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ABSTRACT
User recommender systems are a key component in any on-
line social networking platform: they help the users growing
their network faster, thus driving engagement and loyalty.

In this paper we study link prediction with explanations
for user recommendation in social networks. For this prob-
lem we propose WTFW (“Who to Follow and Why”), a
stochastic topic model for link prediction over directed and
nodes-attributed graphs. Our model not only predicts links,
but for each predicted link it decides whether it is a“topical”
or a “social” link, and depending on this decision it produces
a different type of explanation.

A topical link is recommended between a user interested
in a topic and a user authoritative in that topic: the expla-
nation in this case is a set of binary features describing the
topic responsible of the link creation. A social link is rec-
ommended between users which share a large social neigh-
borhood: in this case the explanation is the set of neighbors
which are more likely to be responsible for the link creation.

Our experimental assessment on real-world data confirms
the accuracy of WTFW in the link prediction and the quality
of the associated explanations.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications - Data Mining
Keywords: social networks; link prediction

1. INTRODUCTION
Link prediction is the task of estimating the likelihood

of the existence of an unobserved link between two nodes,
based on the other observable links around the two nodes
and, when available, the attributes of the nodes [8]. It finds
application in any context in which the network is only par-
tially observable and we want to guess the unobserved part.
A typical setting is when we consider the network evolving
along time, so that the unobservable part of the network is
the set of links which are not yet created: given the graph
observed at time t, we want to predict the set of links which
will be created in the time interval [t, t+ 1][17].
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Link prediction has been applied in a variety of domains,
ranging from bioinformatics to web sites management, from
bibliography to e-commerce [12, 18, 5]. However, the most
immediate and prominent application of link prediction is
the recommendation of users to other users of a social net-
work. This is one of the most fundamental functionalities
common to all on-line social networking platforms1: it helps
the users having a quicker start in building their network,
thus driving engagement and loyalty. It is a key component
for growth and sustenance of a social network: for instance,
the Wtf (“Who to Follow”) service at Twitter is claimed
to be responsible for millions of new links daily [11]. Given
that growing the user base and maintaining a high level of
engagement are key factors for the success (or the death) of
these billion-dollar businesses, one can easily figure out the
importance of user recommendation systems.

In this paper we study link prediction with explanations
for user recommendation systems in on-line social networks.
Enriching recommendations with explanations has the ben-
efit to increase the trust of the user in the recommenda-
tion, and thus the likelihood that the recommendation is
adopted. While these benefits are well understood in clas-
sic collaborative-filtering recommender systems [14, 25, 30],
providing explanations in the context of user recommenda-
tion systems is still largely underdeveloped: in fact, in most
of the real-world systems, the unique explanations given for
user recommendations are of the type “you should follow
user Z because your contacts X and Y do the same”.

Our starting observation is that a link creation is usually
explainable by one of two main reasons: interest identity or
personal social relations. This observation is rooted in soci-
ology, where it goes under the name common identity and
common bond theory [24, 26]. Identity-based attachment
holds when people join a community based on their interest
in a well-defined common theme shared by all of the mem-
bers of that community. The goal in this case is information
collecting and sharing in the specific theme of interest. Peo-
ple joining a community through identity-based links may
not even directly participate, e.g., by producing content or
by engaging with other members, and instead only passively
consume information.

Conversely, bond-based attachment is driven by personal
social relations with other specific individuals (e.g., family,
friends, colleagues), and thus it does not require a common
theme of interest to be justified. Bond-based links are usu-

1E.g., “People You May Know” in Facebook and LinkedIn,
“Recommended Blogs” in Tumblr, or “Who to Follow” in
Twitter, just to mention a few.



ally reciprocated, while identity-based links are much more
directional, where the direction is given by the level of au-
thoritativeness of the user on the theme. The two types of
links create two different types of communities, that for sim-
plicity we name “topical” for identity-based and “social” for
bond-based [10].

Based on this observation we define a stochastic model,
dubbed WTFW (“Who to Follow and Why”), which not only
predicts links, but for each predicted link it decides whether
it is a topical or a social link, and depending on this decision
it produces a different type of explanation.

A topical link u→ v (u should follow v) is usually recom-
mended to u when v is authoritative in a topic in which u
has demonstrated interest. In this case the explanation is a
set of the top-k binary features (e.g., tags in Flickr or hash-
tags in Twitter) describing the topic of authoritativeness of
v, which makes v a potential source of interesting informa-
tion for u. A social link u → v instead is recommended
when u and v are already part of the same social commu-
nity, i.e., they have many contacts in common. In this case
the explanation is the set of the top-k common neighbors
w.r.t. the likelihood of being responsible for the link cre-
ation. As an important by-product, WTFW also implicitly
detects communities and their type (social or topical).

More in details WTFW is a bayesian topic model defined
over directed and nodes-attributed graphs. In WTFW each
link creation and each attribute adoption by a node are ex-
plained w.r.t. a finite number of latent factors. These latent
factors can be abstractly thought as topics or communities:
in the rest of the paper we will use the three terms (la-
tent factor, topic, and community) interchangeably. Each
community is characterized by a level of sociality/topicality:
social communities are characterized by high density and
reciprocity of links, whereas topical communities are char-
acterized by low entropy in the features and by the presence
of authoritative users on the relevant topic. Each user tend
to be involved in different communities to different extent
and with different roles. These components are modeled
by three different multinomial distributions over the set of
users, modeling their sociality, authoritativeness and inter-
est in each topic. Finally, each topic is characterized by a
multinomial distribution over the feature set, which provide
a semantic interpretation of the topic.

Paper contributions. The contributions of this paper are
summarized as follows:

• We study for the first time the problem of link prediction
with explanations, which is motivated by the real-world
application of user recommender systems in online so-
cial networks.

• We introduce WTFW (“Who to Follow and Why”) a
stochastic topic model which not only predicts links,
but for each predicted link it decides whether it is a
topical or a social link, and depending on this decision
it produces a different type of explanation.

• As a by-product, WTFW also implicitly extract com-
munities that can be labeled as either topical or social.

• Our experimental assessment on two real-world datasets
(Twitter and Flickr) confirms that our model is very
accurate in link prediction and in labeling the predicted
link as social or topical. The experiments also highlight
the high quality of the topics extracted and their coher-
ence with the topical Vs. social labeling.

2. RELATED WORK
Link prediction has attracted a great deal of attention in

the last decade (the interested reader may refer to [12, 18] for
a comprehensive survey): however, to the best of our knowl-
edge, no previous work has studied link prediction with ex-
planations for user recommendation systems. Our proposal
can also be collocated in the literature on relational learning
methods that are able to leverage attribute information on
nodes [29, 34, 19]. The main drawback of those approaches
is scalability, which seriously prevents their application on
real-world networks.

The Supervised Random Walk algorithm for link predic-
tion [1], exploits edge features to learn the edge strength
that is then used random walk transition probability. Alter-
native random-walk approaches rely on merging the social
graph and node attributes in a unique graph with person-
nodes and attribute-nodes linked among them [33, 9].

The joint factorization of social links and node attributes
is closely related to the task of detecting communities in
nodes-attributed graphs. [35] uses node attributes to aug-
ment the social graph by generating “attribute edges” be-
tween nodes that are similar on a given attribute, and then
identify communities in the augmented graph. [21] intro-
duces the problem of finding cohesive patterns, defined as
connected subgraphs whose density exceeds a given thresh-
old, and with homogeneous values on node-attributes. [31]
proposes a co-clustering framework based on users and tags.
Users are implicitly connected by their common interests, as
expressed by the tags they use. [23] studies the problem of
finding communities with concise descriptions based on the
nodes attributes.

Several stochastic models for community detection in net-
works with node attributes have been proposed in the litera-
ture. In Link-LDA [6] social connections and user attributes
are generated by a mixture of user-specific distributions over
topics. In [22, 15, 32] the community-membership vectors
are used to factorize both links and the attribute-profile of
each user. [27] extends the author-topic model to commu-
nication networks in which the sender and recipient of each
post are known. [2] proposes a generative stochastic model
to detect communities from the social graph and a database
of information propagations over the social graph.

3. WHO TO FOLLOW AND WHY
In this section we introduce the WTFW model for link pre-

diction with explanations. Our application scenario is that
of online social networking platforms, where users build and
maintain social connections, share information, and follow
updates from other users. We represent this as a directed
graph, where each node is a user and it has associated a set
of binary features, representing the interests of the user.

More formally, let G = (V,E) be the social graph where
V is a set of n users, E ⊆ V × V is a set of m directed arcs,
and (u, v) indicates that u follows v and hence he is notified
of v’s activities. We also denote the neighborhood of a node
u as N (u) = {v ∈ V : (u, v) ∈ E ∨ (v, u) ∈ E}. Moreover let
F denote a set of h binary features. We are given a binary
n×h matrix F such that Fu,f = 1 when user u is interested
in the feature f . For simplicity we denote this case also as
(u, f) ∈ F . Finally, we denote all the features of the node u
as F (u) = {f ∈ F : (u, f) ∈ F} and the set of all the nodes
having attribute f as V (f) = {u ∈ V : (u, f) ∈ F}.



1. sample Π ∼ Dir
(
~ξ
)

2. For each k ∈ {1, . . . ,K} sample

δk ∼ Beta(δ0, δ1) τk ∼ Beta(τ0, τ1)

Φk ∼ Dir (~γ) θk ∼ Dir (~α)

Ak ∼ Dir
(
~β
)

Sk ∼ Dir (~η)

3. For each link l ∈ {l1, . . . , lm} to generate:

(a) Choose k ∼ Discrete(Π)

(b) Sample xl ∼ Bernoulli(δk)

(c) if xl = 1

• sample source u ∼ Discrete(θk)

• sample destination v ∼ Discrete(θk)

(d) else

• sample source u ∼ Discrete(Sk)

• sample destination v ∼ Discrete(Ak)

4. For each feature pair a ∈ {a1, · · · , at} to associate

(a) sample k ∼ Discrete(Π)

(b) Sample ya ∼ Bernoulli(τk):

• if ya = 1 then ua ∼ Discrete(Ak)

• otherwise ua ∼ Discrete(Sk)

(c) sample fa ∼ Discrete(Φk)

Figure 1: Generative process for the WTFW model

Following the common identity and common bond theory
discussed in Section 1, we assume two main types of behav-
ior in creating connections in a social network. The“topical”
behavior, in which a user u decides to follow another user
v because of u’s interest in a topic in which v is authorita-
tive; and the “social” behavior in which u follows v because
they know each other in the real world, or they have many
common contacts in the social network. In the topical be-
havior case we can further identify two distinct roles for a
user, either as authoritative (“influential”) for the topic or
just interested (“susceptible”) in the topic. In the social case
instead there are no specific roles, but a generic tendency to
connect among the users of a close-knit circle.

Following these considerations, we propose to explain the
structure of the network (the links) and the features of the
nodes, by introducing a set of latent factors representing
users’ interests, and by labeling the links as either social or
topical. This is done by means of a unique stochastic topic
model, which is based on the following assumptions:

• Links can be explained by different latent factors (over-
lapping communities);

• Social links tend to be reciprocal and communities char-
acterized by a high level of sociality exhibit high density ;

• Topical links tend to exhibit a clear directionality and
communities that are highly topicality have low entropy
on the set of features assigned to nodes.

More in details, the degree of involvement and role of user
u in the community/topic k is governed by three parameters:
(1)Ak,u which measures the degree of the authoritativeness
of u in k; (2)Sk,u which measures the degree of interest u
in the topic k, or in other terms, the likelihood of following
users that are authoritative in k (susceptibility to social in-
fluence); and (3)θk,u denotes the social tendency of u, i.e.,
her likelihood to connect to other social peers within com-
munity k. Moreover, each latent factor k is characterized by
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Figure 2: The WTFW model in plate notation.

a propensity to adopt certain features in F over others. We
can formalize such a propensity by means of a weight Φk,f ,
denoting the importance of feature f within k.

All these components are accommodated in a mixture
membership model expressed in a Bayesian setting [4], to
define distributions governing the stochastic process, given
some prior hypotheses. Bayesian modeling is better suited
when the underlying data is characterized by high sparsity
(like in our case), as it allows a better control of the priors
which govern the model and it prevents overfitting.

In particular, we directly model each observed social link
(u, v) ∈ E or adoption of feature by a node (u, f) ∈ F and in-
troduce random variables on the source/destination of these
observations. That is, for each link (u, v) ∈ E we model the
likelihood that there exists a latent factor k, such that u has
high probability of being a source, while v has high proba-
bility of being a destination. We further introduce a latent
variable xu,v, which encodes the (social/topical) nature of
an existing link. Analogously, the adoption of an observed
feature association (u, f) ∈ F will be explained by a latent
factor k and by the status of the latent variable yu,f which
represent the role of the user u, either as authoritative or
just interested, when adopting the feature f .

The underlying generative process for social links and
adoption of features depends jointly on the components θ,
A, S and Φ, as described in Figure 1 and depicted in plate
notation in Figure 2. The overall generative process is gov-
erned by the following components:

• A multinomial distribution Π over a fixed number of
K latent factors, which generate latent community-
assignments zl and za, for each link l ∈ E and for each
adoption of feature a ∈ F ;

• The multinomial distributions θk,Ak and Sk over the
set of user V , which specify, respectively, the degree
of sociality, authority and susceptibility of each user
within k;

• The multinomial probability Φk over F which specify
the likelihood of observing each feature within the com-
munity k.



• The degree of“sociality”δk (or“topicality”, 1−δk) which
measures the likelihood of observing social/topical con-
nections within each community k;

• The “authoritative attitude” τk of observing the adop-
tion of an attribute by authoritative subject in k (or,
dually, the “susceptible attitude”, 1− τk).

Since the whole model relies on multinomial and Bernoulli
distributions, a full Bayesian treatment can be obtained by
adopting Dirichlet and Beta conjugate priors.

Let Θ = {Π, δ, τ ,θ,A,S} denote the status of the distri-
butions described above. Both the probability of observing
link l = (u, v) and a feature assignment a = (u, f) can be ex-
pressed as mixtures over the latent community assignments
zl and za:

Pr(l|Θ) =

K∑
k=1

πk Pr(l|zl = k,Θ) (1)

Pr(a|Θ) =

K∑
k=1

πk Pr(a|za = k,Θ) (2)

The generation of a link changes depending on the status
of the latent variable xl. A social connection l = (u, v) can
only be observed if, by picking a latent community k, u and
v have high degrees of social attitude θk,u and θk,v, that is

Pr(l|zl = k, xl = 1,Θ) = θk,u · θk,v.

Conversely, a topical connection l = (u, v) can only be ob-
served if, by picking a latent community k, u has a high
degree of activeness Ak,u and v have a high degree of pas-
sive interest Sk,u, that is

Pr(l|zl = k, xl = 0,Θ) = Sk,u ·Ak,v.

Note that the likelihood of observing the reciprocal link
(v, u) is equally likely in case of social connection, while it
is different in a topical context, and hence reflect our design
assumption on the directionality of links in social/topical
communities. Each link is finally generated by taking into
account the social/topical mixture of each community:

Pr(l|zl = k,Θ) =δk Pr(l|zl = k, xl = 1,Θ)

+ (1− δk) Pr(l|zl = k, xl = 0,Θ)

=δk · θk,u · θk,v + (1− δk) · Sk,u ·Ak,v

Similarly, the probability of observing a node-feature pair
a = (u, f) ∈ F depends on the degree of authoritative-
ness/susceptibility of the user and by the likelihood of ob-
serving the attribute f within each latent factor k:

Pr(a|za = k,Θ) = (τkAk,u + (1− τk) · Sk,u) Φk,f .

Here, the term τkAk+(1−τk)Sk defines a multinomial distri-
bution over users, which encodes the joint (both susceptible
and authoritative) attitude of users within that community.

3.1 Learning
We have described the intuitions behind our joint mod-

eling of links and feature associations and now we focus on
defining a procedure for inference and parameter estimation
under WTFW.

Let Ξ = {~ξ, ~α, ~β,~γ, ~η, ~δ = {δ0, δ1}, ~τ = {τ0, τ1}} denote
the set of hyperparameters of the Dirichlet/Beta priors.
Also, let Ze represents a binary m×K matrix where zl,k = 1
denotes that link l has been associated with the k-th latent
factor (i.e., zl = k). Analogously, Zf denotes the t ×K bi-
nary matrix where za,k = 1 denotes that feature assignment
a ∈ F is associated with the k-th latent factor (za = k). Fi-
nally, X and Y denote the vectors of assignments xl and ya.

With an abuse of notation, we also introduce the counters
described in Tab. 1, relative to these matrices.

The key problem in inference is to compute the posterior
distribution of latent variables given the observed data. We
start by expressing the joint likelihood as:

Pr(E,F,Θ,Ze,Zf ,X,Y|Ξ) =

Pr(E|Θ,X,Ze) Pr(F |Θ,Y,Zf )

Pr(Ze|Π) Pr(Zf |Π)

Pr(X|Ze, δ) Pr(Y|Zf , τ ) Pr(Θ|Ξ)

(3)

where

Pr(E|Θ,X,Ze) =
∏
u

∏
k

θ
c
s,s
k,u

+c
s,d
k,u

k,u S
c
t,s
k,u

k,u A
c
t,d
k,u

k,u

Pr(F |Θ,Y,Zf ) =
∏
u

∏
k

A
dak,u
k,u S

dsk,u
k,u

∏
f

∏
k

Φ
dk,f
k,f

Pr(Ze|Π) =
∏
k

π
ck
k

Pr(Zf |Π) =
∏
k

π
dk
k

Pr(X|Ze, δ) =
∏
k

δ
csk
k (1− δk)c

t
k

Pr(Y|Zf , τ ) =
∏
k

τ
dak
k (1− τk)d

s
k

and Pr(Θ|Ξ) represents the product of all the Dirichlet and
Beta priors. By marginalizing over Θ, we can obtain a
closed form for the joint likelihood Pr(E,F,Ze,Zf ,X,Y|Ξ).
The latter is the basis for developing a stochastic EM
strategy [3, section 11.1.6], where the E-step consists of
a collapsed Gibbs sampling procedure [13, 3] for estimat-
ing the matrices Ze,Zf ,X and Y, and the M-step esti-
mates both the predictive distributions in Θ and the hy-
perparameters of interest in Ξ. In particular, the sampling
step consists of a sequential update of each arc and feature-
assignment, of the status of the corresponding latent vari-
ables in Ze,Zf ,X and Y. A possible sampling strategy for
each arc l ∈ E and adoption a ∈ F is based on the following
chain: Pr(zl = k|Rest),Pr(za = k|Rest),Pr(xl = 1|Rest)
and Pr(ya = 1|Rest)2. By algebraic manipulations, we can
devise the sampling equations expressed in Tab. 8. The over-
all learning scheme is shown in Alg. 1. Lines 5-12 of the
algorithm represent the Gibbs sampling steps, while line 14
represents the update of the multinomial distributions which
are collapsed in the derivation of the sampling equations:

Ak,u =
ct,dk,u + dak,u + ηu

ctk + dak +
∑

u ηu
(4)

θk,u =
cs,sk,u + cs,dk,u + αu

2csk +
∑

u αu
(5)

Sk,u =
ct,sk,u + dsk,u + ηu

ctk + csk +
∑

u ηu
(6)

φk,f =
dk,f + γf
dk +

∑
f γf

(7)

πk =
ck + dk + ξk
m+ t+

∑
k ξk

(8)

In line 15 we update the Beta (~δ, ~τ) and Dirichlet ~ξ hyper-
parameters, according to the fixed point iterative procedure
2
The term Rest denotes the remaining variables in the set
{E,F,Ze,Zf ,X,Y,Θ,Ξ} after the explicit variables in both the con-
ditioning and conditioned part have been removed.



Symbol Description Expression

ck Number of links associated with community k
∑
l∈E zl,k

cs Number of social links
∑
l∈E xl

ct Number of topical links
∑
l∈E(1− xl)

csk Number of social links associated with community k
∑
l∈E xl · zl,k

ctk Number of topical links associated with community k
∑
l∈E(1− xl) · zl,k

cs,sk,u Number of social links associated with community k where u is the source
∑
l=(u,·)∈E{xl · zl,k}

cs,dk,u Number of social links associated with community k where u is the destination
∑
l=(·,u)∈E{xl · zl,k}

ct,sk,u Number of topical links associated with community k where u is the source
∑
l=(u,·)∈E{(1− xl) · zl,k}

ct,dk,u Number of topical links associated with community k where u is the destination
∑
l=(·,u)∈E{(1− xl) · zl,k}

dk Number of feature-assignments associated with community k
∑
a∈F za,k

da Number of authoritative feature-assignments
∑
a∈F ya

ds Number of susceptible feature-assignments
∑
a∈F (1− ya)

dak Number of feature-assignments within community k on authoritative users
∑
a∈F ya · za,k

dsk Number of feature-assignments within community k on susceptible users
∑
a∈F (1− ya) · za,k

dk,f Number of recipients associated with community k relative to feature f
∑
a=(·,f)∈F {(1− ya) · za,k}

dak,u Number of features associated with community k where u is the authoritative source
∑
a=(u,·)∈F {ya · za,k}

dsk,u Number of features associated with community k where u is the susceptible source
∑
a=(u,·)∈F {(1− ya) · za,k}

Table 1: Counters adopted in the Gibbs Sampling and their meaning.

described in [20]. The final predictive distributions A, S, θ
and Π, δ and τ are averaged along all the steps of the Gibbs
sampling procedure.

A single iteration of the sampler performs O((m+ t) ·K)
computations and hence it is linear on the size of observed
data. In Alg. 1 we assume that the number K of topics is
given as input; typically this value is determined experimen-
tally as the number of topics that maximizes the predictive
performances. However, it is possible to automatically de-
vise the number of topics by relying on Bayesian nonpara-
metrics. In fact, as shown in [7], it is possible to adapt the
sampling equations in order to make explicit the annihilation
of some topics as well the generation of new ones, according
to the Chinese Restaurant Process principle.

Algorithm 1 Gibbs-sampling with parameter estimation

Require: G and F ,the number of latent features K,
initial hyperparameter set Ξ.

1: Random initialization for the matrices Ze,Zf ,X and Y;
2: it← 0
3: converged← false
4: while it < nMaxIt and ¬converged do
5: for all observed link l do
6: Sample zl according to Eq. 13 and 14
7: Sample xl according to Eq. 15 and 16
8: end for
9: for all observed attribute-assignment a do
10: Sample za according to Eq. 17 and 18
11: Sample ya according to Eq. 19 and 20
12: end for
13: if (it > burn-in) and (it%sampleLag = 0) then
14: Sample A (Eq. 4) ,θ (Eq. 5), S (Eq. 6), Φ (Eq. 7), and Π

(Eq. 8);

15: Update hyperparameters ~δ, ~τ and ~ξ;
16: end if
17: it← it + 1
18: end while

3.2 Producing explanations
The success of a recommender system does not only de-

pend on its accuracy in inferring and exploiting users’ inter-
ests, but it also relies on how the deployed recommendations
are perceived by the users. Explanations increase the trans-
parency of the recommendation process and may positively
contribute in gaining users’ trust and satisfaction.

When generating explanations for social recommenda-
tions, the first step is to understand if the proposed con-
nection l = (u, v) is social (i.e., such that xl = 1) or topical

(i.e., xl = 0). WTFW provides a natural way to do this:

Pr(xl = 1|l,Θ) ∝
∑
k

πkδkθk,uθk,v (9)

Pr(xl = 0|l,Θ) ∝
∑
k

πk(1− δk)Sk,uAk,v, (10)

Social connections have a natural explanation in terms of
close-knit circles. Thus, for a given link l = (u, v) predicted
as social (i.e., such that xl = 1), we can provide an expla-
nation as the set of the most prospective common neighbors,
ranked according to the following score:

rank(w; l) =
∑
k

πkδkθk,uθk,vθk,w. (11)

This rank promotes common neighbors that have high de-
gree of involvement in social communities where both u and
v are involved as well. Interestingly, the score finds an ex-
planation in terms of the probability of observing a social
triangle among u, v and w. In fact, the joint probability
of observing (u, v), (u,w) and (v, w) within community k is
proportional to θk,uθk,vθk,w. And, since by definition both
(u,w) and (v, w) hold in the data, the score explain the
prospective new link (u, v) in terms of the common neigh-
bors which are more likely to devise a triangle in the data.

Conversely, topical links can be explained through a list of
attributes which are representative of the topics of interest
by the current user and for which the recommended connec-
tion has high authority. For each feature common to the
two nodes, we define the following score:

rank(f ; l) =
∑
k

πk(1− δk)Φk,fAk,v·

(τkAk,u + (1− τk)Sk,u) . (12)

Here, the latter term represents the topical involvement of
the user u within community k. Again, the score has an
interpretation in terms of the prospective triangle among
(u, v), (u, f) and (v, f). Notice, however, that the direction-
ality plays a role here, since we are only interested in those
features for which v is authoritative.

The procedure for producing explanations for a recom-
mended link is summarized in Alg. 2. In short, the pro-
cedure predicts the nature (either social or topical) of the
prospective link, hence providing the list of most prominent
neighbors/common features.



Algorithm 2 Producing explanations

Require: The social network G, the WTFW model, a recommended
link l = (u, v) and the number of explanations L;

Ensure: a list L of either social or topical explanations for the link.
1: L ← ∅
2: Compute xl according to equations 9 and 10
3: if xl = 1 then
4: LN ← ∅
5: for all w ∈ N (u) ∩ N (v) do
6: Compute rank(w, l) according to Eq. 11
7: LN ← LN ∪ (w, rank(w, l))
8: end for
9: Sort LN and compute L = top(LN , L)
10: else
11: LF ← ∅
12: for all f ∈ F (u) ∩ F (v) do
13: Compute rank(f, l) according to Eq. 12
14: LF ← LF ∪ (f, rank(f, l))
15: end for
16: Sort LF and compute L = top(LF , L)
17: end if

4. EXPERIMENTAL EVALUATION
In this section we report the empirical assessment of the

proposed WTFW model on real networks. The experimen-
tation is aimed at assessing the following:

• The accuracy of the model for what concerns both link
prediction and label prediction, where the latter refers
to the classification of a link as either social or topical.

• The scalability and stability of the learning procedure,
by studying learning time and performance varying the
number of iterations of the Gibbs sampler.

• The quality of the associations between links and fea-
tures, that we show by means of anecdotal evidence in
the reconstruction of the data through the model.

Datasets. For our purposes we need datasets coming from
social networking platforms in which links creation can be
explained in terms of interest identity and/or personal social
relations. This requirement is satisfied, among the others,
by two popular social networking platforms, namely Twit-

ter and Flickr. On both platforms, the underlying network
is inherently directed to reflect interest of users towards im-
portant, and authoritative, information sources. Moreover,
in these systems the role of users may naturally change with
respect to different topics. The Twitter dataset we use
is publicly available3 and it includes information from 973
ego-networks crawled from the public API. The resulting
network contains roughly 80 thousand nodes and 1.7 mil-
lion directed links. Attribute information consists in all the
hashtags (e.g. #sanfrancisco) and mentions (e.g. @Barack-
Obama), used by those users.
Flickr data has been obtained by querying Flickr public

API in the time window 2004−2008 and then by performing
forest fire sampling [16] on the resulting network. Features
are generated by crawling all the tags used by each users.
Flickr also contains a form of ground-truth for the label
prediction task. Specifically, for each link in the dataset
there are two flags, namely friend and family, that a user
can specify. We naturally interpret these flags as follows: a
link is labeled as “social” if it is either marked as family or
friend. Conversely, a link is “topical” if none of the two flags
are set. It is important to stress that this ground-truth is
expectedly very noisy as it is any user-declared information

3
http://snap.stanford.edu/data/egonets-Twitter.html

on the internet. As such, it is likely to produce an underes-
timation of the accuracy in the label prediction task.

In order to keep the experimental setting as close as possi-
ble to the original data (high dimensionality and exceptional
sparsity), no further pre-processing has been performed.
Basic statistics about these two datasets are given in Ta-
ble 2. These datasets are characterized by different prop-
erties. The social graph in Twitter is much more directed
and sparse than in Flickr, while the number of attributes
per user is much higher in Flickr.

Twitter Flickr
Number of nodes 81, 306 80, 000
Number of links 1, 768, 149 14, 036, 407

Number of one-way links 1, 342, 311 9, 604, 945
Number of bidirectional links 425, 838 4, 431, 462

Number of social links - 6, 747, 085
Number of topical links - 7, 289, 322

Avg in-degree 21 175
Avg out-degree 25 181

Number of features 211, 225 819, 201
Number of feature assignments 1, 102, 000 37, 316, 862

Avg. features per user 15 613
Avg. users per feature 5 45

Table 2: Datasets statistics.

Experimental setting. In all the experiments we assume
a partial observation of the network and a complete set of
user features.4 The learning algorithm starts with a ran-
dom assignments to latent variables, it performs a burn-in
phase (burn-in=500) to stabilize the Markov chain, and the
parameters of the model are updated at regular intervals
(sampling lag=20) for the next 2000 iterations. We initial-
ize hyperparameters with the following (symmetric) values:
α = β = η = 1

n
, γ = 1

h
, τ0 = τ1 = δ0 = δ1 = ξ = 2.

4.1 Model Assessment
Evaluation on link prediction. In a first set of experi-
ments, we measure the accuracy of the model in predicting
new links. On Twitter, we perform a Monte Carlo Cross-
Validation in 5 folds, by randomly splitting the network into
training and test data. We also measure the accuracy of
the learned models for different proportions of training/test,
namely 60/40, 70/30, 80/20. This allows us to stress the ro-
bustness of the link prediction task for different proportions,
and to mitigate the effects of the random splits. In Flickr

instead the dataset contains the timestamp of creation of
the link, allowing us to perform a chronological split, where
older links (70% of the data) are used for learning the model,
while the most recent 30% are used as prediction target.

The accuracy of link prediction is measured by computing
the area under the ROC curve (AUC) over a set of positive
and negative examples drawn from the test set. In principle,
we can consider all links in the test-set as positive examples,
and all non-existing links as negative example. However,
the sparsity of the networks poses two major issues: (i) the
number of non-existing links can be enormous, thus making
the computation of the AUC infeasible; (ii) missing links do
not necessarily represent negative information, but rather
unseen information [28]. Following [1], we thus limit the
negative examples to all the 2-hops non-existing links.

4The task of predicting/recommending missing features is
not investigated here and it is left as future work.



Number of latent factors
Method Split 8 16 32 64 128 256
WTFW 60/40 0.567 0.615 0.667 0.707 0.739 0.792

70/30 0.565 0.631 0.680 0.713 0.749 0.798
80/20 0.586 0.639 0.692 0.732 0.760 0.812

JSVD 60/40 0.439 0.471 0.525 0.588 0.660 0.768
70/30 0.446 0.48 0.537 0.602 0.679 0.744
80/20 0.454 0.495 0.545 0.617 0.693 0.763

CNF 0.7025/0.7125/0.7199
AA-NF 0.7301/0.7397/0.7472

Table 3: AUC on link prediction - Twitter

Number of latent factors
Method 8 16 32 64 128 256
WTFW 0.6467 0.6488 0.6534 0.6576 0.661 0.677
JSVD 0.598 0.596 0.597 0.609 0.619 0.624

CNF 0.53
AA-NF 0.58

Table 4: AUC on link prediction - Flickr

Number of latent factors
Method 8 16 32 64 128 256
WTFW 0.7393 0.7548 0.7603 0.6883 0.6618 0.6582
Baseline 0.6545

Table 5: AUC on link labeling - Flickr.

We compare the performance of the WTFW model with
some popular baseline approaches from the literature, which
perform well on a range of networks [18, 9]: Common Neigh-
bors/Features (CNF) and Adamic-Adar (AA-NF). CNF is a
local similarity index that produces a score for each link
(u, v), which is given by the number of common neigh-
bors/features:

score(u, v) = |N (u) ∩N (v)|+ |F (u) ∩ F (v)|.

AA-NF represents a refinement of the simple counting of
common neighbors/features, which is achieved by assigning
more weight to less-connected components.

score(u, v) =
∑

w∈N (u)∩N (v)

1

|N (w)| +
∑

f∈F(u)∩F(v)

1

|V (f)|

In addition, we compare WTFW with a matrix factoriza-
tion approach based on SVD, dubbed Joint SVD (JSVD)
[9]. In practice, the approach computes a low-rank factor-
ization of the joint adjacency/feature matrix X = [E F ] as
X ≈ U · diag(σ1, . . . , σK) ·VT , where K is the rank of the
decomposition and σ1, . . . , σK are the square roots of the K
greatest eigenvalues of XTX. The matrices U and V provide
substantial interpretation in terms of connectivity of both E
and F . The term Uu,k can be interpreted as the tendency
of u to be either a source in E or an adopter in F , relative
to factor k. Analogously, Vu,k represents the tendency of
u to appear as a destination in E, and Vf,k represents the
likelihood that item f is adopted in k. The link prediction
score can hence be computed as:

score(u, v) =

K∑
k=1

Uu,kσkVv,k.

Tables 3 and 4 summarize the results of the evaluation, for
increasing values of the number of latent topics/factors. On
Twitter data, both WTFW and JSVD underperform when
the number of latent factors is limited, but exhibit a com-
petitive advange over the baselines for higher values of K.
WTFW outperforms the other considered approaches and
these results are stable on different training/test set propor-
tions. The prediction on Flickr is in general weaker for all

Figure 3: Link prediction: Twitter (left) and Flickr (right).
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Figure 4: (a) Accuracy of link labeling on Flickr. (b) Learning
times on the 70/30 split for both Flickr and Twitter.

methods. However, the results seems stabler, since the dif-
ference with regards to JSVD remains constant for increas-
ing values of K. The standard baselines perform poorly on
this dataset. Figure 3 shows the slope of the ROC curves on
both datasets for K = 256. On Twitter, there are some lim-
ited areas where the JSVD is skewed but, in general, WTFW
clearly outperforms the other methods. This is even more
evident on the Flickr dataset.

Evaluation on link labeling. We next turn our atten-
tion to the task of discriminating between social and topical
links, thanks to the ground truth that we have in the Flickr
dataset. Again, we measure the accuracy by computing the
AUC on the prediction, and by comparing the result with
a baseline based on common neighbors/features. That is, a
link l = (u, v) is deemed social if the weight of the common
neighbors is higher than those of the common features, and
topical otherwise. Formally:

Pr(xl = 1|l) =
|N(u) ∩N(v)|

|N(u) ∩N(v)|+ |F (u) ∩ F (v)| .

Table 5 reports the results for increasing values of K. The
best results are obtains on a lower number of topics, and
in particular for K = 32. This is somehow surprising if
we compare this results with the results on link prediction
discussed above. In an attempt to explain such a behav-
ior, we analysed the values of Π and δ in the model, and
we noticed that all models exhibit a strongly dominant la-
tent factor. We will discuss this component also in the next
subsection: it is worth mentioning, however that the associ-
ated probability δk leans towards 0.5 (a clear sign that the
community tends to mix topical and social contributions).
Clearly, the balanced value of δk does not affect the perfor-
mance in link prediction (as it only depends on whether any
of the social/topical components is strong enough to trigger
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Figure 6: Changes in the matrices Ze, Zf , X and Y.

the link), but it can negatively affect the label prediction.
The degradation of the performance for higher values of K
can find a justification in the split of this giant component:
apparently, the splitting seems to produce a reallocation of
the links in the other communities, thus causing the overfit-
ting. Besides this anomalous behavior, WTFW outperforms
the baseline prediction for each considered value of K, as
shown in Fig. 4(a).

Scalability and sensitivity analysis. We next discuss
how the model parameters affect the learning time and the
quality of the results. As already mentioned, we chose to
perform 2, 000 Gibbs sampling iterations. Figure 4 shows
that the learning is substantially linear in the number of
topics. Figure 5 shows the behavior of the log-likelihood
(on the left) and the AUC values on the validation data,
along the iterations. We can see that, although the likeli-
hood increases substantially, the improvements on the AUC
is marginal, and the algorithm tends to converge to a stable
accuracy value quite rapidly. Hence, limiting the number of
iterations to 2, 000 seems to be a good compromise between
learning time and accuracy in prediction.

Finally, Figure 6 shows the percentage of relocations in la-
tent factors assignments in the sampling steps of the Gibbs
sampler, along iterations. After an initial phase, the latent
factor matrices tend to become stable, except for the ma-
trix X on Twitter, for which there is constant 25% change
along all iterations. Also, it is interesting to notice that the
changes in Ze and Zf tend to be higher on Flickr.

4.2 Qualitative analysis
We next turn to a more qualitative analysis of the models

produced. Here we consider the latent structure correspond-
ing to K = 64 on Twitter and K = 32 on Flickr. These
values are chosen for presentation readability sake.
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Figure 7: Density plot of the blocks within E and F.

Figure 7 shows the block adjacency and feature matri-
ces, where both users and features are grouped according
to their likelihood to belong to each community. Specifi-
cally, for each user, we compute the probability Pr(k|u) ∝∑

k πk Pr(u|k), where Pr(u|k) is the probability that a user
is associated to community k as either source/destination
of a connection, or as adopter of a feature. Analogously,
Pr(k|f) ∝

∑
k πkΦk,f represents the likelihood that the fea-

ture f is observed in the context of the community k. Each
user/feature is then associated with the community k for
which the probability is higher.

Darker colors in the block matrices denote higher relative
density. As witnessed by the diagonal structure on the block
adjacency matrix, the discovered communities capture neat
patterns of connectivity among users. The joint analysis of
the two block matrices supports the following findings.

• Connections in Twitter tend to be strongly topical;
each community is strongly characterized by a corre-
sponding set of features. The only exception is given by
two communities (4 and 15) in which associations tend
to be looser (and in fact the corresponding features tend
to entropically spread along all communities).

• The connectivity behavior of users on Flickr is more
social. The block adjacency matrix exhibits high den-
sity blocks, and by contrast the feature block matrix
exhibits higher entropy. Apparently, it seems that there
is not a strong characterization in terms of features for
the detected communities. While few communities are
specialized in a very limited set of features, a larger
number of tags is popular in the remaining ones. The
dominant community mentioned before, where most of
the features association hold is very visible.

The above hypotheses are supported by the analysis in
Figure 8, where we report for each community the percent-
age of users who qualify as either authoritative, susceptible
or social. The authoritiveness score for the user u within k
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Figure 9: Distribution of δk for each community.

is computed as:

Pr(Auth|u, k) =
(1− δk)Ak,u

δkθk,u + (1− δk)(Ak,u + Sk,u)
.

Scores for measuring the degree of susceptibility and so-
ciality can be computed likewise. Again, Twitter tends
to exhibit a predominant amount of authorities/followers,
whereas the great majority of the communities in Flickr

tend to include social users. Finally, Figure 9 shows the
estimated values of δk within the communities. As already
observed before, Flickr tends to be more clearly social than
Twitter. Moreover, the distinction between social and topi-
cal latent factors is very clear in Flickr with almost all com-
munities having probability of being “social” either above
0.9, or below 0.2. This discriminating attitude is even more
evident when we increase the number of latent topics.

Finally, a further assessment of the correct identification
of social and topical latent factors can be performed by mea-
suring, for a given feature f , the probability of observing it
in a social/topical context, computed as follows:

Pr(Social |f) ∝
∑
k

πkδkΦk,f

Pr(Topical |f) ∝
∑
k

πk(1− δk)Φk,f .

In Table 6 we validate the accuracy of the feature-labeling
task on two small sets of tags. The first set contains key-
words notably associated with social events, such as family,
and wedding. The second set contains keywords specific to
photographic techniques, e.g. hdr and polaroid, which are
likely to generate topical interest in the users. The results
confirm the capability of the model to discriminate between
social and topical features.

Finally, Table 7 summarizes the top keywords detected by
our approach on both datasets in some representative com-
munities/topics: highly social communities (large δ) have
characteristic features (e.g., family, christmas on Flickr,
and followback on Twitter) which are clearly social.

5. CONCLUSIONS AND FUTURE WORK
This paper introduces WTFW, a novel stochastic gener-

ative model that jointly factorizes both social connections
and feature associations. The model provides accurate link
prediction and contextualized socio/topical explanations to
support the predictions. Our approach is based on latent
factors which can be interpreted as communities of people
sharing a similar behavior, and on the explicit modeling of

Feature Prob. Social Feature Prob. Social
birthday 0.69 hdr 0.40
family 0.67 vintage 0.29

wedding 0.69 collage 0.24
party 0.67 nude 0.08
puppy 0.69 polaroid 0.28

Table 6: Social/Topical connotations of selected tags on Flickr.

Flickr

Topic 1
δ = 0.98

Topic 5
δ = 0.98

Topic 18
δ = 0.17

Topic 22
δ = 0.14

Christmas,
esther,

passenger,
Birthday,

eros, party,
stories, apple,

curling,
homemade

family, mom,
dog, driving,
vitus, bakery,

woods,
birthday,
friends,

halloween,
shirt,

brothers,
baby

handmade,
warehouse,
vintage,
knitting,

craft, green,
pansies, doll,

sewing

bird, art,
design,

illustration,
drawing, fo-
toincatenate,
sketch, street,
painting, ink,

graffiti

Twitter

Topic 3
δ = 0.74

Topic 9
δ = 0.27

Topic 64
δ = 0.16

Topic 47
δ = 0.33

TeamFollow-
Back TFB

FollowNGain
fb InstantFol-

lowBack
nowplaying
lastfm Tea-

mAutoFollow
Follow4Follow

500aDay
anime 4sqDay

Autodesk
BIM

AutoCAD
Revit AU2012
Civil3D AEC
adsk sf2012

SWTOR revit
CAD au2011
cloud 3dsMax

AU2011
C3D2013

ISS space
science

Discovery
Mars nasa

spottheshut-
tle ESA

astronomy
Enterprise

Soyuz

Game-
ofThrones

FakeWesteros
GoT ooc

SXSWesteros
TheGhostofHar-

renhal
Gardenof-

Bones asoiaf
GRRM GOT

Table 7: Most representative features of selected communities.

the underlying latent nature behind each observed connec-
tion. The result is a decoupling of social and topical con-
nections to reflect the idea that social communities should
have high density and reciprocal connections, whereas top-
ical communities should exhibit clear directionality and a
low entropy over user attributes.

Our work can be extended in several directions. First, we
deliberately omitted to quantify the quality of the commu-
nities that the model produces. Some initial results based
on modularity look promising (we measured 0.55 and 0.37
on Twitter and Flickr, respectively). Also, the qualitative
analysis in Section 4 clearly denotes the capability of the
model to group users according to both connectivity and
common features. However, we plan to devote to future
work a more detailed treatment, as well a thorough compar-
ison with other approaches in the literature.

Second, the approach explored in this paper is rooted on
mixture membership topic modeling. However, other alter-
natives are possible, which can be based on probabilistic
matrix factorization. We plan to explore and compare these
different strategies in a future work.



Table 8: Equations for the Gibbs Sampling.

Pr(zl = k|xl = 1,Rest) ∝ (ck + dk + ξk − 1) ·
csk + δ0 − 1

ck + δ0 + δ1 − 1
·

(
cs,sk,ul

+ cs,dk,ul
+ αul − 1

)
·
(
cs,sk,vl

+ cs,dk,vl
+ αvl − 1

)
(
2csk +

∑
u αu − 1

) (
2csk +

∑
u αu

)
Pr(zl = k|xl = 0,Rest) ∝ (ck + dk + ξk − 1) ·

ctk + δ1 − 1

ck + δ0 + δ1 − 1
·
ct,sk,ul

+ dsk,ul
+ ηul − 1

ctk + dsk +
∑

u ηu − 1
·
ct,dk,vl

+ dak,vl
+ βvl − 1

ctk + dak +
∑

u βu − 1

Pr(xl = 1|Rest) ∝

(
cs,sk,ul

+ cs,dk,ul
+ αu − 1

)
·
(
cs,sk,vl

+ cs,dk,vl
+ αv − 1

)
(
2csk +

∑
u αu − 1

) (
2csk + 1 +

∑
u αu − 1

) ·
csk + δ0 − 1

csk + ctk + δ0 + δ1 − 1

Pr(xl = 0|Rest) ∝
ct,sk,ul

+ dsk,ul
+ ηul − 1

ctk + dsk +
∑

u ηu − 1
·
ct,dk,vl

+ dak,vl
+ βvl − 1

ctk + dak +
∑

u βu − 1
·

ctk + δ1 − 1

csk + ctk + δ0 + δ1 − 1

Pr(za = k|ya = 1,Rest) ∝ (ck + dk + ξk − 1) ·
dak + τ0 − 1

dak + dsk + τ0 + τ1 − 1
·
ct,dk,ua

+ dak,ua + βua − 1

ctk + dak +
∑

u βu − 1
·
dk,fd + γfa − 1

dk +
∑

f γf − 1

Pr(za = k|ya = 0,Rest) ∝ (ck + dk + ξk − 1) ·
dsk + τ1 − 1

dak + dsk + τ0 + τ1 − 1
·
ct,sk,ua

+ dsk,ua + ηu − 1

ctk + dsk +
∑

u ηu − 1
·
dk,fa + γfa − 1

dk +
∑

f γf − 1

Pr(ya = 1|Rest) ∝
ct,dk,ua

+ cak,ua + βua − 1

ctk + dak +
∑

u βu − 1
·

dsk + τ1 − 1

dak + dsk + τ0 + τ1 − 1

Pr(ya = 0|Rest) ∝
ct,sk,ua

+ dsk,ua + ηua − 1

ctk + dsk +
∑

u ηu − 1
·

dak + τ0 − 1

dak + dsk + τ0 + τ1 − 1
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