i∈I Qi(z; Θ̂)N(wn, i)

|T |+
∑|T |

n′=1

∑
i∈I Qi(z; Θ̂)N(wn′ , i)

.

Since no diffusion trace has been observed yet, it follows that both F+
i,u and

F−i,u are empty. In this case, the P i,z
u,+ and P i,z

u,− components equal 1 and the
overall probability reduces to the probability of observing the tags within topic
z. In addition, γzi can be computed as

γzi =

∏|w|
n=1 βwn,z · πz∑

z′
∏|w|

n=1 βwn,z′ · πz′
. (9)

3.3 Discussion

The traditional IC and LT models suffer various limitations when it comes
to apply them in practice. One first limitation is the treatment of time and
the consequent need for some discretization, as we have already highlighted
in Section 3.1. Another important limitation is the number of parameters. In
fact both LT and IC have influence weights (or probabilities) for each pair of
connected users. However, having |E| parameters is unsuitable for real-world
social networks where the number of edges is usually extremely large (for in-
stance, Facebook nowadays exhibits |E| > 130 billion). The very large number
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of parameters, on the one hand makes the learning phase computationally
prohibitive (the EM-based method needs to update the influence probability
associated to each edge in each iteration), and on the other hand it makes the
model prone to overfitting.

Goyal et al. [10] empirically found that the greedy algorithm with the IC
parameters learned with the EM-based method [25], picks as seeds mainly only
nodes which perform a very small number of actions, often just one action,
and should not be considered as high influential nodes. For instance, in one
experiment they found that the first seed selected is a node that in the propa-
gation traces it performs only one action. But this action propagates to 20 of
its neighbors. As a result, the EM-based method ends up assigning probabil-
ity 1 to all the links from that node to all its 20 neighbors, making it a high
influence node, so much influential that it results being picked as the first seed
by the greedy algorithm.

These limitations are not solved in the topic-aware TIC and TLT models
that we have introduced in this section. Indeed, in TIC and TLT we have
K(|E|+ |I|) parameters.

In the next section we introduce the AIR (Authoritativeness-Interest-
Relevance) propagation model, which assumes that social influence depends
on a user authority in the context of a given topic and the interest of the
user social neighborhood for that topic. This assumption greatly reduces the
number of parameters.

4 The “AIR” Propagation Model

The AIR model has the following parameters:

– Authoritativeness of a user in a topic: For each user v ∈ V and
for each topic z ∈ [1,K], we are given a weight pzv ∈ R which measures
the strength of v’s influence on the topic z. A positive value represent
authoritativeness, i.e., given a topic, the activation of v with respect to an
item will influence v’s neighbors to select the item as well; on the other
hand, negative values model distrust, i.e., the activation of v will discourage
the activation of her neighbors.

– Interest of a user for a topic: each user u is defined by a distribution
ϑu over topics: i.e., ϑzu = P (Z = z|u) denotes the interest of the user u in

the topic z and
∑K

z=1 ϑ
z
u = 1.

– Relevance of an item for a topic: each topic z is defined by a set of
weights ϕz ∈ R|I|, with ϕz

i ∈ R being the relevance (or selection) weight
for the item i in the topic z. Each topic can be hence characterized by
the set of the most relevant items. For example, in the topic “Politics” the
weight associated with the selection of the “NYT” is expected to be greater
than the one corresponding to “Sport Illustrated”.

The working principle of AIR is a generalization of the threshold model [13].
At the beginning of the process each user u chooses a threshold θu uniformly
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at random from [0, 1]. At time t, the decision of u to activate for a given item i
depends on the influence exerted by her neighbors who have already activated
on i (their authoritativeness) and on topic-wise u’s interests and i’s relevance.
In details, at time t user u actives on i iff

P (i|u, t) =
∑
z

P (z|u)P (i|u, z, t) ≥ θu

where P (z|u) = ϑzu, while P (i|u, z, t) is the following logistic selection function:

P (i|u, z, t) =
exp

{∑
v∈V p

z
vfv(i, u, t) + ϕz

i f(i, u, t)
}

1 + exp
{∑

v∈V p
z
vfv(i, u, t) + ϕz

i f(i, u, t)
} (10)

The selection scaling factors fv(i, u, t) and f(i, u, t) are used to distinguish
potential influencers from non influencers (fv(i, u, t) = 0 if v 6∈ Fi(u, t)) and
to potentially relate influence to time. As observed in [12], the likelihood of
an item propagating is likely to decay proportionally to time. In particular, it
decays at two different levels: locally the influence exerted by v on u for item i
decays with the time elapsed from the moment in which v adopted i; globally
the interest in the item i decays as i gets older. The adoption of the selection
scaling factors in Eq. 10 allows to directly model both local and global temporal
decay, e.g. by ensuring that fv(i, u, t) ∝ (ti(v)− t), and f(i, u, t) ∝

(
ti − t

)
.

Compared to the models presented in the previous section, the AIR influ-
ence propagation model has only K(|V | + |I|) parameters. As a result, AIR
is a simpler model, more robust to overfitting and still capable of describing
influence propagation in an effective way.

4.1 AIR: learning the parameters

The problem of learning the parameters of the AIR model, has the same input
of the learning the parameters for TIC, presented in Section 3.1.

Within the generative process, we can assume that for each given item i,
a user u picks a topic z by drawing from her own characteristic distribution
over the topics ϑu (representing her prior interests). Then, for each timestamp
t, u activates on i with probability P (i|u, z, t) defined as in Eq. 10. Given the
model parameters, we can compute the likelihood of the data as in Eq. 3.
Recall that Di(t) denotes the set of users who selected the item i at time
t, while Ci(t) denotes the set of users who selected i by time t. For sake of
notation compactness we use the binary indicators dui (t) = 1 if u ∈ Di(t), and
zero otherwise, and cui (t) = 1 if u ∈ Ci(t), and zero otherwise.

Then the Complete-Data Expectation Likelihood is:

L(Θ;Q) =
∑
i

∑
u

∑
z

Q(z;u, i) {log ϑzu+

ti∑
ti

dui (t) logP (i|u, z, t)

+(1− cui (t)) log (1− P (i|u, z, t))}

(11)



Topic-aware Social Influence Propagation Models 15

where ti and ti are the timestamp associated respectively with the first and
the last observation of the item i.

Each observation 〈u, i〉 is associated with a state z of the latent variable,
modeling the preference of u for i. Also, for the sake of simplicity, we assume
that the hidden topic variable is independent from time. This modeling trick
simplifies the formulation of the expected likelihood, and provides the following
definition for the expected value:

Q(z;u, i) =

ϑ̂uz
∏ti

ti
(P (i|u, z, t))d

u
i (t) · (1− P (i|u, z, t))(1−c

u
i (t))∑

z′ ϑ̂
u
z′
∏ti

ti
(P (i|u, z, t))d

u
i (t) · (1− P (i|u, z, t))(1−c

u
i (t))

Within the EM framework, the ϑ component can be obtained using stan-
dard optimization. The remaining parameters are difficult to solve in a closed
form, due essentially to the non-linearity of Eq.10. We overcome this limi-
tation by combining the Improved Iterative Scaling algorithm [22] and the
Generalized Expectation-Maximization (GEM) procedure [19].

Essentially, rather than maximizing L(Θ,Q), we look for an upgrade Γ of
Θ that guarantees

L(Θ + Γ,Q) ≥ L(Θ,Q)

In practice this corresponds to find for each pzv an upgrade δzv and for each
item i an upgrade ηzi such that the M-step can be defined as pzv ← pzv + δzv and
ϕz
i ← ϕz

i + ηzi .
Notice that the Expectation Log-Likelihood can be expressed as:

L(Θ,Q) =
∑
i

∑
u

∑
z

Q(z;u, i)ϑuz

+
∑
i,u,z

Q(z;u, i)

ti∑
ti

dui (t)

{∑
v∈V

pzvfv(i, u, t) + ϕz
i f(i, u, t)

}

−
∑
i,u,z

Q(z;u, i)

ti∑
ti

dui (t) log

{
1 + exp

{∑
v∈V

pzvfv(i, u, t) + ϕz
i f(i, u, t)

}}

−
∑
i,u,z

Q(z;u, i)

ti∑
ti

(1− cui (t)) log

{
1 + exp

{∑
v∈V

pzvfv(i, u, t) + ϕz
i f(i, u, t)

}}
(12)

define

ai,u,z,t =
∑
v∈V

pzvfv(i, u, t) + ϕz
i f(i, u, t)

and

a′i,u,z,t =
∑
v∈V

(pzv + δzv)fv(i, u, t) + (ϕz
i + ηzi )f(i, u, t)
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Then,

L(Θ + Γ,Q)− L(Θ,Q) =∑
i,u,z

Q(z;u, i)

ti∑
ti

dui (t)

{∑
v∈V

δzvfv(i, u, t) + ηzi f(i, u, t)

}

−
∑
i,u,z

Q(z;u, i)

ti∑
ti

dui (t) log

{
1 + exp(a′i,u,z,t)

1 + exp(ai,u,z,t)

}

−
∑
i,u,z

Q(z;u, i)

ti∑
ti

(1− cui (t)) log

{
1 + exp(a′i,u,z,t)

1 + exp(ai,u,z,t)

}
(13)

Exploiting the inequality − log x ≥ 1− x and ignoring the (positive) constant
terms, we obtain:

L(Θ + Γ,Q)− L(Θ,Q) ≥∑
i,u,z

Q(z;u, i)

ti∑
ti

dui (t)

{∑
v∈V

δzvfv(i, u, t) + ηzi f(i, t)

}

−
∑
i,u,z

Q(z;u, i)

ti∑
ti

dui (t)
1 + exp(a′i,u,z,t)

1 + exp(ai,u,z,t)

−
∑
i,u,z

Q(z;u, i)

ti∑
ti

(1− cui (t))
1 + exp(a′i,u,z,t)

1 + exp(ai,u,z,t)

(14)

Notice now that

1 + exp(a′i,u,z,t)

1 + exp(ai,u,z,t)
=

1

1 + exp(ai,u,z,t)
+

exp(a′i,u,z,t)

1 + exp(ai,u,z,t)

= (1− P (i|u, z, t))

+P (i|u, z, t) · exp

{∑
v∈V

δzvfv(i, u, t) + ηzi f(i, u, t)

}
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which yields

L(Θ + Γ,Q)− L(Θ,Q) ≥∑
i,u,z

Q(z;u, i)

ti∑
ti

dui (t)

{∑
v∈V

δzvfv(i, u, t) + ηzi f(i, t)

}

−
∑
i,u,z

Q(z;u, i)

ti∑
ti

dui (t) (1− P (i|u, z, t))

−
∑
i,u,z

Q(z;u, i)

ti∑
ti

dui (t)P (i|u, z, t) · exp

{∑
v∈V

δzvfv(i, u, t) + ηzi f(i, t)

}

−
∑
i,u,z

Q(z;u, i)

ti∑
ti

(1− cui (t)) (1− P (i|u, z, t))

−
∑
i,u,z

Q(z;u, i)

ti∑
ti

(1− cui (t))P (i|u, z, t) · exp

{∑
v∈V

δzvfv(i, u, t) + ηzi f(i, t)

}
(15)

Further, without loss of generality we can assume that the scaling factors are
normalized, i.e.,

∑
v

fv(u, i) + f(i, u, t) = 1

We can hence exploit the Jensen inequality,

exp

{∑
v∈V

δzvfv(i, u, t) + ηzi f(i, u, t)

}
≤∑

v∈V
fv(i, u, t) exp {δzv}+ f(i, u, t) exp {ηzi }
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which finally allows the lower bound L(Θ + Γ,Q) − L(Θ,Q) ≥ B(Γ,Θ,Q),
where

B(Γ,Θ,Q) =
∑
i,u,z

Q(z;u, i)

ti∑
ti

dui (t)

{∑
v∈V

δzvfv(i, u, t) + ηzi f(i, u, t)

}

−
∑
i,u,z

Q(z;u, i)

ti∑
ti

dui (t) (1− P (i|u, z, t))

−
∑
i,u,z

Q(z;u, i)

ti∑
ti

dui (t)P (i|u, z, t)·

·

{∑
v∈V

fv(i, u, t) exp {δzv}+ f(i, u, t) exp {ηzi }

}

−
∑
i,u,z

Q(z;u, i)

ti∑
ti

(1− cui (t)) (1− P (i|u, z, t))

−
∑
i,u,z

Q(z;u, i)

ti∑
ti

(1− cui (t))P (i|u, z, t)·

·

{∑
v∈V

fv(i, u, t) exp {δzv}+ f(i, u, t) exp {ηzi }

}

(16)

The parameter update Γ improves the likelihood when the auxiliary func-
tion B(Γ,Θ,Q) is positive. By maximizing the latter, we obtain:

δzv = log


∑

i,uQ(z;u, i)fv(i, u, ti(u))∑
i,uQ(z;u, i)

∑ti(u)
ti

P (i|u, z, t) · fv(i, u, t)


ηzi = log


∑

uQ(z;u, i)f(i, u, ti(u))∑
uQ(z;u, i)

∑ti(u)
ti

P (i|u, z, t) · f(i, u, t)


Algorithm 2 summarizes the overall learning scheme.

4.2 AIR: dealing with new items

Modeling unobserved items follows the general guidelines exposed in Sec. 3.2,
with some variations. The selection probability for a new item can be simpli-
fied as:

P (i|u, t) =
∑
z

P (z|u)P (i|z, u, t)

=
∑
z

ϑzu
exp {ϕz

i f(i, u, t)}
1 + exp {ϕz

i f(i, u, t)}

(17)
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Algorithm 2: EM inference of parameters for AIR

Input : Social graph G = (V,E), data D, and K ∈ N+.
Output: The set of all parameters of AIR Θ, that are

pzu(A), ϑzu(I), ϕzi (R), forall u ∈ V, z ∈ [1,K], i ∈ I.

init(pz
u , ϑ

z
u , ϕ

z
i ); //Random initialization of parameters

repeat
forall the i ∈ I do

forall the u ∈ V do
forall the z = {1, · · · ,K} do

Q(z;u, i)←
ϑz
u

∏ti
ti
P (i|u,z,t)d

u
i (t)·(1−P (i|u,z,t))(1−cui (t))

∑
z′ ϑ

z′
u

∏ti
ti
P (i|u,z′,t)d

u
i
(t)·(1−P (i|u,z′,t))(1−cu

i
(t))

end

end

end

E
-s
te
p

M
-s
te
p

forall the z = {1, · · · ,K} do
forall the v ∈ V do

ϑzv ← 1
|I|
∑
i∈I Q(z; v, i)

δzv ← log

{ ∑
i,u Q(z;u,i)fv(i,u,ti(u))∑

i,u Q(z;u,i)
∑ti(u)

tm(i)
P (i|u,z,t)·fv(i,u,t)

}
end
forall the i ∈ I do

ηzi ← log

{ ∑
u Q(z;u,i)f(i,ti(u))∑

u Q(z;u,i)
∑ti(u)

tm(i)
P (i|u,z,t)·f(i,t)

}
end
forall the u ∈ V do

pzu ← pzu + δzu
end
forall the i ∈ I do

ϕzi ← ϕzi + ηzi
end

end

until convergence;

In general relevance parameter ϕz
i for a new item i is not bound to an optimal

value. However, when tag information is available, we can assume a prior
tendency of the item to be selected, according to its likelihood to be associated
with the topic. That is, we can model new item by assuming a prior probability
p(ϕz

i ), defined as a gaussian distribution with constant variance σ and mean γzi
(as defined in Eq. 9). As a consequence, the log-likelihood can be reformulated
to comprise the prior probabilities, resulting into

L(Θ;D) =
∑
i∈I

logL(Θ;Di) + logP (Θ)

A more thorough maximum a posteriori estimation (MAP) treatment for the
whole parameter set Θ is omitted here for lack of space. Without loss of gener-
ality, we assume uniform prior probabilities for all the parameters other than
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new items. As a consequence, P (Θ) can be simplified as:

logP (Θ) =
∑

i:Di=∅

∑
z

log p(ϕz
i ) + C

Combining the above equations and Eq. 11 finally yields

L(Θ;Q)′ = L(Θ;Q) +
∑

i:Di=∅

∑
z

log p(ϕz
i ) + C

Optimizing the latter with respect to a parameter ϕz
i relative to a new item i

yields the straightforward solution ϕz
i = γzi .

4.3 Influence Maximization in AIR

We next discuss the problem of influence maximization in AIR. Given a generic
item i that we want to promote, we assume that its AIR parameters are known.
The problem is to select a set S of k nodes such that the expected spread of
influence of S under the AIR model, denoted σAIR(S), is maximal.

Although AIR is a general threshold model, the fact that user authorita-
tiveness can be negative makes σAIR not submodular and not even monotone.
Therefore the standard greedy algorithm cannot provide any approximation
guarantee, as it does for the classic IC and LT models, and for their topic-aware
versions TIC and TLT.

Even without any provable guarantee, it is reasonable to consider the
greedy algorithm a reasonable candidate also for the AIR model, given that
in any case we shall naturally avoid users with negative authoritativeness.
Therefore, in the next section we compare the spread σAIR(S) achieved by the
following two methods:

– Greedy: at each iteration greedily add to the set of seeds S the node x that
brings the largest marginal gain, i.e., σAIR(S ∪ {x})− σAIR(S) is maximal.
Estimate σAIR(S) for a given S by Monte Carlo simulations [13].

– Top-k authorities: given the new item i and its distribution over topics
γzi , select the top-k users v w.r.t.

K∑
z=1

γzi p
z
v.

Recall that all over the paper K is the number of topics, while here k is the
size of the required seed set.

Studying alternative approaches to influence maximization under the AIR
model will be part of our future investigation.
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Flixster Digg
Training Test Training Test

Users 6,572 4,686 16,297 14,061
Items 7,158 7,138 3,553 3,547

Actions 1,432,716 340,495 1,160,428 264,066
Avg # actions (user) 218 72 71 18
Avg # actions (item) 200 47 326 74
Min # actions (user) 6 1 6 1
Min # actions (item) 9 1 90 3
Max # actions (user) 5,525 1,786 2,640 1,912
Max # actions (item) 3,173 778 4,995 828

Avg lifetime (item) 952 days 14 days
Avg time between two actions

per user 94 hours 66 hours
per item 22 days 38 minutes

Table 2: Summary of the propagation data.

5 Experimental Evaluation

The goal of our experiments is twofold. At a high level, we want to evaluate the
impact of introducing a topic-based estimation of the influence probabilities.
That is, we are interested in evaluating whether topic-aware propagation mod-
els can better predict the activation of a user on a specific item. The expected
result is that the combined adoption of both influence and topic modeling
exhibits an improvement over the single contributions. We also aim aim at as-
sessing whether considering the topic model of the item can bring any benefit
in a viral marketing campaign. That is to say, to compare topic-aware models
against models that ignore the topic distribution of the item, in the influence
maximization problem.

5.1 Datasets

We use two real-world and publicly available datasets, both containing a social
graph G = (V,E) and a log of past propagations D = {(User,Item,Time)}:
the datasets come from Digg (www.digg.com) and Flixster (www.flixster.
com). Digg is a social news website, where the users vote stories. In this case
D contains information about which user voted which story (item) at which
time. If we have user v vote a story about the new iPhone, and shortly later
v’s friend u does the same, we consider the story as having propagated from v
to u, and v as a potential influencer for u. Flixster is one of the main players
in the mobile and social movie rating business. Here, an item is a movie, and
the action of the user is rating the movie.

In both cases we started from the publicly available dataset2 3 and we
performed some standard consistency cleaning and removal of all users and

2 www.isi.edu/~lerman/downloads/digg2009.html
3 http://www.cs.sfu.ca/~sja25/personal/datasets/
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Fig. 1: Frequency distributions for influencers

items that do not appear at least 20 times in D. The final Digg social graph
contains 11,142 users and 99,846 directed arcs, while Flixster contains 6,353
users and 84,606 directed arcs: in both cases we do not consider the discon-
nected nodes, i.e., users that appear actively in D but which have no friends in
G. Moreover, for our purposes we performed a chronological split of D in both
datasets into training (80%) and test (20%). Table 2 summarizes the main
properties of D.
The two datasets exhibit different features and it is worth analyzing the dis-
tribution of the number of potential influencers for each activation in their re-
spective propagation log D. More specifically, for each tuple (u, i, t) we record
|F+

i,u|; the cumulative distributions of the overall number of potential influ-
encers are given in Figure 1. This analysis allows us to measure the role, and
extent, of influence in the behavior of the users on the two datasets. We can
observe that influence plays a more relevant role in the Flixster dataset, and
we expect that the next analysis of the influence weights will confirm this
hypothesis.

5.2 Experiments settings

We start by noticing that there is a direct relationship between the the scaling
factors fv(i, u, t) of the AIR model and the size of influence window ∆ used in
the parameters learning of the IC and TIC models. We studied two alternative
definitions for fv(i, u, t).

The first one assumes that propagation can degrade following an exponen-
tial decay:

fv(i, u, t) ∝
{

exp(tv(i)− t) if v ∈ Fi(u, t)
0 otherwise
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Fig. 2: Convergence rate: AIR vs. TIC on Digg (left) and Flixster (right).

This definition of scaling factor corresponds to a very short influence threshold
∆ (typically, 3 to 5 timestamps). The second option we explored is to keep
fv(i, u, t) constant. This corresponds to adopting a value ∆ = ∞ within the
IC and TIC models. As a matter of fact, the statistics on the average time
between two actions involving the same item, and the average time-life for an
item in Table 2 suggest for a large ∆. Our empirical analysis determined that,
at least in these two datasets, the best results are achieved by considering
all the influencers up to the considered time: i.e., ∆ = ∞ and consequently
fv(i, u, t) constant.4 Therefore in the experiments reported here we always
adopt these settings.

5.3 Learning Rate

In Figure 2 we compare the learning rate of the TIC and the AIR model in
the first 200 iterations. As expected, TIC exhibit a faster convergence rate
than AIR: this is due to the difference in their respective M-step. AIR relies
on a GEM procedure which clearly affects the number of iterations needed to
achieve convergence. Notably, the TIC parameter estimation phase provides a
good estimation of the model parameters after about 60 iterations on both the
datasets, whereas the AIR model requires approximately 1400. Also, both al-
gorithms are initialized randomly, but the likelihood increase for AIR is slower.
We plan to investigate ways to speed up the parameter estimation phase of
the AIR model, as well as better initialization strategies in future works.

4 This is in accordance with the experiments in [18], that firstly introduced the ∆ influence
window.



24 N. Barbieri et al.

5.4 Analysis of the influence weights

The analysis of the influence weights that characterize the proposed topic-
aware propagation models can provide meaninful insights about the users’
behavior in the considered datasets. More specifically, we are going to focus
on the following aspects:

– How are the influence weights distributed?
– Do the main differences in the two considered datasets reflect on the dis-

tributions of the influence weights?
– Does users’ authoritativeness/influence change on different topics?

Figure 3 plots the distributions of the influence weights of the AIR model for
the number of topics achieving the best performances on the two considered
datasets (as described later in this section). Values are distributed according to
two log-normal distributions centered in the positive and negative quadrants,
with relatively slow values and relatively few extreme values. The graphs show
that negative influencers also play a significant role in the learning phase. The
bottom graphs also show how the item-topic weights distribute. Again, it seems
that the AIR model has a bias towards negative weights. The Digg dataset
exhibits a lower level of influence among users, as witnessed by the high number
of weights set to 0. This difference between the two datasets can be explained
by considering the distribution of the number of influencers for each activation,
provided in Figure 1. Figure 4 plots of the influence probabilities for the TIC
models, and confirm such a trend. Here, values are exponentially distributed;
however a percentage of users exhibit highest influence.

A key point that motivated the introduction of the AIR model was that
users’ may exert different degree on authoritativeness on different topics. To
verify the correctness of such assumption, we can analyze the variance of the
user’s influence weights on different topics. Figure 5 plots the cumulative fre-
quencies of users’ standard deviations on influence weights, both for TIC and
AIR. In the plots, only users with positive deviation were considered. For both
models, we can observe an higher variance on Flixster, which confirms the
intuition that Flixster is more susceptible to influence than Digg.

Figure 6 shows the distributions of frequencies of positive weights and
negative weights for a given user. Again, there is a tendency to exhibit more
negative values. This is also witnessed by the graph that shows the difference
between the number of positive and negative in a user (a negative value here
denotes that there are more negative weights). Notwithstanding, some users
tend to exhibit a predominance of positive weights. This is a clue that the
model learns to discriminate between positive and negative influences. Also,
it is worth noticing that in the majority of cases there is a mix of positive and
negative weights, clearly stating that the influence of various users changes
depending on the topics.

We also analyze, in Figure 7, the correlation between the users’s author-
itativeness score and the out degree, by distinguishing positive and negative
average authoritativeness values. In both the cases, we do not register any sig-
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nificant correlation value that could support the hypothesis for which high/low
connected users are also high/low influential.
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Finally, Figure 8 shows how the interest of a user for a topic varies. Devia-
tion is slow in Digg (an effect of the high number of topics as well). However,
it is interesting to notice that Flixster exhibit an high average deviation, and
in general the low values are rare.
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5.5 Predictive accuracy

In the following we compare IC, TIC and AIR: the parameters of the model are
learned using the EM method in [25], the method in Section 3.1, and in Section
4.1 respectively. The basic principle guiding our evaluation can be summarized
as follows. Given the training propagation data DT and a test propagation data
DTest, a generic model, whose parameters have been learned on DT , provides
a suitable estimation of influence and behavior if its application to unobserved
data DTest provides accurate predictions, which can be measured through the
following tests.

Activation Test (General). The idea is to measure whether a diffusion
model can predict the overall user’s activations. This is basically a binary
prediction task: for a given user-item pair 〈u, i〉 6∈ DT , we try to predict whether
〈u, i〉 ∈ DTest. Since this test is time-independent, we also use as a baseline
for comparison the Probabilistic Latent Semantic Analysis (pLSA) model [11].
Although not originally aimed at modeling influence, the latter also relies on
topic modeling and occurrences of user actions. Hence, its inclusion in the
test allows us to evaluate the contribution of topic modeling on the activation
prediction.

Selection Probabilities (General). For each pair 〈u, i〉 we measure the
degree of responsiveness of the model at the actual activation time ti(u) (if
it exists). A good model should assign high probability of activation to a
positive case 〈u, i〉 ∈ DTest, and low probability (relative to all the possible
timestamps) to a negative case 〈u, i〉 6∈ DTest, while the model should assigns
low probability for each considered timestamp if the user has not selected the
considered item. More specifically, for each pair 〈u, i〉 6∈ DT we compute the
probability P (i|u, t′i(u)), where

t′i(u) =

{
ti(u) if 〈u, i〉 ∈ DTest

arg maxt∈[ti,ti] P (i|u, t) otherwise

Selection Probabilities (Influence Episodes). The previous test strongly
penalizes pure influence-based diffusion models, as they assign zero probability
to episodes 〈u, i, t〉 for which the set of influencers is empty. This is not true,
of course, for the AIR model which is able to capture the relevance of an item
for a given topic. In order to measure the effects of influence, in this test we
focus on those episodes 〈u, i, t〉 for which Fi(u, t) 6= ∅.
Activation Time (Influence Episodes). A final test measures the precision
of activation at a given timestamp, only considering episodes with non-empty
influencers set. Each pair 〈u, i〉 6∈ DT is evaluated by comparing the true acti-
vation time (if any) with the predicted activation time. Let t′i(u) represent the
predicted activation timestamp, i.e., the minimal timestamp t where P (i|u, t)
is greater than a given activation threshold (with t′i(u) = ∞ if the model
does not indeed predict any activation for the given item). We can devise the
following confusion matrix:
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〈u, i〉 ∈ DTest 〈u, i〉 6∈ DTest

True Positive t′i(u) = ti(u) -
False Positive t′i(u) < ti(u) t′i(u) 6=∞
True Negative - t′i(u) =∞
False Negative t′i(u) > ti(u) -

For all the above mentioned tests we plot the Receiver Operating Char-
acteristic (ROC) curves relative to varying activation thresholds. The results
are given in Figure 9, while in Table 3 we report the Area Under the Curve
(AUC) values.

Evaluation. We experimentally found that the optimal number of topics on
Digg is 15 topics for AIR, and 20 on TIC. Also, Flixster settles 3 topics on
AIR, and 10 on TIC.

The AIR models achieve the best results in detecting the activations, with a
consistent gain over the other models (including the runner-up pLSA model).
Independent cascade models (IC and TIC) exhibit partial curves on this test,
limiting the upper bound of FPR to 0.1. This is due to the fact that negative
cases 〈u, i〉 are a vast majority, and when the case exhibit no active influencers
the IC and TIC models assign 0 probability, which eventually results in a True
Negative in the test. For this reason, the extension to topics does not provide a
significant improvement: both IC and TIC overlap, and the difference in AUC
is marginal. Things change when activation time is taken into account: in the
remaining plots, TIC outperforms IC, an evidence of a substantial contribution
of the topic modeling in increasing the accuracy of time-oriented predictions.
Again, AIR achieves the best accuracy among all the models under investiga-
tion.

Tests in Fig.9(d) are the most fine-grained: here underestimation of in-
fluence (resulting in retarded activation prediction) as well as overestimation
(resulting in anticipated activation prediction) are paid as errors. Clearly, topic
modeling plays a crucial role in this test, as it allows to better correlate the
estimation phase to the actual activation time.

5.6 Influence Maximization

We now turn our attention to the influence maximization problem and to the
following questions: (1) how important is it to consider the topic-distribution
of the item while selecting the seed sets? (2) how good are the greedy algorithm
and the top-k-authorities heuristic on the AIR model? (3) how much does the
item “popularity” affect the overall spread?

In Figure 10(left) we compare the expected spread achieved on the AIR
propagation model by the greedy algorithm and the top-k-authorities heuris-
tic. The experiment is performed on Flixster, using 50 different items, and
averaging the results. Items are described by their relevance over 3 topics. We
also add to the comparison a seed set selected by the greedy algorithm on the
IC model: i.e., without considering the topics. Being topic-blind, the IC ex-
periment is run only for one generic item. All the greedy algorithms use 1000
Monte Carlo simulations to estimate the expected spread.
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Digg Flixster Digg Flixster
Model Activation Test (General) Selection Probs. (General)

AIR 0.8585511 0.8857634 0.8484368 0.8201586
TIC 0.6190136 0.731208 0.6256339 0.7000218

IC 0.6189209 0.730694 0.5256555 0.702175
Selection Probs. (Inf. episodes) Activation Time

AIR 0.8123432 0.7834864 0.8784483 0.8150082
TIC 0.7714797 0.7253222 0.7377654 0.7377654

IC 0.7916101 0.6940882 0.6294611 0.6089646

Table 3: Summary of the evaluation: AUC values.
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Fig. 10: Influence maximization experiments.

Although (as discussed in Section 4.3) the greedy algorithm does not pro-
vide approximation guarantee, it outperforms the top-k-authorities heuristic.
The latter still performs very well: it achieves a spread quite close to those
of the greedy approach, and in addition it is much faster to compute. More
importantly, both topic-aware strategies largely outperform the topic-blind
IC-greedy strategy.

In Figure 10 (right) we compare a “popular” item, i.e., an item which has
a rather high relevance (a value of 10) in all three topics, with a normal item
having relevance 10 in one topic, and relevance 1 in the other two topics. Not
surprisingly, we can observe that the popular item achieves a larger spread.
The difference tends to decrease with larger seedset: apparently, popular items
are tolerant to smaller seedsets, whereas general items require more seeds.

6 Conclusions and Future work

We provided a topic-modeling perspective over social influence, by introduc-
ing novel topic-aware propagation models. We devised methods to learn model
parameters from a log of past propagations. We experimentally found the pro-
posed models more accurate in describing real-world influence-driven prop-
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agations than the state-of-the-art approaches: as a matter of fact, the two
proposed models exhibit an average 28% (AIR) and 7% (TIC) improvement
on AUC over the baseline IC approach. The tests show that the models pro-
vide accurate predictions of both activations and activation times, and they
provide robust estimates of influence parameters. The latter can be used to ex-
plain the factors influencing a user’s action in a social network, and ultimately
to predict their behavior and preferences. Finally, we showed that by consid-
ering the characteristics of the item we can obtain larger spread in influence
maximization.

There are several ways to extend the main results of this paper. First of
all, we plan to investigate ways to speed up the parameter estimation phase of
the AIR model, as well better initialization. Also, from a modeling perspective,
a full bayesian treatment of the topic models introduced here can help with
model generalization and overfitting avoidance.

We also plan to study influence maximization methods based on the AIR
model. Finally, we plan to extend the focus of this paper to further application
domains, by investigating how to combine influence maximization with topic
modeling for recommender systems.

Acknowledgments. This research was partially supported by the Torres
Quevedo Program of the Spanish Ministry of Science and Innovation, and par-
tially funded by the European Union 7th Framework Programme (FP7/2007-
2013) under grant n. 270239 (ARCOMEM).

References

1. Bakshy, E., Hofman, J.M., Mason, W.A., Watts, D.J.: Everyone’s an influencer: quan-
tifying influence on twitter. In: Proc. of the Forth Int. Conf. on Web Search and Web
Data Mining (WSDM’11) (2011)

2. Blei, D.M.: Introduction to probabilistic topic models. Communications of the ACM
(2011). URL http://www.cs.princeton.edu/~blei/papers/Blei2011.pdf

3. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. The Journal of Machine
Learning Research 3, 993–1022 (2003)

4. Bonchi, F.: Influence propagation in social networks: A data mining perspective. IEEE
Intelligent Informatics Bulletin, Vol.12 No.1: 8-16 (2011)

5. Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral
marketing in large-scale social networks. In: Proc. of the 16th ACM SIGKDD Int.
Conf. on Knowledge Discovery and Data Mining (KDD’10) (2010)

6. Chen, Y.C., Peng, W.C., Lee, S.Y.: Efficient algorithms for influence maximization in
social networks. Knowl. Inf. Syst. 33(3), 577–601 (2012)

7. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum Likelihood from Incomplete Data
via the EM Algorithm. Journal of the Royal Statistical Society. Series B (Methodolog-
ical) 39, 1–38 (1977)

8. Domingos, P., Richardson, M.: Mining the network value of customers. In: Proc. of the
Seventh ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD’01)
(2001)

9. Goyal, A., Bonchi, F., Lakshmanan, L.V.S.: Learning influence probabilities in social
networks. In: Third ACM Int. Conf. on Web Search and Data Mining (WSDM’10)
(2010)

10. Goyal, A., Bonchi, F., Lakshmanan, L.V.S.: A data-based approach to social influence
maximization. PVLDB 5(1), 73–84 (2011)



Topic-aware Social Influence Propagation Models 33

11. Hofmann, T.: Probabilistic Latent Semantic Analysis. In: Proceedings of Uncertainty
in Artificial Intelligence, UAI (1999)

12. Ienco, D., Bonchi, F., Castillo, C.: The meme ranking problem: Maximizing microblog-
ging virality. In: Proc. of the SIASP workshop at ICDM’10 (2010)
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