
A

Efficient Methods for Influence-based Network-oblivious Community
Detection

NICOLA BARBIERI, Yahoo Labs, London, United Kingdom
and FRANCESCO BONCHI, The ISI Foundation, Turin, Italy, and Eurecat, Barcelona, Spain
and GIUSEPPE MANCO, ICAR-CNR, Rende, Italy

We study the problem of detecting social communities when the social graph is not available, but instead we
have access to a log of user activity, that is a dataset of tuples (u, i, t) recording the fact that user u “adopted”
item i at time t. We propose a stochastic framework which assumes that the adoption of items is governed
by an underlying diffusion process over the unobserved social network, and that such diffusion model is
based on community-level influence. That is, we aim at modeling communities through the lenses of social

contagion. By fitting the model parameters to the user activity log, we learn the community membership
and the level of influence of each user in each community. The general framework is instantiated with
two different diffusion models, one with discrete time and one with continuous time, and we show that
the computational complexity of both approaches is linear in the number of users and in the size of the
propagation log. Experiments on synthetic data with planted community structure, show that our methods
outperform non-trivial baselines. The effectiveness of the proposed techniques is further validated on real-
word data, on which our methods are able to detect high quality communities.

CCS Concepts: rMathematics of computing ! Probabilistic algorithms; rInformation systems !
Clustering; Social networking sites;

rComputing methodologies ! Topic modeling; Latent variable
models; Machine learning algorithms;
General Terms: Theory, Algorithms, Experimentation

Additional Key Words and Phrases: Social Influence, Information Diffusion, Social Network Analysis,
Network-Oblivious Community Detection

ACM Reference Format:
Nicola Barbieri, Francesco Bonchi, Giuseppe Manco. 2016. Efficient Methods for Influence-based Network-
oblivious Community Detection. ACM Trans. Intell. Syst. Technol. V, N, Article A (January YYYY), 31 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Detecting close-knit communities of like-minded people in on-line social networks, is
an important mining task with plenty of applications. Knowing groups of users with
similar interests and a short distance on the social graph, allows the analyst to de-
velop more personalized user experiences and thus better web and mobile applications.
For companies advertising and selling products through the internet, the community
structure of the social network is an invaluable knowledge. If a user responded posi-
tively to a certain ad, campaign, or product offer, one might want to target other users
in the same community: (i) by homophily one can expect similar users to be more
likely interested in the same product than random users, and (ii) if more users in

Author’s addresses: Nicola Barbieri is currently with Tumblr, 35 E 21st St, 10010, New York, USA. Email
nicola@tumblr.com.
Francesco Bonchi, ISI Foundation, Via Alassio, 10126 Torino, Italy. Email francesco.bonchi@isi.it.
Giuseppe Manco, ICAR-CNR, Via Bucci 41c, 87036 Rende (CS), Italy. Email manco@icar.cnr.it.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c� YYYY ACM. 2157-6904/YYYY/01-ARTA $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 N. Barbieri et al.

the same community adopt the same product, this might eventually create a word-of-

mouth buzz, triggering more adoptions in the same community.
While the literature on community detection is wide, the real-world applications

deployed so far are rather limited, often regarding just simple data analysis for social
sciences. This is due to a fundamental observation which has been largely overlooked
in the literature: the real-world applications which would benefit more from knowing
the community structure of a social network, actually do not have access to the network!

It is a matter of fact that the social network platforms are owned by third party such
as Facebook or Twitter, which have realized that their proprietary social graph is an
asset of inestimable value 1. Thus they keep it secret, for sake of commercial compet-
itive advantage, as well as due to privacy legislation. Take Facebook as an example:
business owners can set up a Facebook Page and create display ads or promoted posts
to reach users 2, but they are not allowed 3 to reconstruct the social graph and thus
implement targeted ads campaign based on the knowledge of the communities. An-
other example is Twitter, which sells its Firehose (the complete stream of tweets ⇡
half a billion per day) to other companies 4: regardless the business partnership the
social graph is not disclosed, and actually, its reconstruction for commercial purposes
is explicitly forbidden by contract.

In this paper we tackle the ambitious problem of inferring the community structure
when the social graph is not available, and without attempting to reconstruct it. A
first step towards this goal, is to analyze the alternative dynamics and data that we
can exploit. A company advertising or developing applications over an on-line social
network owns the log of user activity that it produces. In general, we might think of
the activity log D as a set of tuples (u, i, t) which records the timestamp at which the
user u “acted on” or “adopted” the item i: for instance, user u bought song i, user u
clicked on ad i, user u liked photo i.

The key idea at the basis of this work, is to exploit the phenomenon of social conta-
gion to detect communities by analyzing, exclusively, the activity log D. The basic as-
sumptions are that (i) information can spread only by exploiting the social connections
among users, and that (ii) the network has a community structure, where communi-
ties are densely connected internally, and loosely connected with other communities.
As a consequence of these two assumptions, social contagion acts mainly locally, inside
each community. Thus, if we see a group of users acting on item i in a short time frame,
and we observe this occurring on various different items, then we can infer that these
users are connected in some social network, that they communicate and can influence
each other.

The following analogy might be in place. We might think of the unobserved social
network as an underground network of channels and caves that we want to map. By
letting some fluid enter into the network and monitoring how it flows, we can under-
stand where there are caves in which the fluid can flow easily and accumulate (social
communities) where instead there are channels that allow to flow from one cave to
another, and how easy or hard is flowing trough each channel.

It is worth noting that the unobserved social network is not necessarily unique and
clearly defined: users can communicate trough different media e.g., e-mail, telephone,
Facebook, Twitter, Skype or WhatsApp (just to mention a few), or they can even com-
municate in the real world, e.g., while drinking a beer together. This does not make

1http://techcrunch.com/2013/01/24/my-precious-social-graph/
2https://www.facebook.com/business
3https://developers.facebook.com/policy
4http://gigaom.com/2012/11/29/as-the-firehose-matures-twitter-tightens
-grip-on-valuable-asset/

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Network-Oblivious Community Detection A:3

any difference for our setting: we just observe the adoptions and their timing. Being
network-oblivious, our framework also solves the problem of detecting communities

over multiple networks.
Finally, our method not only is aimed at detecting communities by exploiting social

influence evidence: as a by-product it also defines the level of influence of each user in
each community. This allows to identify for each community the “key” users, i.e., the
leaders which are most likely to influence the rest of the community to adopt a certain
item. Those are the best users to target in a viral marketing campaign.

1.1. The proposed method
One possible approach to solve the network-oblivious community detection problem
could be to first use the log D to infer the overall structure of the network, and then
apply some standard community detection techniques over the reconstructed social
network. However, this approach has several drawbacks. First, methods for network
reconstruction [Gomez Rodriguez et al. 2010; Gomez Rodriguez et al. 2011] are in-
herently quadratic in the number of nodes and the proposed optimization procedure,
which is based on convex optimization, is not easily scalable. Second, the reconstruc-
tion of the network might be explicitly forbidden by contract (as discussed above for
Twitter and Facebook). Third, if the community detection is the ultimate goal then,
as we show in our experiments in Section 6, it is more effective to go directly for it,
without passing through network reconstruction.

In this work, we propose a general framework for directly detecting communities in
a network-oblivious setting, without attempting to reconstruct the network. In partic-
ular, our proposal assumes that item adoptions are governed by an underlying stochas-
tic diffusion process over the unobserved social network, and that such diffusion model
is based on community-level influence. By fitting the model parameters to the user ac-
tivity log D, we learn the community membership and the influence level of each user
in each community.

The general framework can be instantiated with different choices of diffusion mod-
els. In this paper we propose two models. First we extend to the community level of the
classic (discrete time) Independent Cascade model [Kempe et al. 2003]. The key idea is
to assume that each user exerts the same degree of influence over a whole community.
Then, we provide a finer-grain modeling, by directly focusing on activation times. Here
we assume that each user induces a fixed delay on the activation times of social peers
within the same community.

1.2. Summary of contributions and roadmap
The main contributions of our work can be summarized as follows:

— We introduce the problem of network-oblivious community detection, exploiting user
activity information. Despite the wide literature on the subjects of community detec-
tion and influence in social networks (briefly reviewed in Sec. 2), to the best of our
knowledge we are the first ones to study community detection without the network.

— We define a stochastic framework for modeling users membership in communi-
ties, based on community-level social influence. We devise an expectation maximiza-

tion (EM) learning algorithm which embeds a penalized likelihood with negative
Dirichlet-type prior. This enables a community annihilation mechanism, allowing
the automatic detection of the best fitting number of communities (Section 3).

— We instantiate the general framework by considering two different diffusion models:
discrete-time community-level independent cascade model (Section 4), and a model
based on time delay between adoptions (Section 5). Notably, the computational com-
plexity of both approaches is linear in the number of users and in the size of the

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 N. Barbieri et al.

propagation log. The inference phase is based on the above mentioned EM scheme
for learning the model parameters. By exploiting the properties of the underlying
propagation models, each iteration of the learning procedure can be efficiently com-
puted in at most two scans of the propagation log.

— We run extensive experimentation on synthetic data with planted community struc-
ture (Section 6). Our results show that our methods outperform three non-trivial
baselines. Experiments on a real-world Twitter dataset, confirm the high quality of
the discovered communities.

In Section 7 we conclude the paper and discuss possible extensions. A six-pages
preliminary version of this work was presented in [Barbieri et al. 2013b].

2. RELATED WORK
In this section we briefly review related prior art. First we discuss data mining models
in the area of social influence, then we discuss few papers at the intersection of social
contagion and community detection.

2.1. Social contagion
The term social contagion refers to the spread of new practices, beliefs, technologies
and products trough a population, driven by social influence. It is a very central theme
in social sciences and recently it has attracted a lot of interest in the data mining
community [Bonchi 2011]. Fueled by the seminal work by Domingos and Richard-
son [Domingos and Richardson 2001] and Kempe, Kleinberg, and Tardos [Kempe et al.
2003] most of the attention has been devoted to exploiting social influence for “word-
of-mouth” driven viral marketing applications.

Given a social network, where each arc (u, v) is associated with a weight (or proba-
bility) p

u,v

representing the strength of influence that u exerts over v, the problem is
that of selecting the set of initial users that are more likely to influence the largest
number of users in the social network, according to an assumed underlying propaga-

tion model. In this context, most of the effort has been devoted to develop efficient and
scalable algorithms [Kimura and Saito 2006; Leskovec et al. 2007b; Chen et al. 2010;
Goyal et al. 2011].

Other researchers have considered the social network and the log of past user ac-
tivity jointly, and studied important problems such as learning the parameters of the
propagation model, i.e., the strength of influence along each arc [Saito et al. 2008;
Goyal et al. 2010], or how to distinguishing real social influence from “homophily”
[Anagnostopoulos et al. 2008; Crandall et al. 2008; La Fond and Neville 2010]. Finally,
a wide literature exists on the analysis of social influence in specific domains: for in-
stance, studying person-to-person recommendation for purchasing books and videos
[Leskovec et al. 2006; Leskovec et al. 2007a], telecommunications services [Shawn-
dra et al. 2006], or studying information cascades driven by social influence in Twit-
ter [Bakshy et al. 2011; Romero et al. 2011]. [Weng et al. 2013] studies the role of
information diffusion in the evolution of social networks: their experimental results
show that, as time progresses, the dynamics of information flow become an important
component for the growth of the network.

More related to our work, is the research by Gomez-Rodriguez et al. [Gomez Ro-
driguez et al. 2010; Gomez Rodriguez et al. 2011]. In this line of research, the social
network is not given in input, and the problem is how to reconstruct the unobserved
network starting from the log of users activity. The problem of network reconstruction

is addressed by assuming that infections follow a continuous-time independent cas-
cade model: each node in a cascade is infected by at most one already infected node,
thus a propagation is a directed tree. In NetInf [Gomez Rodriguez et al. 2010], the net-

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Network-Oblivious Community Detection A:5

work is inferred by assuming that the probability of propagation between any pair of
nodes is decreasing in the difference (always positive by assumption) of their infection
times. In NetRate [Gomez Rodriguez et al. 2011], if the node u succeeds in activating
v, then the contagion of the latter happens after an incubation time sampled from a
chosen distribution, which defines the conditional likelihood of transmission between
each pair of nodes and actually depends on the difference of their activation times.

According to this propagation model, the likelihood of a propagation cascade can be
formulated by applying standard survival analysis [Lee and Wang 2003], in terms of
survival (which models the probability that a node survives uninfected until a time T)
and hazard fuctions (which models instantaneous infections). Authors study three dif-
ferent underlying distribution functions, namely the exponential, Reileigh and power-

law, and show that the likelihood of the observed data is convex and the trasmission
rate parameters can hence be estimated by standard convex optimization procedures.
In our experiments in Section 6 we use as a baseline NetRate to reconstruct the net-
work, followed by Metis [Karypis and Kumar 1999] to partition the network.

Recent proposals have also focused on alternative ways of representing informa-
tion diffusion interactions between nodes, mainly using latent-dimensional embedding
techniques. [Bourigault et al. 2014] proposes a framework based on a heat diffusion

process which projects each node into a latent space where the proximity between a
pair of nodes reflects the proximity of their activations times in the observed cascades.
Similarly, [Wang et al. 2015] introduces a factorization technique which associate two
low-dimensional vectors to each node, representing influence and susceptibility, re-
spectively.

2.2. Communities and social contagion
The study of social contagion is intrinsically connected to the problem of understanding
the community structure of networks. In fact, individuals tend to adopt the behavior
of their social peers, so that social contagion happens first locally, within close-knit
communities, and spreads virally only when it is able cross the boundaries of these
densely connected clusters of people. Regardless the wide literature on community
detection algorithms (see [Fortunato 2010] for a survey), there has not been much
research at the intersection of community detection and social contagion.

[Wang et al. 2010] studies the problem of finding the top-k influential users in mobile

social networks. The authors propose to first detect communities and then assume
that the influence of a user is limited to her community. Therefore they propose an
algorithm based on label propagation, where the propagation follows the independent

cascade model [Kempe et al. 2003]. A similar approach is also taken in [Chen et al.
2014]: the proposed algorithm works in two phases, where the first phase discovers
the community structure of the network and the second phase uses the information of
communities detect the set of possible seed influencers.

In these works, communities are only a way to reduce the search space of the prob-
lem of finding influential users, not the goal. Moreover the setting is very different
from ours: in their framework both the social network and the influence strength are
given in input, while in our case none of the two is known.

[Barbieri et al. 2013a] studies the following problem: given both the social graph and
the log of user activity as input, the goal is to detect communities that “explain” well
the two pieces of input. In simpler terms, the idea is to do better community detec-
tion using the additional information contained in the activity log. Towards this goal,
Barbieri et al. propose the Community-Cascade Network (CCN) model, a stochastic
mixture membership generative model that can fit, at the same time, the social graph
and the log of user activity.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 N. Barbieri et al.

[Mehmood et al. 2013] introduces a model for analyzing information propagation and
social influence at the granularity of communities. The analysis of the community-level
influence propagation network on real-world dataset shows that the network is almost
acyclic.

Our work also collocates itself in the intersection of community detection and social
contagion, but it differs from the proposals of [Barbieri et al. 2013a] and [Mehmood
et al. 2013], as we tackle the problem of community detection without the network.

3. GENERAL FRAMEWORK
In this section we introduce our general stochastic framework, that we will instantiate
with different diffusion models in sections 4 and 5.

3.1. Preliminaries
We are given a log of past user activity D defined as a relation (User, Item, T ime)
where each tuple (u, i, t) represents the fact that the node u adopted the item i at
the time t. We let V denote the set of all users, i.e., the projection of D over the first
column, I denote the universe of items, i.e., the projection of D on the second column,
and we assume the time is an integer t 2 [0, T). We also use D

i

to denote the overall
activity on item i, that is the selection of the tuples of D where Item = i. We call it the
propagation trace of i. The projection of D

i

on the first column is denoted as C
i

. We
assume |D| = L, |V | = M and |I| = N . Furthermore, we denote |C

i

| = |D
i

| = L
i

the
size of the propagation trace of i, and N

u

= |{i|u 2 C
i

}| the number of items adopted
by user u.

Let t
u

(i) represent the adoption time of the user u for the trace D
i

; with t
u

(i) = 1
if u does not adopt i by time T . We denote the time delay between the adoption of two
users u, v on the item i as �

u,v

(i) = t
u

(i)� t
v

(i). We also define �
u

(i) = T � t
u

(i). When
i is clear from the context, we simply write �

u,v

and �
u

. Finally, let C
i,t

denote the set
of users active on the trace i by time t, i.e C

i,t

= {u 2 V : t
u

(i) < t}. For notational
convenience, we shall also denote C

i,tu(i)
as C

i,u

, for each u 2 C
i

. Finally, we denote by
u �

i

v the fact that both u and v are in C
i

, and t
u

(i)  t
v

(i). Analogously, u �
i

v holds
when both u and v are in C

i

, and t
u

(i) > t
v

(i) (hence v is a possible influencer for u’s
adoption). With an abuse of notation, we denote u �

i

v when either u = v or u �
i

v.

3.2. Framework overview
Given only a log D of users’ activities, our goal is to detect communities in an unob-
served network whose set of nodes correspond to the set of users V of D. By communi-
ties we mean – as usual in the literature – clusters of nodes of a social network that
exhibit high internal and low external link density. For sake of easiness of presentation
we talk about communities as a complete partitioning of V , that is to say communities
are disjoint. However, it is worth noting that, being stochastic, our method produces
for each user the level of membership in each community: therefore a soft assignment
to multiple overlapping communities is always possible. While detecting communities,
we also aim at learning for each community which are the most influential users, i.e.,
those users which are most likely to influence the rest of the community to adopt a
certain item i.

One possible approach is to forget about the existence of an underlying unobserved
social network. Instead, just tackle the problem with a standard clustering approach:
V is the set of objects to be clustered, and the actions of each user in V (which item i is
adopted and at which time t) is its description. One main drawback of this approach is
that it provides only clusters of users, and no information about the influence of users
in their respective cluster.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Network-Oblivious Community Detection A:7

Another possible approach is to focus on social influence to infer the social network
from the user activity log D, following the framework of [Gomez Rodriguez et al. 2010;
Gomez Rodriguez et al. 2011]. Then we can apply some standard community detection
algorithm to the resulting “reconstructed” network. As previously discussed, this ap-
proach has several drawbacks, the main one being the runtime quadratic in the size of
V .

We can consider these two approaches as the two opposite extremes of the spec-
trum5: one totally ignoring the existence of the network effect, the other one explicitly
reconstructing the network. Our proposal collocates in between these two extremes:
although it does not attempt a direct reconstruction of the network, it assumes that in-
formation spreads over social connections. Thus the assumption behind our framework
is that the unobserved network naturally shapes the process of information diffusion.

A high-level overview of our framework is as follows:

— We assume the existence of an unobserved social network having a modular struc-
ture (as typical of social networks). This means that communities exist, and they are
densely connected internally, and loosely connected with other communities.

— We assume that the process of the adoption of items is governed by an underlying
stochastic diffusion process over the unobserved social network. In particular, the
diffusion model is based on community-level influence.

— Each user is associated with a level of membership and a level of influence in each
community. These are the parameters of the diffusion model that we need to learn.
The adoption of an item i by a user u depends on the level of adoption of the item in
the community of u, or in other terms, by the influence exerted by the other members
of the community on u for adopting i.

— By fitting the model parameters to the user activity log D, we learn the community
membership and influence levels.

This general framework can be instantiated by using different stochastic
(community-level) diffusion models, leading to different community detection methods.
In this work we study two such models in Section 4 and 5 respectively. We conclude
this section by presenting the EM-like algorithm for fitting the model parameters to
the user activity log.

3.3. Modeling maximum likelihood
We base our community detection algorithm on a probabilistic framework where we as-
sume the existence of a latent association of each user with a given community, which
governs both her social ties and her attitude towards item adoptions. Social ties are
not observed in our framework. However, they are dense within the same community.
Thus, by modeling the (observed) propagation behavior, we can still infer such ties as
well as the underlying latent community. We resort to mixture modeling here, which
has been already proven as a flexible and powerful framework for overlapping com-
munity detection [Newman and Leicht 2007; Ren et al. 2009; Davis and Carley 2008].
However, our model parameterizes the probability of actions propagating due to influ-
ence, whereas traditional approaches where the network structure is known focus on
modeling the probability of edges. According to such approach we are still able to de-
tect communities, and, for each community we can also detect the contribution of each
node to the propagations.

We assume that each propagation trace is independent from the others, and we adopt
a maximum a-posteriori perspective. That is, we hypothesize that action probabilities

5In our experimental assessment (Section 6) we compare our proposal against these alternative approaches.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 N. Barbieri et al.

adhere to a mathematical model governed by a set of parameters ⇥. The likelihood of
the data given the model parameters ⇥, can hence be expressed as:

L(⇥;D) =
Y

i2I
P (D

i

|⇥),

where P (D
i

|⇥) represents the likelihood to observe the propagation trace behavior
relative to i in D. This can be deemed relative to the contribution of each user in it. In
practice, we can devise a markov chain of probabilities relative to the specific adoptions
(or non-adoptions),

P (D
i

|⇥) =
Y

u2V

P (a
u,i

|D
u,i

,⇥).

where a
u,i

is the action (u, i, t
u

(i)), and D
u,i

is the sequence of all actions in D
i

that
occur prior to t

u

(i). In principle, there is no independence assumption among actions,
since an action occurring at time t may depend on other actions which occurred on the
same item prior to t.

The corresponding learning problem is finding the optimal ˆ

⇥ that maximizes
L(⇥;D). Following the standard mixture modeling approach [Dempster et al. 1977],
we assume that the adoptions of each user can be explained by the community he/she
belongs to. That is, we assume that a hidden binary variable z

u,k

denotes the mem-
bership of user u to community k, with the constraint

P
K

k=1

z
u,k

= 1. Thus, ⇥ can be
partitioned into {⇡

1

, . . . ,⇡
K

,⇥
1

, . . . ,⇥
K

}, where ⇥
k

represents the parameter set rela-
tive to community k, and ⇡

k

= P (z
u,k

= 1) is the probability that a user is associated
with community k. We can rewrite the likelihood as

L(⇥;D) =
Y

i2I

Y

u

KX

k=1

P (a
u,i

|D
u,i

,⇥
k

)⇡
k

,

which can be optimized by resorting to the traditional EM algorithm. We rewrite the
complete-likelihood as:

P (D,Z,⇥) = P (D|Z,⇥) · P (Z|⇥) · P (⇥), (1)
where

P (D|Z,⇥) =
Y

u2V

KY

k=1

P (u|⇥
k

)

zu,k

P (u|⇥
k

) =

Y

i

P (a
u,i

|D
u,i

,⇥
k

)

P (Z|⇥) =
Y

u2V

KY

k=1

⇡
zu,k

k

,

and P (⇥) represents the prior relative to the parameter set ⇥. Inspired by [Figueiredo
and Jain 2002], we choose to model the latter as

P (⇥) /
KY

k=1

⇡
� 1

2

p
|⇥k|

k

,

with the interpretation that, for fixed K, the parameters ⇡
k

allow an “improper”
Dirichlet-type prior. This enables a formulation of EM algorithm which allows the au-
tomatic detection of the optimal number K of communities. By standard manipulation

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Network-Oblivious Community Detection A:9

of Eq. 1, the Complete-Data Expectation Likelihood [Dempster et al. 1977] is given by:

Q(⇥;⇥

0
) =E[logP (D,Z,⇥)|D;⇥0

]

/
X

u2V

KX

k=1

�
u,k

{logP (u|⇥
k

) + log ⇡
k

}�
KX

k=1

N
k

2

log ⇡
k

(2)

where N
k

=

p
|⇥

k

|, and �
u,k

⌘ P (z
u,k

= 1|u,⇥0
). Optimizing Q(⇥;⇥

0
) with respect to

⇡
k

under the constraints
P

k

⇡
k

= 1, 0  ⇡
k

 1 yields:

⇡
k

=

max

�
0,
P

u2V

�
u,k

�N
k

/2

P
K

k=1

max

�
0,
P

u2V

�
u,k

�N
k

/2
 . (3)

Here, the proposed prior allows an adjustment to the estimation of the ⇡
k

parameters
which enables “annihilation”: a community not supported by a sufficient number of
users is removed. Thus, we can start with an arbitrary large initial number of commu-
nities, and then infer the final number K by letting some of the mixing probabilities
⇡
k

be zero.

ALGORITHM 1: Learning Algorithm
Input : Propagation log D, and K

max

2 N+.
Output: Optimal K value; the set of all parameters, ⇥.

1 Arbitrarily initialize ⇥

(0) // Initialization of model parameters
2 K K

max

;
3 repeat
4 forall the k such that ⇡

k

> 0 do
5 forall the u do
6 compute �

u,k

=

P (u|⇥(t�1)
k)⇡k

Pk
k=1 P (u|⇥(t�1)

k)⇡k

7 end
8 end
9 forall the k such that ⇡

k

> 0 do
10 compute ⇡

k

=

max{0,
P

u �u,k�Nk/2}Pk
h=1 max{0,

P
u �u,h�Nh/2}

11 Normalize {⇡
1

, . . . ,⇡
K

};
12 if ⇡

k

> 0 then
13 compute additional model components;
14 compute ⇥

(t)

k

= argmax

k

Q(⇥;⇥

(t�1)

);
15 end
16 else
17 K K � 1;
18 end
19 end
20

E
-s

te
p

M
-s

te
p

21 until Convergence;

The general EM scheme is shown in Algorithm 1. As discussed in [Figueiredo and
Jain 2002], a further advantage of the scheme is its robustness to random initializa-
tion: by starting with an arbitrarily large number of components, we can avoid the
pitfalls of local maxima, since the whole parameter space is likely to be covered. As a
side note, the modeling of the prior P (⇥) is a major difference w.r.t. [Figueiredo and

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 N. Barbieri et al.

Jain 2002]: when |⇥
k

| is of the same order of magnitude as |V |, the original formula-
tion of the prior in [Figueiredo and Jain 2002] would produce an underestimation of
the number of communities. Furthermore, reducing the weight of |⇥

k

| in the computa-
tion of ⇡

k

allows us to reformulate the algorithm without optimizing the components
in sequence, which would require a prohibitive computational cost for large D.

The above modeling is a general framework, which is parametric to the com-
ponent P (u|⇥

k

). In turn, the latter depends on the way we model the probability
P (a

u,i

|D
u,i

,⇥
k

) for each adoption a
u,i

⌘ (u, i, t). We explore two different ways of mod-
eling P (a

u,i

|D
u,i

,⇥
k

), which focus on two different perspectives.

(1) The probability that u adopts i is the result of a bernoullian process on i, i.e.,
P (a

u,i

|D
u,i

,⇥
k

) ⌘ P (i|u, t,D
u,i

,⇥
k

), and time proceeds in discrete steps.
(2) The final model does not consider whether a user adopts i, but when the adoption

happens, i.e. P (a
u,i

|D
u,i

,⇥
k

) ⌘ P (t|i, u,D
u,i

,⇥
k

).

We next explore each strategy in turn. We consider a binary and progressive activation
process: at a given timestamp, each user is either active or inactive, and active users
cannot become inactive again.

4. COMMUNITY-LEVEL INDEPENDENT CASCADE MODEL
In the first alternative, we assume a bernoullian model for users’ adoptions of items.
As a result, the likelihood P (u|⇥

k

) can be specified over the observed binary data Y
i,u

,
where Y

i,u

= 1 if u 2 C
i

, and Y
i,u

= 0 otherwise.
When the social relationships are explicit, it is possible to define a propagation model

which describes how adoptions spread across the network [Kempe et al. 2003] and
to model information propagation and community structure suitably [Barbieri et al.
2013a]. In these models, a users tendency to become active increases monotonically
as more of its social peers become active. We next adapt this concept to a network-
oblivious situation, where we assume that the user’s tendency to become active de-
pends on the influence exerted within the community of membership.

The Community-Independent Cascade (C-IC) model draws from the Independent
Cascade model (IC) [Kempe et al. 2003], and models the idea that each user exerts
the same degree influence over members of each community. Time unfolds in discrete
timestamps. As in IC, when a user v becomes active, say at time t, it is considered
contagious and has a single chance of influencing each inactive neighbor u, indepen-
dently of the history thus far. The IC model specifies pairwise influence probabilities
p
v,u

, which express the likelihood of success for v’s attempt in activating her neighbor
u. Here, since the network information is not available, we assume that v exerts her
influence “globally”, with a strength pk

v

2 [0, 1] which depends on the community k of
the targeted node. The idea is that the community-level influence of each user v is
higher in the community she belongs to. According to this principle, we assume that
information mainly propagate locally and spread across communities thanks to the
presence of users who exhibit high degree of “external” influence.

Following [Mathioudakis et al. 2011] we adopt a delay threshold � to define influ-
encers. Specifically, we define F+

i,u

as the set of users who potentially influenced u in
the adoption of i:

F+

i,u

= {v 2 V |0  t
u

(i)� t
v

(i)  �}.

The set F�
i,u

of users who definitely failed in influencing u over i is defined similarly:

F�
i,u

= {v 2 V |t
u

(i)� t
v

(i) > �}.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Network-Oblivious Community Detection A:11

Then, we can specify P (u|⇥
k

) as

P (u|⇥
k

) =

Y

i

P
+

(i|u,⇥
k

)

Yi,u · P�(i|u,⇥k

), (4)

where P
+

(i|u,⇥
k

) represents the probability that some of the potential influencers
activated u and P�(i|u,⇥k

) the probability that none of the “out-of-react” influencers
succeeded:

P
+

(i|u,⇥
k

) = 1�
Y

v2F+
i,u

(1� pk
v

) P�(i|u,⇥k

) =

Y

v2F�
i,u

(1� pk
v

).

When Y
i,u

= 0, the set F+

i,u

is empty, thus neutralizing P
+

(i|u,⇥
k

). As a consequenze,
we can omit the exponent in the first component and specify the complete-data likeli-
hood as:

P (D|Z,⇥) =

Y

i,u,k

2

641�
Y

v2F+
i,u

(1� pk
v

)

3

75

zu,k

·

2

64
Y

v2F�
i,u

(1� pk
v

)

3

75

zu,k

.

4.1. Learning influence weights
The analytical optimization of Q(⇥;⇥

(t�1)

) is still difficult. We resort to the explicit
modeling of the influencers as hidden data to simplify the optimization procedure.
That is, let w

i,u,v

be a binary variable such that w
i,u,v

= 1 if v triggered the adoption of
the item i by u, and let W denote the set of all possible w

i,u,v

such that v 2 F+

i,u

. Then,
we can rewrite the complete-data likelihood relative to W as

P (D,Z,W,⇥) = P (D,W|⇥,Z) · P (Z|⇥) · P (⇥),

where

P (D,W|⇥,Z) =
Y

i,u,k

Y

v2F�
i,u

(1� pk
v

)

zu,k
Y

i,u,k

Y

v2F+
i,u

�
pk
v

�
wi,u,v·zu,k �

1� pk
v

�
(1�wi,u,v)·zu,k

.

As a consequence, the contribution to Q(⇥;⇥

(t�1)

) in the second row of (2) can be
rewritten as

X

u

X

k

�
u,k

0

B@log ⇡
k

+

X

i

X

v2F�
i,u

log(1� pk
v

)

+

X

i

X

v2F+
i,u

⌘
i,u,v,k

log pk
v

+ (1� ⌘
i,u,v,k

) log(1� pk
k

)

1

CA ,

where ⌘
i,u,v,k

is the “responsibility” of the user v in triggering u’s adoption in the con-
text of the community k:

⌘
i,u,v,k

= P (w
i,u,v

= 1|u, i, z
u,k

= 1,⇥(t�1)

) =

pk
v

1�
Q

w2F+
i,u

(1� pk
w

)

.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 N. Barbieri et al.

Finally, optimizing Q(⇥;⇥

(t�1)

) with respect to pk
v

yields

pk
v

=

P
hu,ii

v2F+
i,u

�
u,k

· ⌘
i,u,v,k

S+

v,k

+ S�
v,k

, (5)

with S+

v,k

=

P
hu,ii

v2F+
i,u

�
u,k

and S�
v,k

=

P
hu,ii

v2F�
i,u

�
u,k

.

4.2. Complexity analysis
The general scheme of the EM algorithm iterates through two steps, which (1) compute
the posterior likelihood of the model parameters, given the data, and (2) update the
parameters, given the posterior likelihood. The complexity of the algorithm strongly
relies on efficiently implementing such steps. The posterior relies on being able to ef-
ficiently computing the likelihood of a trace. Also, in our model we parametrize the
probability of actions propagating due to influence: that is, the model parameters rep-
resent the influence of each user within each community, and item adoption is modeled
as the effect of such an influence.

An apparent difficulty in this modeling strategy stems in the latent nature of an
influencer in an adoption: Since it is not known, both the likelihood of a trace and
the parameters exhibit a stochastic dependency towards the set of all possible eligible
influencers. Fortunately, the adopted modeling allows to devise a strategy for cumu-
lating the contribution of each possible influencer independently of the specific item
adoption. This guarantees that both the likelihoods of traces and the updates of the
model parameters can be accomplished in just two scans of the log trace.

To see why, we can analyze the complexity of the learning phase for C-IC by consid-
ering the E and M steps of the EM algorithm, separately (see Algorithm 1). For the
E step, we need to compute Pr(u|⇥

k

) for each user u and community k. We need to
consider two cases concerning �, which is the delay threshold used to define potential
influencers.

LEMMA 4.1. If � = 1, then

log Pr(u|⇥
k

) = A
u,k

+B
k

�B
u,k

,

where A
u,k

, B
k

, and B
u,k

are as defined in Table I.

PROOF. We can rewrite the log probability of observing the adoptions of a user
within the community k as

log Pr(u|⇥
k

) =

X

i:u2Ci

log

(
1�

Y

v�iu

(1� pk
v

)

)
+

X

i:u 62Ci

X

v2Ci

log(1� pk
v

)

=

X

i:u2Ci

log (1�A
i,u,k

) +

X

i:u 62Ci

B
i,k

=A
u,k

+B
k

�B
u,k

COROLLARY 4.2. When � = 1, the complexity of the E step is O(KL+KM) in time

and O(KM +KN) in space.

PROOF. Overall, the computation of all log Pr(u|⇥
k

) requires two scans over D and
K; then, the updated values of �

u,k

can be computed by transforming those logs into
probabilities. In the first scan, the components A

i,u,k

, A
u,k

and B
i,k

can be computed
incrementally, without the need of storing the values for A

i,u,k

. Assuming that v is the
user directly preceding u in the trace i, it holds that A

i,u,k

= A
i,v,k

· (1 � pk
v

). A
u,k

can

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Network-Oblivious Community Detection A:13

be computed by summing up the components A
i,u,k

for each trace i that involves the
user u. The same holds for B

i,k

, which is computed when iterating over trace i and the
community k. Finally, after computing B

i,k

, we can obtain the components B
u,k

for all
users u with a second scan over D and K.

For the case � < 1, the main problem is efficiently computing F+

i,u

and F�
i,u

for
each user u and item i. Let l

i,v

be the user u 2 F�
i,v

with the shortest temporal gap
t
v

(i) � t
u

(i) from v in the adoption of i. Dually, let s
i,v

be the user u such that v 2 F+

i,u

with the farthest distance t
u

(i) � t
v

(i). Notice that s
i,v

and l
i,v

can be computed in
O(logL

i

) by exploiting appropriate index structures, such as e.g. B-Trees.

LEMMA 4.3. When � < 1, then

log Pr(u|⇥
k

) = A
u,k

+B
k

�B
u,k

+

˜B
u,k

,

where A
u,k

, B
k

, B
u,k

, and

˜B
u,k

are defined as in Table I.

PROOF. We can observe the following:

log Pr(u|⇥
k

) =

X

i:u2Ci

log

8
><

>:
1�

Y

v2F+
i,u

(1� pk
v

)

9
>=

>;
+

X

i

X

v2F

�
i,u

log(1� pk
v

)

=

X

i:u2Ci

log (1�A
i,u,k

) +

X

i

logB
i,li,u,k

=A
u,k

+

X

i:u 62Ci

B
i,k

+

X

i:u2Ci

logB
i,li,u,k

=A
u,k

+B
k

�
X

i:u2Ci

B
i,k

+

X

i:u2Ci

logB
i,li,u,k

=A
u,k

+B
k

�B
u,k

+

˜B
u,k

COROLLARY 4.4. When � < 1, the complexity of the E step is O(L(K +

log(max

i

L
i

)) +KM) time and O(K(max

i

L
i

) +KM +KN) space.

PROOF. For each element u in each trace i, we need to compute l
i,u

, which takes
O(logL

i

). The values B
i,u,k

can be computed incrementally by exploiting the recursive
relationship for each adjacent pair in a trace. Finally, we only need pre-allocate the
space for the A

i,u,k

values relative to a single trace. In fact that if v = l
i,u

then we
can associate with v a dual variable ˜l

i,v

such that u =

˜l
i,v

and hence we can assume
a look-ahead strategy where the current value B

i,v,k

can be pre-stored to contribute
to the computation of A

i,

˜

li,v,k
. Finally, the B

k

, B
i,k

, B
u,k

and ˜B
u,k

components can be
computed incrementally and hence log Pr(u|⇥

k

) can be computed in at most two scans
of D.

Although not strictly required for the step E, it is convenient to store the A
i,u,k

values
relative to each (u, i) 2 D. The term ⌘

i,u,v,k

can be rewritten as pk
v

/(1� A
i,u,k

). Storing
A

i,u,k

allows us to efficiently compute the update for the parameters pk
v

, as stated by
the following lemmas.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 N. Barbieri et al.

Table I. Definition of the counters used for the C-IC model (Section 4.2).

counter definition description

N
v

|{i 2 I|v 2 C
i

}| Total number of items adopted by v

A
u,k

X

i:u2Ci

log (1�A
i,u,k

)

Log-likelihood of u’s activations
when the community is k

A
i,u,k

(Q
v�iu

(1� pk
v

) � =1
Bi,u,k

Bi,li,u,k
� <1

Likelihood that all influencers fails to
trigger u’s activation in the trace i

under community k

B
k

X

i

B
i,k

Cumulative over all traces i
of B

i,k

B
u,k

X

i:u2Ci

B
i,k

Cumulative over all trace i
on which u is active of B

i,k

B
i,k

X

v2Ci

log(1� pk
v

)

Log-likelihood that all active nodes
in trace i will fail to trigger a next activation

under community k

˜B
u,k

X

i:u2Ci

logB
i,li,u,k

Cumulative over all trace i on which u is active
of B

i,w,k

where w = l
i,u

B
i,u,k

Y

v�iu

(1� pk
v

)

Likelihood that all the influencers up to u
will fail to trigger the next activation

in trace i under community k

C
v,k

⇢ P
i:v2Ci

C
i,k

� =1P
i:v2Ci

C
i,v,k

� <1
Cumulative over all traces i on which

v is active of C
i,k

(resp. C
i,v,k

)

D
v,k

⇢ P
i:v2Ci

C
i,v,k

� =1P
i:v2Ci

C
i,si,v,k � <1

Cumulative over all traces i on which
v is active of C

i,v,k

(resp.C
i,si,v,k)

C
i,v,k

(P
u�iv

�u,k

1�Ai,u,k
� =1

P
u�iv

�u,k

1�Ai,u,k
� <1

Cumulative over influencers for v’s activation in trace i
of their conditional community membership

given that their activations happen in community k

C
i,k

X

u2Ci

�
u,k

1�A
i,u,k

Cumulative over active users in the trace i
of conditional community memberships �

u,k

given that their activations happen in community k

�

i,v,k

X

u�iv

�
u,k

Cumulative involvement in the community k
of potential influencers for user v (included) on trace i

�

k

X

u

�
u,k

Cumulative over u of �
u,k

:
this acts as a prior for community k.

�

v,k

X

i:v2Ci

�

i,v,k

Cumulative over all users v active on
trace i of �

i,v,k

�

i,k

X

u2Ci

�
u,k

Cumulative over users u active in the trace i
of �

u,k

.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Network-Oblivious Community Detection A:15

LEMMA 4.5. Given a user u and a community k, let p̃k
v

be the value of pk
v

computed

in the previous iteration and assume � = 1. Then,

pk
v

=p̃k
v

C
v,k

�D
v,k

N
v

�

k

� �
v,k

where C
v,k

, D
v,k

, N
v

, �

k

, and �

v,k

are defined as in Table I.

PROOF. We can write Eq. 5 as pk
v

= num
v,k

/den
v,k

. Let us consider each element in
turn. Concerning the numerator, we have:

num
v,k

=

X

i:v2Ci

X

u�iv

�
u,k

· ⌘
i,u,v,k

=p̃k
v

X

i:v2Ci

X

u�iv

�
u,k

1�A
i,u,k

=p̃k
v

X

i:v2Ci

(C
i,k

� C
i,v,k

)

=p̃k
v

(C
v,k

�D
v,k

)

As for the denominator, we have:

den
v,k

=S+

v,k

+ S�
v,k

=

X

i:v2Ci

X

u�iv

�
u,k

+

X

i:v2Ci

X

u 62Ci

�
u,k

=

X

i:v2Ci

0

@
X

u2Ci

�
u,k

�
X

u�iv

�
u,k

1

A
+

X

i:v2Ci

X

u

�
u,k

�
X

u2Ci

�
u,k

!

=

X

i:v2Ci

(�

i,k

� �
i,v,k

) +

X

i:v2Ci

(�

k

� �
i,k

)

=N
v

�

k

� �
v,k

COROLLARY 4.6. When� = 1, the complexity of the M step is O(KL+KM) in time

and O(KL+KM +KN) in space.

Again, a similar formulation can be devised for the case � < 1, which relies on the
computation of s

i,u

for each trace i and user u within i.

LEMMA 4.7. Given a user u and a community k, let p̃k
v

be the value of pk
v

computed

in the previous iteration and assume � < 1. Then,

pk
v

=p̃k
v

D
v,k

� C
v,k

N
v

�

k

where D
v,k

, C
v,k

, N
v

, and �

k

are defined as in Table I.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 N. Barbieri et al.

PROOF. Again, we can analyse separately numerator and denominator. For the nu-
merator, we can observe:

num
v,k

=

X

i:v2Ci

X

u:v2F

+
i,u

�
u,k

· ⌘
i,u,v,k

=p̃k
v

X

i:v2Ci

X

u:v2F

+
i,u

�
u,k

1�A
i,u,k

=p̃k
v

X

i:v2Ci

�
C

i,si,v,k � C
i,v,k

�

=p̃k
v

(D
v,k

� C
v,k

)

Concerning the denominator, we can observe that, when � < 1, we have:

S�
v,k

=

X

hu,ii
v2F�

i,u

�
u,k

=

X

i:v2Ci

X

u 62Ci

�
u,k

+

X

i:v2Ci

X

u2Ci

(1� Jt
u

(i)  t
v

(i) +�K)�
u,k

=

X

i:v2Ci

X

u

�
u,k

�
X

u2Ci

�
u,k

!
+

X

i:v2Ci

X

u2Ci

�
u,k

�
X

i:v2Ci

X

u:v2F+
i,u

�
u,k

=N
v

�

k

� S+

v,k

It turns out that den
v,k

can be simplified as N
v

�

k

.

COROLLARY 4.8. When � < 1, the complexity of the M step is O(L(K +

max

i

(logL
i

)) +KM) in time, and O(KL+KM +KN) in space.

PROOF. D
v,k

can be computed in an incremental fashion, We can devise a look-
ahead strategy for computing D

v,k

. More specifically, we can define s̃
i,u

such that when-
ever u = s

i,v

, then v = s̃
i,u

. As a consequence, each C
i,v,k

contributes to the correspond-
ing D

s̃i,u,k. A single scan of the D allows us to compute numerator and denominator
for each pk

v

, which can be updated afterwards.

We are finally able to state the main complexity result for the C-IC.

THEOREM 4.9. The complexity of a single step of the EM algorithm plugged with the

C-IC model is O(KL+KM) in time and O(KL+KM +KN) space when � = 1, and

O(L(K +max

i

(logL
i

) +KM) in time and O(KL+KM +KN) in space when � < 1.

The resulting linear complexity of the iteration of the EM algorithm guarantees
that the approach scales to very large networks, at the same time guaranteeing the
discovery of high-quality communities.

5. MODELING TEMPORAL DYNAMICS
C-IC does not explicitly model temporal dynamics, as it focuses on modeling just bi-
nary activations by employing a discrete-time propagation model. Here we present a
more fine-grained modeling that exploits time to better characterize the overall diffu-
sion process.

Given an observation window [0, T], the idea is to explicitly model the likelihood of
the time at which each user adopted each item, or the likelihood that the considered

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Network-Oblivious Community Detection A:17

adoption did not happen within time T . This approach assumes that there is a de-
pendency between the adoption time of the influencer and the one of the influenced. In
NetRate [Gomez Rodriguez et al. 2011], previously described in Sec. 2, this dependency
in modeled by a conditional likelihood f(t

u

|t
v

,↵
v,u

) of transmission, which depends on
the delay�

v,u

. The likelihood of a propagation can be formulated by applying standard
survival analysis [Lee and Wang 2003], in terms of survival S(t

u

|t
v

,↵
v,u

) (modeling the
probability that a user survives uninfected at least until time t

u

) and hazard functions
H(t

u

|t
v

,↵
v,u

) (modeling instantaneous infections).
We reformulate this framework into a community-based scenario. The Community-

Rate (C-Rate) propagation model is characterized by the following assumptions:
• User’s influence is limited to the community she belongs to. That is, the user is

likely to influence/be influenced by members of the same community, while the
effect of influence is marginal on members of a different community.

• Each user exhibits the same degree transmission rate on members of the same
community k. That is, the information diffusion from the user v to v within the
k-th community is characterized by the density f(t

u

|t
v

,↵
v,k

), where ↵
v,k

is related
to the expected delay on the activations that v triggers within community k. The
probability of contagion depends on the time delay �

v.u

.
The parameter ↵

v,k

has a direct interpretation in terms of influence: high values
of ↵

v,k

cause short delays, and as a consequence they denote v as strongly influential
within k.

On the basis of the above observations, we can adapt the NetRate model to fit the
scheme of Sec. 3, by plugging

P (u|⇥
k

) =

Y

i:u 62Ci

Y

v2Ci

S(T |t
v

(i),↵
v,k

) ·
Y

i:u2Ci

Y

v�iu

S(t
u

(i)|t
v

(i),↵
v,k

)

X

v�iu

H(t
u

(i)|t
v

(i),↵
v,k

)

(6)

5.1. Learning
Again, instead of directly optimizing the likelihood based on (6) above, we introduce
the latent binary variable w

i,u,v

denoting the fact that u has been infected by v on i.
Then, the likelihood can be rewritten by defining

P (D,W|Z,⇥) =
Y

hu,ii62D

Y

k

Y

v2Ci

S(T |t
v

(i),↵
v,k

)

zu,k

·
Y

hu,ii2D

Y

k

Y

v�iu

H(t
u

(i)|t
v

(i),↵
v,k

)

wi,u,vzu,k · S(t
u

(i)|t
v

(i),↵
v,k

)

zu,k

and replacing P (D|Z,⇥) with the above component in the likelihood. In the follow-
ing we adopt the exponential distribution f(t

u

|t
v

,↵
v,k

) = ↵
v,k

exp {�↵
v,k

�

v,u

}, for
which survival and hazard can be expressed as S(t

u

|t
v

,↵
v,k

) = exp {�↵
v,k

�

v,u

} and
H(t

u

|t
v

,↵
v,k

) = ↵
v,k

. 6 Then, the contribution to Q(⇥;⇥

(t�1)

) in (2) becomes
X

u,k

�
u,k

log ⇡
k

�
X

hu,ii62D

X

k

X

v2Ci

�
u,k

�

v

↵
v,k

+

X

hu,ii2D

X

k

X

v�iu

⌘
i,u,v,k

�
u,k

log↵
v,k

�
X

hu,ii2D

X

k

X

v�iu

�
u,k

�

u,v

↵
v,k

,

6Similar formulations can be obtained by adopting different densities.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 N. Barbieri et al.

and the probability of observing v as an influencer on u, i is given by:

⌘
i,u,v,k

=

H(t
u

(i)|t
v

(i),↵
v,k

)P
v

0�iu
H(t

u

(i)|t0
v

(i),↵
v

0
,k

)

=

↵
v,kP

v

0�iu
↵
v

0
,k

.

Finally, optimizing Q(⇥;⇥

(t�1)

) yields

↵
v,k

=

P
hu,ii2D
v�iu

⌘
i,u,v,k

�
u,k

P
hu,ii62D
v2Ci

�
u,k

�

v

+

P
hu,ii2D
v�iu

�
u,k

�

u,v

, (7)

which expresses that the expected delay induced by v on adoptions of members of the
community k depends: (i) on the ability of the user in triggering adoptions within k
and, (ii) on the likelihood of these adoptions to happen in the context of the considered
community.

5.2. Complexity analysis
There are many similarities between the E and M steps of C-Rate and those of C-IC
with � = 1. Not surprisingly, the same complexity results hold, as we shall see in the
following.

LEMMA 5.1. The following relationship holds (the counters are defined in Table II).

logP (u|⇥
k

) = B
k

�B
u,k

� T (A
k

�A
u,k

) +

˜B
u,k

� ˜A
u,k

+Al

u,k

.

PROOF. We can observe the following:

logP (u|⇥
k

) =

X

i:u 62Ci

X

v2Ci

↵
v,k

t
v

(i)� T
X

i:u 62Ci

X

v2Ci

↵
v,k

+

X

i:u2Ci

X

v�iu

↵
v,k

t
v

(i)�
X

i:u2Ci

t
u

(i)
X

v�iu

↵
v,k

+

X

i:u2Ci

log

X

v�iu

↵
v,k

=B
k

�B
u,k

� T (A
k

�A
u,k

)

+

X

i:u2Ci

B
i,u,k

�
X

i:u2Ci

t
u

(i)A
i,u,k

+

X

i:u2Ci

logA
i,u,k

=B
k

�B
u,k

� T (A
k

�A
u,k

) +

˜B
u,k

� ˜A
u,k

+Al

u,k

COROLLARY 5.2. The complexity of the E step is O(KL+KM) in time and O(KM+

KN) in space.

PROOF. It is easy to verify that, for each trace i and for each adjacent pair u, v, the
relatioships A

i,v,k

= A
i,u,k

+ ↵
v,k

and B
i,v,k

= B
i,u,k

+ ↵
v,k

t
v

(i) hold. Consequently,
the components ˜A

u,k

, ˜B
u,k

and Al

u,k

can be incrementally computed as well. Thus, the
adoption within each trace can be sequentially processed and the counters can be up-
dated accordingly. A further scan on the whole trace log enables the computation of
the A

u,k

and B
u,k

components. Notice that neither the A
i,v,k

nor the A
i,v,k

need to be
stored, as they are cumulated as long as the trace is processed.

Again, it is convenient to provide additional storage for the A
i,u,k

components. In
fact, the term ⌘

i,u,v,k

can be rewritten as ↵
v,k

/A
i,u,k

. This relationship allows for a fast
way to compute the update of ↵

v,k

in the M step, as stated below.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Network-Oblivious Community Detection A:19

Table II. Definition of the counters used for the C-Rate model (Section 5.2).
counter definition description

Ak

X

i

Ai,k
Cumulative over all traces i

of Ai,k

Au,k

X

i:u2Ci

Ai,k
Cumulative over all traces i on which

u is active of Ai,k

Ai,k

X

v2Ci

↵v,k
Cumulative over all active users v active on

trace i of their hazard in community k

Ai,u,k

X

v�iu

↵v,k
Cumulative over potential influencers for the activatation

of u in the trace i (u included)
of hazards in the community k

˜

Au,k

X

i:u2Ci

tu(i)Ai,u,k
Cumulative over users u active in the trace i

of the product between Ai,u,k and
the respective activation time

A

l
u,k

X

i:u2Ci

logAi,u,k
Cumulative over users u active in the trace i

of the log of Ai,u,k

Bk

X

i

Bi,k
Cumulative over all the traces i of of Bi,k

Bu,k

X

i:u2Ci

Bi,k Cumulative over traces i on which u is active of Bi,k

Bi,k

X

v2Ci

↵v,ktv(i)
Cumulative over users v active on trace i

of the product between corresponding hazard in the community k and
their activation time

Bi,u,k

X

v�iu

↵v,ktv(i)
Cumulative over potential influencers for the activation

of u in the trace i in the community k

of the product between hazards and activation times

˜

Bu,k

X

i:u2Ci

Bi,u,k
Cumulative over users u active on trace i

of Bi,u,k

Cv,k

X

i:v2Ci

Ci,k
Cumulative over traces i on which v is active

of Ci,k

Dv,k

X

i:v2Ci

Di,v,k
Cumulative over traces i on which v is active

of Di,v,k

Ci,k

X

u2Ci

�u,k/Ai,u,k
Cumulative over active users in the trace i of the ratio

between conditional community memberships �u,k

and Ai,u,k

Di,v,k

X

u�iv

�u,k/Ai,u,k
Cumulative over influencers u for v’s activation in trace i

(v included) of the ratio between their community membership
and Ai,u,k

�k

X

u

�u,k
Cumulative over u of �u,k:

this acts as a prior for community k

�v,k

X

i:v2Ci

�i,k
Cumulative over all users v active on

trace i of �i,v,k

�i,k

X

u2Ci

�u,k
Cumulative over users u active in the trace i

of �u,k

 v,k

X

i:v2Ci

tv(i)�i,v,k
Cumulative over all trace i on which v is active

of the product between their activation
time and �i,v,k

⌧v

X

i:v2Ci

tv(i)
Cumulative over active users v on trace i

of their time of adoption

�i,v,k

X

u�iv

�u,k
Cumulative involvment in the community k

of potential influencers for v’ activation (included) on trace i

Ei,k

X

u2Ci

�u,ktu(i)
Cumulative over active users u on trace i

of the product of community-level membership
and activation time

Ev,k

X

i:v2Ci

Ei,k
Cumulative over traces i on which v is active

of Ei,k

Fv,k

X

i:v2Ci

X

u�iv

�u,ktu(i)
Cumulate over potential influencers u for each

active user v (included) in trace i of the product
between their community membership and activation time

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 N. Barbieri et al.

LEMMA 5.3. Given a user u and a community k, let ↵̃
v,k

be the value of ↵
v,k

com-

puted in the preceding iteration. Then,

↵
v,k

=↵̃
v,k

C
v,k

�D
v,k

(T ·N
v

� ⌧
v

)�

k

� T · �
v,k

+ E
v,k

� F
v,k

+

v,k

where the counters are as defined in Table II.

PROOF. As usual, we can split the computation of Eq. 7, i.e. ↵
v,k

= num
v,k

/den
v,k

.
Concerning the numerator, we can then observe that

num
v,k

=↵̃
v,k

X

i:v2Ci

X

u�iv

�
u,k

A
i,u,k

=↵̃
v,k

X

i:v2Ci

C
i,k

�
X

i:v2Ci

D
i,v,k

!

=↵̃
v,k

(C
v,k

�D
v,k

)

The remaining part can be rewritten as follows.

den
v,k

=

X

i:v2Ci

X

u 62Ci

�
u,k

(T � t
v

(i)) +
X

i:v2Ci

X

u�iv

�
u,k

(t
u

(i)� t
v

(i))

=T
X

i:v2Ci

X

u 62Ci

�
u,k

�
X

i:v2Ci

t
v

(i))
X

u 62Ci

�
u,k

+

X

i:v2Ci

X

u�iv

�
u,k

t
u

(i)�
X

i:v2Ci

t
v

(i)
X

u�iv

�
u,k

=T
X

i:v2Ci

(�

k

� �
i,k

)�
X

i:v2Ci

t
v

(i) (�
k

� �
i,k

)

+

X

i:v2Ci

(E
i,k

� F
i,v,k

)�
X

i:v2Ci

t
v

(i) (�
i,k

� �
i,v,k

)

=(TM
v

� ⌧
v

)�

k

� T�
v,k

+ E
v,k

� F
v,k

+

v,k

COROLLARY 5.4. The complexity of the M step is O(KL+KM+KN) time and space.

PROOF. Given a pair of adjacent users in a same trace, the usual recursive relations
can be observed for the D

i,v,k

, �
i,v,k

and F
i,v,k

quantities. Consequently, all the compo-
nents that depend on them can be computed incrementally as well, by accumulating
values for each trace. Notice that the C

i,k

components require to pre-allocate the A
i,v,k

values, which can be computed in a separate scan of the whole trace in O(KL) time.

We are finally able to state the main complexity result for the C-Rate.

THEOREM 5.5. The complexity of the EM algorithm plugged with the C-Rate model

is O(KL+KM +KN) time and space.

6. EXPERIMENTAL EVALUATION
In this section we report an experimental analysis aimed at assessing the effectiveness
of the proposed framework. Specifically, we are interested in the following aspects:
• Investigate under which conditions, and at which extent, the proposed methods

can actually detect communities from propagation logs.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Network-Oblivious Community Detection A:21

• Comparatively assess the adequacy of the models to fit real data, by characteriz-
ing the discovered community structures and relate them to predefined (synthetic
data) and previously unknown (real-world data) structures.

• Evaluate the predictive abilities of the proposed models, both in terms of activa-
tions and connections that a user is likely to exhibit.

To perform the aforementioned analysis, we rely on synthetic and real data. In both
cases, we are given a set V of users, a set directed social links E between them, and a
log D which records users’ activation times on a set of propagation traces. Each link
(u, v) 2 E represents the direction of the information flow between the two considered
users, i.e., information flows from u to v. Under the assumption that information can
spread only by exploiting the social connections among users, the network G = (V,E)

will naturally shape the process of information propagation. The exact realization of
users’ activation times on the considered traces, actually depends on set of different
parameters which, without loss of generality, can be grouped in two dimensions: struc-
tural properties of the network and the choice of the propagation model, which ulti-
mately determines how information/infections occur. This is the setting of our experi-
mental evaluation. Even if we do not observe directly the network, we assume that its
hidden community structure is encoded, and thus it can be inferred, by analyzing the
propagation log D.

The use of synthetic data allows us to specify a ground truth, i.e., a predefined com-
munity structure that we aim to discover without looking at the network. In the case of
real data, we forget the network, apply our methods to detect communities by consider-
ing exclusively the propagation log, and finally measure the quality of the discovered
communities with standard measures (e.g., conductance, cut ratio, modularity, etc.)
using the network.

All experiments are run on a 2.7 GHz i7 machine by allocating a maximum of 10 GB
of Ram.

6.1. Synthetic Datasets
When considering synthetic datasets, the underlying assumption is that propagation
traces follow the links exhibited by the underlying network. This is a well-known prop-
erty of information propagation in social network, and several studies [Weng et al.
2013; 2014] witness how adoptions within a network are influenced by neighboring
behavior.

Thus, in order to generate synthesized data, we proceed in two steps. First, we gen-
erate a network with a known community structure, as well as structural features
typical of real networks. To this aim, we use the generator of benchmark graphs de-
scribed in [Lancichinetti and Fortunato 2009], which generates directed unweighted
graphs with possibly overlapping communities. The process of network generation is
controlled by the following parameters: (i) number of nodes (1, 000); (ii) average in-
degree (10); (iii) maximum in-degree (150); (iv) min/max the community sizes (50/750).
The four networks differ on the percentage µ of overlapping memberships, ranging into
0.001, 0.01, 0.05 and 0.1. As it is clearly visible from the topology of the generated net-
works reported in Fig. 1, this last parameter strongly affects the structure of the net-
work, which ranges from well-separated (but still connected) components, to strongly
overlapping.

Given a network G = (V,E), the next step is to generate synthetic propagation cas-
cades by simulating a propagation/contagion process which spreads over E. In this
phase, we face two main challenges: (i) limiting the bias introduced by the choice of a
particular propagation model, (ii) generating propagation cascades which are likely to
happen in a real-world scenario. To this purpose, we again parameterize the propaga-

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 N. Barbieri et al.

(a) µ = 0.001 (b) µ = 0.01 (c) µ = 0.05 (d) µ = 0.1

Fig. 1. Visualization of the synthetic networks generated with different values of µ.

tion strategy, and study the behavior of each algorithm by varying such a parameter.
The overall data generation schema generates |I| propagation traces based on the fol-
lowing protocol. Given a network G = (V,E) with a known community structure, for
each community k, an initial dummy node is connected to all nodes within the consid-
ered community, with a random influence weight sampled from the interval [0.02, 0.05].
For each trace to generate, we sample an initial dummy node, and subsequently we
sample further dummy community-nodes in sequence, where the nth node is picked
randomly with probability �n. In practice, � is a parameter controlling the number of
communities from which each trace starts its diffusion. A large value of � will produce
traces that start simultaneously in different communities. Conversely, a small value
will produce traces that start in fewer communities.

At time t = 0, the dummy nodes determine the activation of real nodes, from which
we start the subsequent diffusion process. At this stage, information can spread on the
network by exploiting the links. The strength of each link is determined by considering
both the out-degree (out

·) of the source and the in-degree (in

·) of the destination:

weight(u, v) / � · out

u

out

max

in

v

in

max

+ (1� �) · rand(0.1, 1),

where out

max

and in

max

are the maximum out-degree and in-degree respectively, and �
is used to introduce a random effect. In the propagation process, the weight of each
link represents a Bernoullian probability of infection. For each link we also generate a
typical infection rate ↵

u,v

, sampled from a Gamma distribution with fixed parameters
(shape=2, scale=0.3).

To summarize, the data generation process depends on the degree of community
overlapping µ, the degree of propagation overlap � and the size |I| of the propagation
log. In a first batch of experiments, we fix � = 0.9, � = 0.2 and |I| = 1, 500, and
vary the µ parameter as discussed above. For each network, we randomly generate
5 propagation logs. The main properties of the synthesized data are summarized in
Tab. III. The average number of adoption generated by the diffusion process grows
with the percentage of overlapping membership, as well as the average number of
communities that are involved in the propagation of each trace.

6.1.1. Baselines. The C-IC and C-Rate techniques are compared to some baseline mod-
els. The first two baselines build on the idea of network reconstruction. Given a log of
past propagations D we can apply either NetRate or the Independent Cascade infer-
ence procedure [Saito et al. 2008], where we assume the complete graph. Both algo-
rithms provide a set of link weights as output, and higher weights witness the exis-
tence of strong connections. We reconstruct the network by applying a sparsification

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Network-Oblivious Community Detection A:23

Table III. Statistics for the synthetic data: four networks corresponding to
four values of µ as in Figure 1.

S1 S2 S3 S4
of communities (K) 9 7 11 6
avg # of adoptions 56k 59k 82k 370k
avg length of traces 38 38 54 256

avg % of communities for
trace

17% 24% 24% 82%

procedure based on the identification of a minimum threshold value on the weights
(set empirically to 10

�14).
Finally, communities are discovered by applying the Metis algorithm [Karypis and

Kumar 1999], a scalable graph partitioning method which is reported to achieve good
performances on graph extracted from various domains. METIS is based on multilevel
recursive-bisection; this allows scaling up to large-scale networks and this is why it is
often considered as baseline method or post-processing tool in the community detection
literature [Yang and Leskovec 2013; Ruan et al. 2013; Leskovec et al. 2010]. These
baselines are denoted as NetRate/Metis and IC/Metis.

A further baseline is a standard clustering algorithm that groups user traces accord-
ing to their likelihood of adopting the same items. Here, a user trace is represented by
the set of all her adoptions. The method is based on a bernoullian expectation maxi-

mization procedure; the assumption is that the adoption of an item by a user in a can
be explained in terms of a mixture of bernoulli distributions, where each component of
the mixture characterizes a community. Similar users are characterized by the same
(bernoullian) probability of adopting the same items. The output is a grouping of users
according to their adoption patterns: each community is characterized by the likeli-
hood of adopting an item (and consequently to be part of a trace, with no reference
to temporal information). This clustering method does not provide any information
concerning the degree of influence of a user within a community.

For both the Independent Cascade and the C-IC model we fix � = 1. This allows a
better comparison with C-Rate, where all possible influencers are taken into account.
We plan to devote the study of how the influence window affects the quality of results
to a future work.

6.1.2. Results. We measure the quality of the discovered communities with respect to
the known ground truth community structure by using the Adjusted Rand Index [Jain
and Dubes 1988], the F-Measure and the Normalized Mutual Information [Ana and
Jain 2003]. For all the considered approaches, we report in Fig. 2 the average quality
indices, as well as their values of standard deviation relative to the 5 propagation
logs. Both C-IC and C-Rate perform particularly well on all four networks, even if
the performances degrade on the s4 network, where IC/Metis and the Bernoullian EM
achieve comparable results.

While NetRate/Metis and IC/Metis show similar performances in accuracy, C-Rate ex-
hibits higher quality than C-IC. Apparently the approach to model community-based
temporal dynamics is more effective than simply relying on time-independent reaction.
In all 4 networks, the performances of the Bernoullian EM method are unstable and in
general it achieves lower quality indices than the ones corresponding to other meth-
ods. This is a clear sign of the relevant role played by influencers when associating a
user to a community: influencers tend to better explain the activation of a user on a
given propagation trace, and hence tend to reduce the variability in the membership
assignments.

Both C-IC and C-Rate are consistently more efficient (up to 3 orders of magnitude)
than methods based on network reconstruction. This is due to their inference pro-

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 N. Barbieri et al.

s1 s2 s3 s4

F−Measure

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s1 s2 s3 s4

F−Measure

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s1 s2 s3 s4

ARI

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s1 s2 s3 s4

ARI

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s1 s2 s3 s4

NMI

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s1 s2 s3 s4

NMI

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s1 s2 s3 s4

Time (min)

s1 s2 s3 s4

Time (min)

0.

1

1.
0

 1
0.

0
 1

00
.0

10
00

.0

NetRate/Metis
IC/Metis

C−Rate
C−IC

Bernoullian EM

Fig. 2. Summary of the evaluation on reconstructing community structure on synthetic networks with
planted communities and different levels of noise. From left to right: F-Measure, Adjusted Rand Index,
Normalized Mutual Information and run time in minutes (log scale).

cess, while the overhead introduced by the post-processing step (running Metis to de-
tect communities) is not significant. In fact, network reconstruction methods compute
pairwise influence weights by assuming a complete graph. As a consequence, they are
quadratic in time, and do not scale to large networks.

0.3 0.4 0.5 0.6 0.7 0.8
β

N
M

I

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.3 0.4 0.5 0.6 0.7 0.8
β

N
M

I

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0

2

4

6

8

10

N
. o

f c
om

m
un

iti
es

 tr
av

er
se

d

0.3 0.4 0.5 0.6 0.7 0.8
β

Ti
m

e
(s

ec
s)

0
5

10
15

0.3 0.4 0.5 0.6 0.7 0.8
β

Ti
m

e
(s

ec
s)

0
5

10
15

0

2

4

6

8

10

N
. o

f c
om

m
un

iti
es

 tr
av

er
se

d

500 5000 50000

N. of traces

Sc
al

ab
ilit

y
(s

ec
s)

5
10

20
50

20
0

50
0

500 5000 50000

N. of traces

Sc
al

ab
ilit

y
(s

ec
s)

5
10

20
50

20
0

50
0

(a) (b) (c)

C−IC C−Rate

Fig. 3. Robustness at various level of the mixing parameter �: (a) and (b) show the NMI and the running
time. The graph also shows the average number of communities traversed by a single trace for each dataset
(red line in the graph). (c) Scalability to the number of traces.

In a second batch of experiments, we measure the effects of the mixing parameter �
on C-IC and C-Rate. Higher values of � cause a trace to spread over multiple commu-
nities: as a consequence, we can measure the robustness of the algorithms by varying
such a parameter. For these experiments, we use the s3 network, and we generate
1, 000 traces by ranging the � within [0.3, 0.8].

Figure 3 (a) shows that the performances in Normalized Mutual Information do not
significantly change with �: the algorithms can still separate communities and asso-
ciate users with them, even when the average number of communities traversed by
a single trace (denoted by the red line in the plot) increases. On the other hand, the
value of the mixing parameter affects inference times, as shown in Fig. 3 (b). For both

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Network-Oblivious Community Detection A:25

methods the inference phase requires more iterations to reach convergence, as a conse-
quence of the fact that the separations between communities need to be reconstructed
iteratively.

A final experiment measures the scalability of the proposed algorithms for increas-
ing values of |I|. In Fig. 3 (c) we report the running times on three log traces with
increasing size, relative to the s3 network. Both algorithms scale linearly, and the
general trend, where C-Rate seems more efficient than C-IC, is confirmed.

6.2. Real world-datasets
The proposed approaches are characterized by strong assumptions on the underlying
propagation model. By evaluating them on real world data we want to assess their
flexibility and accuracy in modeling real propagation phenomena. To this purpose, we
focus the next evaluation on real-world propagation traces, which have been obtained
by crawling the public timeline of Twitter7. The canonical form of information propa-
gation on Twitter is retweeting. However, tweets are complex entities, which can in-
clude hashtags, textual and reference information. An accurate modeling of all these
entities is out of the scope of our paper. Instead, we consider a simpler fragment of
the propagations where we only track elementary units included in a tweet, which we
identify as URLs. The assumption here is that a tweet contain an URL, then it is more
likely to be retweeted by peers sharing the same interests: hence URL propagations
can suitably highlight the underlying influence process and ultimately the underlying
community structure. Thus, we track the propagation of URLs across the network dur-
ing one month (August 2012) and each activation corresponds to the instance when a
user tweets a certain URL. The raw data has been preprocessed by filtering out users
who participated in less than 5 traces. Our final sample contains 28, 185 nodes and
1, 636, 451 arcs. The activity log contains traces of 8, 541 URLs for a total number of
516, 412 adoptions (tweets). The average number of users per trace is 60, and in aver-
age a user performs 18 tweets. Other relevant features of the dataset can be observed
in Fig. 4. In the experiments, we only focus on traces with length greater than 10.

●

●

●
●

● ●
●
●●

●
●●

●●●

●●●
●●
●●●

●●●●●●

●●

●●●

●
●
●●
●

●●●●●
●
●●
●●●●
●●
●●●●
●

●
●
●●

●
●
●●●●

●

●

●

●

●
●

●
●

●●

●●
●

●

●

●
●
●
●●●

●

●

●

●

●
●●

●
●●

●

●
●

●

●

●

●
●

●●
●●
●●

●

●

●

●●
●

●

●
●
●
●
●

●

●●

●

●
●

●●●

●

●

●
●
●
●

●

●
●

●
●●

●

●●
●

●●

●

●
●●●
●

●

●
●
●●●
●●

●
●

●
●

●

●
●
●

●

●
●

●
●●

●
●
●●
●●

●●

●

●

●
●●●●●●

●

●●

●

●

●
●

●
●

●●

●
●

●
●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●
●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●
●
●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●●●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●

●

●

●

●

●

●

●

●●●

●●●

●●

●

●●

●

●●●●●

●

●●

●

●●●●

●

●●

●

●●●●●

●●

●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●

●

●●●●●●●●●●●●●●●●

●

●●●●

●

●●●

twitter − Users

InDegree

Fr
eq
ue
nc
y

1 10 102 103

1
10

10
2

10
3

●

●
●

●
● ●

●
●
●
●●

●●
●●

●●●
●
●●
●●●
●●●
●●●●●
●●●●

●
●
●
●

●
●

●
●

●

●
●
●●●

●

●●●●●

●
●●
●
●
●●
●

●

●
●●

●

●
●

●
●●●●●
●
●

●

●
●
●

●

●

●●

●

●

●

●
●
●

●

●

●

●●
●
●
●

●
●

●
●●●
●●●

●

●●

●

●
●
●●●
●
●●●●

●
●

●

●

●●
●
●

●

●

●
●●

●●

●
●
●●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●●●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●●

●

●

●

●●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●●●●●●

●●

●

●

●

●

●●

●

●●

●●

●●

●

●●●

●

●

●●●

●

●

●

●

●●●

●

●●

●●●

●●

●

●●●●●

●●●●●●●●●

●

●●●●●●

●

●●●●●●●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●●●●●

●

●

●●●●●●●●●●●●●

●●●

●●●●●●

●

●

●

●●●

●

●

●

●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●●

●●●●●

●

●●● ● ●

twitter − Users

OutDegree

Fr
eq
ue
nc
y

1 10 102 103

1
10

10
2

10
3

●
● ●

●

●

●

●

●

●

●

●
●
●
●
●●
●

●
●

●●●
●
●●

●●
●
●
●

●

●

●●●

●
●

●
●
●
●●●●

●
●

●

●

●

●●

●
●

●

●
●

●

●

●
●●
●

●●

●

●

●
●
●

●

●

●●

●

●●

●
●

●

●

●

●
●

●

●

●

●
●
●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●

●●

●

●●●●

●

●

●

●●

●●●

●●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●●●●

●●●

●●

●

●

●●●●●

●●●

●

●●●

●●

●●●

●

●

●●

●

●

●

●

●

●●●

●●

●●

●●

●

●●

●

●●●●●

●●●

●●

●

●

●

●●●

●

●●●●●

●

●●●

●

●●●●

●

●●●●●●●●●●●

●

●

●●●●

●●

●●

●

●

●

●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●● ●

twitter − Length of traces

Length

Fr
eq
ue
nc
y

1 10 102 103 104

1
10

10
2

●

●
●

●

●

●

●

●

●
●

●
●●

●●
●

●●
●●
●
●

●●

●●
●
●●●●

●
●

●●
●
●
●●
●
●
●
●●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●●

●●

●●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●●

●●

●

●

●

●

●●

●

●●●●●●●

●

●●●●●●●●● ●●● ●●●●

twitter − Traces traversed by a User

N. Of Traversed Traces

Fr
eq

ue
nc

y

10 102

1
10

10
2

10
3

Fig. 4. Main properties of the considered real-world data. The plots show the distributions of the node
degrees, trace length and number of traces traversed by a user.

Since we do not have any form of ground truth for the community structure of
the network under analysis, to assess the quality of the retrieved communities we
rely on empirical objective functions. For a given partition of the network, such mea-
sures promote the identification of communities that are characterized by an higher
internal connectivity and that are marginally connected with the rest of the net-
work. We consider 3 different scores for measuring the quality of each detected par-
tition/communities (see [Leskovec et al. 2010] for a detailed discussion):

7https://dev.twitter.com/docs/api/1/get/statuses/public timeline

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 N. Barbieri et al.

• Conductance, is the simplest formalization of the concept above, as it measures
the ratio between the number of edges inside each considered community and the
number of edges traversing its border.

• Internal Density, it measures the ratio between the actual edges and the possible
edges within the community.

• Cut Ratio, it is the ratio between the number of edges on the boundary of a com-
munity and all the possible ones.

The above measures focus on evaluating the quality of each community and they do
not consider the direction of edges. We thus adopt also the directed version of mod-

ularity measure [Leicht and Newman 2008], which evaluates the overall quality of
the partition. Modularity compares the structure of the graph to that resulting from a
random graph, representing a null model, and is defined as

Q
G

=

1

m

X

u,v

[A
u,v

� E(u, v)] �
cu,cv .

In the above equation, A
u,v

is the cell of the adjacency matrix corresponding to the
pair (u, v), and E(u, v) = out

u

in

v

/m represents the expected likelihood of observing the
link (u, v) in the null (directed random graph) model. Also, �

cu,cv is the kronecker delta
relative to community memberships for nodes u and v.

Higher modularity, internal density and conductance, as well as lower cut ratio, de-
note good partitioning. In the following we report and compare the results achieved by
C-Rate, C-IC and Bernoullian EM, as methods based on network reconstruction cannot
handle this input. To obtain a reference value, we run the Metis algorithm to partition
the network into communities, and compute the quality values for such partitions.
The idea here is that, if the network is known, then the communities can be inferred
from the links directly. By comparing this result with the results of the network obliv-
ious community detection algorithms allows us to measure how reliable are such algo-
rithms in detecting the underlying structure when only the propagation log is given as
input.

Figure 5 reports the values of the quality measures for the aforementioned methods,
and the values of conductance, internal density and cut ratio were averaged over all
the discovered communities. In this experiment, we disable the annihilation procedure
and measure the quality values varying the number of communities. Surprisingly, both
C-Rate and C-IC perform better than Metis on both conductance and internal density.
C-Rate performs particularly well, even if there is no clear indication of number of
communities where a method perform better than all the others on all measures. In
particular, the modularity decreases when increasing number of communities, whereas
the opposite trend can be observed for the other measures.

On the other hand, this analysis shows that both C-IC and C-Rate exhibit high val-
ues of cut ratio compared to those achieved by the bernoullian clustering approach. In
order to better analyse this situation, in Fig. 5 we also plot the results on harmonic
mean for those indices which are expressed as ratios. The harmonic mean in fact is
known to be more appropriate when averaging ratios, as it is insensitive to outliers
with high values and it tends to be dominated by low values. Thus, plotting the har-
monic mean on those measures provides a better insight of the overall tendency and
mitigates the effects of extremely high values. This analysis shows that:

— The harmonic mean of cut ratio values exhibit now a normalized behavior, compared
to the values of Fig. 5. The difference in performance between the different aggrega-
tion strategy (avg. vs harmonic mean) suggests that C-IC and C-Rate tend to produce

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Network-Oblivious Community Detection A:27

4 8 16 32 64

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

4 8 16 32 64

N. of Communities

M
od

ul
ar

ity

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Metis
Bernoullian EM

C−IC
C−Rate

4 8 16 32 64

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

4 8 16 32 64

N. of Communities

C
on

du
ct

an
ce

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

4 8 16 32 64

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

4 8 16 32 64

Harmonic mean

N. of Communities

C
on

du
ct

an
ce

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

4 8 16 32 640.
00

0.
01

0.
02

0.
03

0.
04

4 8 16 32 64

N. of Communities

In
te

rn
al

 D
en

si
ty

0.
00

0.
01

0.
02

0.
03

0.
04

4 8 16 32 64

0.
0

0.
1

0.
2

0.
3

0.
4

4 8 16 32 64

Harmonic mean

N. of Communities

In
te

rn
al

 D
en

si
ty

0.
0

0.
1

0.
2

0.
3

0.
4

4 8 16 32 640.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20

4 8 16 32 64

N. of Communities

C
ut

 R
at

io

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20

4 8 16 32 64

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

4 8 16 32 64

Harmonic mean

N. of Communities

C
ut

 R
at

io
 (x

 1
0−

3)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 5. Summary of the evaluation on identifying community structure on Twitter. Each row in the figure
represents a measure.

some outlier communities in which nodes have an high number of inter-community
links.

— Internal density substantially increases for a large number of clusters. This is a
clear sign that some communities within the partitions are densely connected and
this boosts the value of harmonic mean.

To summarize, both C-IC and C-Rate exhibit good quality measures, which are com-
parable, and in some cases even better, than the Metis baseline. This confirms that the
analysis of the propagation traces allows us to rebuild the latent community struc-
ture with enough accuracy. Furthermore, the adoption of a propagation model based
on social influence allows the identification of communities with high internal density.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 N. Barbieri et al.

Table IV. Summary of the evaluation on Twitter: C-IC and C-Rate
with annihilation.

C-IC C-Rate
Communities 32 17

Community size 113/2554/760 131/8315/1658
(min/max/median)

Q
G

0.323 0.343
Conductance 0.794 0.687

Internal Density 0.02814 0.018
Cut Ratio 5.98⇥ 10

�4

4.69⇥ 10

�4

Time (secs) 5086 2070

Similar results can be obtained by enabling the annihilation procedure8, as reported
in Tab. IV and discussed next. The resulting internal density is an order of magni-
tude higher than the density of the whole graph (0.0041). Also, a large number of edges
tend to stay within the community they belong to, as witnessed by the values of con-
ductance. The values of modularity are a clear sign of reliable community structure
(remind that acceptable modularity values are recognized starting from around 0.2-
0.3). The existence of a good community structure is confirmed by the diagonal block
structure in the adjacency matrices in Fig. 6 (a). These are adjacency matrices where
the users are sorted and grouped in blocks representing the communities. Figure 6 (b)
represents the same adjacency matrix, but with the blocks made explicit and shaded in
grey according to their relative density. In both cases, the regions with higher density
lie in the diagonal blocks.

Figure 6 (c) summarizes influence dynamics by analyzing the distribution of the
user influence weights for each community. Here, darker colors denote higher weights,
and lighter ones by the converse represents weights close to zero. These plots show
that there is a general tendency to express influence within the same community of
membership, even if some users are able to exert influence on more communities.

Finally, Fig. 7 shows the distribution of the communities involved in the diffusion of
each trace. Values tend to concentrate on few communities. These plots also show the
distribution of the normalized entropy of a single trace, computed by considering the
frequency of each community within the trace. In practice, even when a trace touches
multiple communities, low entropy values witness that there are a few predominant
communities, which embody the majority of the users involved in the trace.

7. CONCLUSIONS AND FUTURE WORK
We proposed a general framework for detecting communities in a network-oblivious
setting. The framework is based on a the assumption that item adoptions are governed
by un underlying stochastic diffusion process over the unobserved social network, and
that such diffusion model is based on community-level influence. We instantiated the
diffusion process by adopting two models which focus on both the influence exerted by
a user in a given community, and the likelihood of a user to belong to that community.
The main difference in the two models is the way they model the contagion: C-IC is
essentially a discrete-time model, whereas C-Rate models a continuous-time diffusion
scenarios. The experiments show that both models are robust and effective, and be
can profitably employed to discover communities and regions of influence in situations
where the social connections are not visible.

In this treatment, we did not cover the case where contagion can happen as the re-
sult of a cumulative effect: that is, a user can adopt an item when a significant number

8For both algorithms, we started with an initial number of 64 communities.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Network-Oblivious Community Detection A:29

(a) (b) (c)
Fig. 6. (a) Adjacency block matrices for C-IC and C-Rate. (b) Density blocks within the adjacency matrix. (c)
Distribution of influence weights.

1 3 5 7 9 12 15 18 21 24 27 30

Twitter/C−IC

N. of communities traversed

Fr
eq

ue
nc

y

0
50

0
10

00
15

00

1 3 5 7 9 12 15 18 21 24 27 30

Twitter/C−IC

N. of communities traversed

Fr
eq

ue
nc

y

0
50

0
10

00
15

00

Twitter/C−IC

Entropy

Fr
eq
ue
nc
y

0.0 0.2 0.4 0.6 0.8

0
50
0

10
00

15
00

1 3 5 7 9 11 13 15 17

Twitter/C−CRate

N. of communities traversed

Fr
eq

ue
nc

y

0
50

0
10

00
15

00

1 3 5 7 9 11 13 15 17

Twitter/C−CRate

N. of communities traversed

Fr
eq

ue
nc

y

0
50

0
10

00
15

00

Twitter/C−CRate

Entropy

Fr
eq
ue
nc
y

0.0 0.2 0.4 0.6 0.8

0
50
0

10
00

15
00

20
00

Fig. 7. Distribution of the number of communities involved in a trace.

of users in the same community adopt that item as well. Again, two different model-
ing perspective can be assumed, based either on adaptations of the Linear Threshold

model [Barbieri et al. 2013c; Kempe et al. 2003] for the case of discrete time, or of the
Cox survival model [Lee and Wang 2003] for the case of continuous time. We plan to
study these models and compare them with the ones proposed in this paper in our
future work.

REFERENCES
L.N.F. Ana and A.K. Jain. 2003. Robust data clustering. In Procs of the IEEE Conf. on Computer Vision and

Pattern Recognition. 128–133.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 N. Barbieri et al.

A. Anagnostopoulos, R. Kumar, and M. Mahdian. 2008. Influence and Correlation in Social Networks. In Pro-

ceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

(KDD ’08). 7–15.
E. Bakshy, J. M. Hofman, W. A. Mason, and D. J. Watts. 2011. Everyone’s an Influencer: Quantifying Influ-

ence on Twitter. In Proceedings of the Fourth ACM International Conference on Web Search and Data

Mining (WSDM ’11). 65–74.
N. Barbieri, F. Bonchi, and G. Manco. 2013a. Cascade-based Community Detection. In Proceedings of the

Sixth ACM International Conference on Web Search and Data Mining (WSDM ’13). 33–42.
N. Barbieri, F. Bonchi, and G. Manco. 2013b. Influence-Based Network-Oblivious Community Detection. In

Proceedings of the IEEE 13th Int. Conf. on Data Mining (ICDM’13). 955–960.
N. Barbieri, F. Bonchi, and G. Manco. 2013c. Topic-aware social influence propagation models. Knowledge

and Information Systems (2013), 1–30.
F. Bonchi. 2011. Influence Propagation in Social Networks: A Data Mining Perspective. IEEE Intelligent

Informatics Bulletin 12, 1 (2011), 8–16.
S. Bourigault, C. Lagnier, S. Lamprier, L. Denoyer, and P. Gallinari. 2014. Learning Social Network Embed-

dings for Predicting Information Diffusion. In Proceedings of the 7th ACM International Conference on

Web Search and Data Mining (WSDM ’14). 393–402.
W. Chen, C. Wang, and Y. Wang. 2010. Scalable Influence Maximization for Prevalent Viral Marketing in

Large-scale Social Networks. In Proceedings of the 16th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD ’10). 1029–1038.
Y. Chen, W. Zhu, W. Peng, W. Lee, and S. Lee. 2014. CIM: Community-Based Influence Maximization in

Social Networks. ACM Trans. Intell. Syst. Technol. 5, 2 (2014), 25:1–25:31.
D. Crandall, D. Cosley, D. Huttenlocher, J. Kleinberg, and S. Suri. 2008. Feedback Effects Between Similar-

ity and Social Influence in Online Communities. In Proceedings of the 14th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (KDD ’08). 160–168.
G.B. Davis and K.M. Carley. 2008. Clearing the FOG: Fuzzy, overlapping groups for social networks. Social

Networks 30, 3 (2008), 201–212.
A.P. Dempster, N.M. Laird, and D.B. Rubin. 1977. Maximum likelihood from incomplete data via the EM

algorithm. Journal of the Royal Statistical Society: Series B 39 (1977), 1–38.
P. Domingos and M. Richardson. 2001. Mining the Network Value of Customers. In Proceedings of the Sev-

enth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’01).
57–66.

M.A.T. Figueiredo and A. K. Jain. 2002. Unsupervised Learning of Finite Mixture Models. IEEE Trans.

Pattern Anal. Mach. Intell. 24, 3 (2002), 381–396.
S. Fortunato. 2010. Community detection in graphs. Physics Reports 486, 3 (2010), 75–174.
M. Gomez Rodriguez, D. Balduzzi, and B. Schölkopf. 2011. Uncovering the Temporal Dynamics of Diffusion

Networks. In Proceedings of the 28th International Conference on Machine Learning (ICML’11). 561–
568.

M. Gomez Rodriguez, J. Leskovec, and A. Krause. 2010. Inferring Networks of Diffusion and Influence.
In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining (KDD ’10). 1019–1028.
A. Goyal, F. Bonchi, and L. V.S. Lakshmanan. 2010. Learning Influence Probabilities in Social Networks. In

Proceedings of the Third ACM International Conference on Web Search and Data Mining (WSDM ’10).
241–250.

A. Goyal, F. Bonchi, and L. V. S. Lakshmanan. 2011. A Data-Based Approach to Social Influence Maximiza-
tion. Proceedings of the VLDB Endow. 5, 1 (2011), 73–84.

A.K. Jain and R.C. Dubes. 1988. Algorithms for Clustering Data. Prentice-Hall, Upper Saddle River, NJ,
USA.

G. Karypis and V. Kumar. 1999. A fast and high quality multilevel scheme for partitioning irregular graphs.
SIAM Journal on Scientific Computing 20, 1 (1999), 359–392.

D. Kempe, J. Kleinberg, and É. Tardos. 2003. Maximizing the Spread of Influence Through a Social Network.
In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining (KDD ’03). 137–146.
M. Kimura and K. Saito. 2006. Tractable Models for Information Diffusion in Social Networks. In Proceed-

ings of the 10th European Conference on Principle and Practice of Knowledge Discovery in Databases

(PKDD’06). 259–271.
T. La Fond and J. Neville. 2010. Randomization Tests for Distinguishing Social Influence and Homophily

Effects. In Proceedings of the 19th International Conference on World Wide Web (WWW ’10). 601–610.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Network-Oblivious Community Detection A:31

A. Lancichinetti and S. Fortunato. 2009. Benchmarks for testing community detection algorithms on di-
rected and weighted graphs with overlapping communities. Physical Review E (Statistical, Nonlinear,

and Soft Matter Physics) 80 (2009), 46–110.
E.T. Lee and J.W. Wang. 2003. Statistical methods for survival data analysis. John Wiley & Sons, Inc.,

Hoboken, New Jersey.
E. A Leicht and M.E.J. Newman. 2008. Community Structure in Directed Networks. Phys. Rev. Lett. 100

(2008). Issue 11.
J. Leskovec, L. A. Adamic, and B. A. Huberman. 2007a. The Dynamics of Viral Marketing. ACM Trans. Web

1, 1 (2007).
J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance. 2007b. Cost-effective Out-

break Detection in Networks. In Proceedings of the 13th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD ’07). 420–429.
J. Leskovec, K.J. Lang, and M. Mahoney. 2010. Empirical Comparison of Algorithms for Network Commu-

nity Detection. In Proceedings of the 19th International Conference on World Wide Web (WWW ’10).
631–640.

J. Leskovec, A. Singh, and J. Kleinberg. 2006. Patterns of Influence in a Recommendation Network. In
Proceedings of the 10th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining

(PAKDD’06). 380–389.
M. Mathioudakis, F. Bonchi, C. Castillo, A. Gionis, and A. Ukkonen. 2011. Sparsification of Influence Net-

works. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining (KDD ’11). 529–537.
Y. Mehmood, N. Barbieri, F. Bonchi, and A. Ukkonen. 2013. CSI: Community-Level Social Influence Analysis.

In Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2013,

Prague, Czech Republic, September 23-27, 2013, Proceedings, Part II. 48–63.
M. E. J. Newman and E. A. Leicht. 2007. Mixture models and exploratory analysis in networks. Proceedings

of the National Academy of Sciences 104, 23 (2007), 9564–9569.
W. Ren, G. Yan, X. Liao, and L. Xiao. 2009. Simple probabilistic algorithm for detecting community structure.

Physical Review E 79 (2009), 36–111. Issue 3.
D. M. Romero, B. Meeder, and J. Kleinberg. 2011. Differences in the Mechanics of Information Diffusion

Across Topics: Idioms, Political Hashtags, and Complex Contagion on Twitter. In Proceedings of the

20th International Conference on World Wide Web (WWW ’11). 695–704.
Y. Ruan, D. Fuhry, and S. Parthasarathy. 2013. Efficient Community Detection in Large Networks Using

Content and Links. In Proceedings of the 22Nd International Conference on World Wide Web (WWW ’13).
1089–1098.

K. Saito, R. Nakano, and M. Kimura. 2008. Prediction of Information Diffusion Probabilities for Independent
Cascade Model. In Proceedings of the 12th International Conference on Knowledge-Based Intelligent

Information and Engineering Systems, Part III (KES ’08). 67–75.
H. Shawndra, P. Foster, and V. Chris. 2006. Network-Based Marketing: Identifying Likely Adopters via

Consumer Networks. Statist. Sci. 21, 2 (2006), 256–276.
Y. Wang, G. Cong, G. Song, and K. Xie. 2010. Community-based Greedy Algorithm for Mining top-K Influen-

tial Nodes in Mobile Social Networks. In Proceedings of the 16th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining (KDD ’10). 1039–1048.
Y. Wang, H. Shen, S. Liu, and X. Cheng. 2015. Learning User-specific Latent Influence and Susceptibility

from Information Cascades. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelli-

gence (AAAI’15). 477–483.
L. Weng, F. Menczer, and Y. Ahn. 2013. Virality prediction and community structure in social networks.

Scientific reports 3 (2013).
L. Weng, F. Menczer, and Y. Ahn. 2014. Predicting Successful Memes Using Network and Community

Structure. In Proceedings of the Eighth International Conference on Weblogs and Social Media (KD-

DICWSM’14).
L. Weng, J. Ratkiewicz, N. Perra, B. Gonçalves, C. Castillo, F. Bonchi, R. Schifanella, F. Menczer, and A.

Flammini. 2013. The Role of Information Diffusion in the Evolution of Social Networks. In Proceedings

of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD

’13). 356–364.
J. Yang and J. Leskovec. 2013. Overlapping Community Detection at Scale: A Nonnegative Matrix Factor-

ization Approach. In Proceedings of the Sixth ACM Int. Conf. on Web Search and Data Mining (WSDM

’13). 587–596.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

