
Survival Factorization on Diffusion Networks

Nicola Barbieri1, Giuseppe Manco2, and Ettore Ritacco2

1 Tumblr, 35 E 21st St, 10010, New York, USA,
nicola@tumblr.com

2 ICAR - CNR, via Pietro Bucci 7/11C, 87036 Arcavacata di Rende (CS), ITALY,
giuseppe.manco@icar.cnr.it, ettore.ritacco@icar.cnr.it

Abstract. In this paper we propose a survival factorization framework
that models information cascades by tying together social influence pat-
terns, topical structure and temporal dynamics. This is achieved through
the introduction of a latent space which encodes: (a) the relevance of a
information cascade on a topic; (b) the topical authoritativeness and
the susceptibility of each individual involved in the information cascade,
and (c) temporal topical patterns. By exploiting the cumulative proper-
ties of the survival function and of the likelihood of the model on a given
adoption log, which records the observed activation times of users and
side-information for each cascade, we show that the inference phase is
linear in the number of users and in the number of adoptions. The eval-
uation on both synthetic and real-world data shows the effectiveness of
the model in detecting the interplay between topics and social influence
patterns, which ultimately provides high accuracy in predicting users
activation times.

Keywords: Social Network Analysis, Survival Analysis, Information
Diffusion, Influence Propagation, Adoption Prediction.

1 Introduction

An information cascade is a social process for adoptions, where the decision of
each individual depends on the decision of people who have adopted the same
content earlier. Such cascades have been identified in settings such as blogging,
e-mail, product recommendation, and social Web platforms. The availability of
large-scale, time-resolved cascade data on the social Web allows the study of
interesting questions, such as: (i) How does information spread on networks?
(ii) How far and fast does information flow? (iii) What is the network structure
upon that allows the diffusion of information? (iv) How does the network struc-
ture affect information flow (and viceversa)? (v) How does the content being
propagated affect the structure and shape of information cascades?

Understanding the structural, topical and temporal dynamics of information
cascades can provide insights on the complex patterns that govern the informa-
tion propagation process and it can be used to forecast future events. The prob-
lem of inferring the topical, temporal and network properties that characterize



an observed set of information cascades is complicated by the fact that the diffu-
sion network, transmission rates and the topical structure are hidden. Moreover,
in many scenarios of interest for this paper, we are able to only observe cascades,
having no information about the network structure (users’ interconnections).

In this setting, to infer the diffusion network and the topical structure jointly,
a natural approach is to model user’s activation times as continuous random
variables. Then, we can assume that those variables are generated by a stochastic
process that depends on topical pairwise transmission rates λku,v, explaining the
influence exerted by user v on u according to the topic k (see e.g. [18]). This
approach has three main drawbacks: a large number of parameters (i.e. it’s prone
to overfitting); the parameter inference does not scale well; poor estimates when
the episodes of information propagation from v to u are limited.

To address these issues, in this paper we introduce a stochastic model that
factorizes pairwise transmission rates in terms of general user authoritativeness
and susceptibility on a set of topics of interest. According to such a principle,
both the side-information and temporal dynamics observed on a given informa-
tion cascade are explained by 3 low-dimensional latent factors that encode: (i)
the topical authority of each user Av,k, (ii) the topical susceptibility Su,k and
(iii) the relevance of side information w (e.g. hashtag) on topic k, ϕw,k.

The main contributions of this work can be summarized as follows.
• We review previous studies on information diffusion (Sec. 2) and briefly

introduce a survival framework for modeling information diffusion (Sec. 3).
• Next, we introduce a factorization model (Sec. 3.1) that expresses topical

pairwise transmission rates in terms of user authority and susceptibility, by
coupling the topical content of a cascade and the observed activation times.

• We devise a highly scalable expectation maximization algorithm (Sec. 4) for
the model parameter learning.

• We run an extensive evaluation (Sec. 5) on both synthetic and real-world
data. We assess the capability of the model in detecting the interplay be-
tween the topical structure and temporal dynamics.

2 Related work

Starting from seminal studies [13, 21, 9], the research on information diffusion
has been mainly focused on determining how information spreads across pairs of
users, observing the social network structure and the adoption log. A recent line
of research [8, 7] studies a different perspective, where the social network is not
given in input, and the problem is how to uncover the hidden network structure
starting from the log of users activity. This problem is addressed by assuming
that infections follow a continuous-time independent cascade model. For exam-
ple, in NetRate [7], if node u succeeds in activating v, then the contagion of the
latter happens after an incubation period sampled from a chosen distribution.
According to this propagation model, the likelihood of a propagation cascade can
be formulated by applying standard survival analysis [14]. Recent extensions of
the survival diffusion process exploit Poisson [12] or Hawkes processes [5, 22].



Table 1: Comparison of the proposed method to the state of the art.

Time Req. Network Inference Side Info Clustering

NetRate [7] contin. no O(N2) no no
MONET [17] contin. yes O(N2) nodes no
MMRate [18] contin. no O(N2) no cascades

CSDK [4] contin. no O(NM) cascades no
LIS [19] discrete no O(N2) no no
AIR [1] discrete yes O(N) cascades nodes
CCN [2] discrete yes O(N) no nodes
CWN [3] both no O(N) no nodes

Our method contin. no O(N) cascades cascades

A different research line extends the diffusion process by considering enhance-
ments based on features [17], or topics which characterize cascades [18, 6, 3, 11,
10]. These models assume that the diffusion speed depends on node connections,
features characterizing users and cascades, and node topical affinity [18, 6, 10].

Recent works have also focused on alternative ways of representing inter-
actions between nodes, using latent-dimensional embedding techniques. In [4]
authors propose a framework based on a heat diffusion process which projects
each node into a latent space where the proximity between a pair of nodes reflects
the proximity of their activations times in the observed cascades.

The approaches described so far do not explicitly consider the diffusion pro-
cess as a result of the interaction between influence and susceptibility. In [1, 3],
the probability of activation is modeled as the effect of the influence of neighbor
nodes within the cascades and/or the network. Further, the approaches [2, 19]
propose factorization techniques which associate two low-dimensional vectors to
each node, representing influence and susceptibility. The propagation probabil-
ity that one user forwards information depends on the product of her activated
neighbors’ influence vectors and her own susceptibility vector. The drawback of
these approaches is that they only model cascades in a discrete-time scenario.

Table 1 compares the approach proposed in this work and some paradigmatic
approaches mentioned above, by considering the following dimensions: modeling
of time (continuous vs. discrete), whether they require as input the underly-
ing network, complexity of the inference phase, modeling of side information,
whether they are able to detect clustering structure. By denoting with N , M
the number of nodes and cascades, we can see that all methods based on pair-
wise transmission rates suffer from the drawback of quadratic complexity in the
learning phase. Thus, they do not scale to a large number of users and cascades.

By contrast, linear methods only model discrete time, and they do not nec-
essarily model side information. To the best of our knowledge, our method is the
only capable of combining the advantages of linear complexity and comprehen-
sive modeling of temporal dynamics.

3 Modeling Information Diffusion

A cascade represents the propagation of a piece of information (news, post,
meme, etc.) over a set of nodes (e.g., users of the system). We can specify each
cascade as the activation times of a set of nodes V with cardinality N (i.e.,
|V| = N). Formally, tc can be represented as a N -dimensional vector tc =



(t1(c), · · · , tN (c)), where tu(c) ∈ [0, T c] ∪ {∞} represents the timestamp when
the node u becomes active on the cascade tc. For instance, if each cascade refers
to the propagation of a meme, tu(c) will represent the timestamp at which user
u reposted meme c. Without loss of generality, we can assume that each cascade
starts at timestamp 0; moreover, tu(c) =∞ encodes the fact that the node u has
not been infected during the observation window [0, T c]. Let V+(c) denote the
set of active nodes on the cascade c (i.e., tu(c) 6= ∞), while V−(c) = V \ V+(c)
denotes the set of inactive nodes. The term Nc denotes the size of V+(c).

Let wc denote side information on the cascade c. We represent it as a bag-
of-words wc = {w1, · · · , wlen(c)}, where each wi is a word from a dictionary W
and len(c) is the number of words associated with the cascade c. Finally, let
C = {(t1,w1) · · · (tM ,wM )} denote a collection of M cascades over V.

Propagation model. In our setting, we assume that (i) an event can trigger
further events in the future, within the same cascade; (ii) events in different
cascades are independent from each other. That is, a node v can trigger the
activation of a node u on cascade c if and only if tv(c) < tu(c). Hence, each
cascade tc defines a directed-acyclic graph, where paru(c) = {v ∈ V : tv(c) <
tu(c)}. In the following we will use the notation v ≺c u to represent that v is a
potential influencer for the activation of u within the cascade c, i.e. v ∈ paru(c).

Similar to the Independent Cascade model [13], we assume that node activa-
tions are binary (either active or inactive), progressive (an active node cannot
turn inactive in the future) and all the parents try to infect their child nodes
independently. Based on such assumptions, we can model each cascade by ex-
pressing the likelihood of activation times for active nodes and the likelihood
that the adoption did not happen by time T c for inactive nodes, according to a
chosen propagation model.

Survival analysis for diffusion cascades. Let T denote a non-negative ran-
dom variable representing the time of occurrence on an event. We can assume
that for each pair of nodes (v, u) such that v triggered u’s activation within the
considered cascade c, there is a dependency between the respective activation
times. Following [7], we formalize such dependency by introducing a conditional
pairwise transmission likelihood f (tu(c)|tv(c), λv,u) which depends on the delay
∆c
u,v = tu(c)− tv(c) between activation times and on the transmission rate λv,u.

Then, the likelihood of observing the activation times within a cascade can be
formulated by applying a survival analysis framework [7]:

Pr(tc|Θ) =
∏

u∈V−(c)

∏
v∈V+(c)

S(T c − tv(c);λv,u)·

∏
u∈V+(c)

∏
v≺cu

S(∆c
u,v;λv,u) ·

∑
v′≺cu

h(∆c
u,v′ ;λv′,u) ,

(3.1)

where the survival function S(t − t′;λ) = Pr(T ≥ t|t′, λ) = 1 −
∫ t
t′ f(x|t′, λ)dx

encodes the probability that an event does not occur by time t and the hazard

function h(t− t′|λ) = f(t|t′,λ)
S(t−t′|λ) is the rate of instantaneous infection at time t.



Similarly, let W denote a random variable over words in W; we can consider wc

as a collection of len(c) i.i.d draws from a distribution Φ over W:

Pr(wc|Φ) =
∏

w∈wc
Pr(w|Φ) .

3.1 Factorization Model

We start from the idea that the temporal dynamics, governing the activations
of each node within observed cascades, depends on a set of hidden topics. The
propagation of a piece of information depends inherently on its content and on
pairwise transmission that are topic-dependent. The goal of our framework is
to jointly factorize activation times and side information about each cascade to
discover a finite set of K topics (where K is given as input), representing both
a diffusion pattern and thematic information about the content.

This setting presents two challenges. First, in many practical scenarios we
observe only node activations within a cascade, with no knowledge about what
(or who) triggered them. Secondly, we observe side information and activation
times of nodes within a set of cascades, but both the topical-structure and the
relationships between topics and pairwise transmission likelihood are hidden.

To infer hidden topics and diffusion patterns we will introduce a generative
process. As aforesaid, C is governed by a mixture of K underlying topics. Such a
mixture is specified by introducing binary random variables zc,k which denote the

membership of the cascade within each topic, with the constraint
∑K
k=1 zc,k = 1.

Let Z denote the overallM×K hidden topic assignments matrix. We characterize
each topic k with the following 3 non-negative components:

• Au,k, the authority degree of node u (i.e. tendency of triggering the activa-
tion of other nodes);

• Su,k, the susceptibility degree of node u (i.e., tendency of being influenced
by other nodes);

• ϕw,k, the relevance of word w.

Our factorization model is based on the assumption that the pairwise trans-
mission rates within topic k can be factorized as a linear combination of users’
authority and susceptibility components:

λv,u,k = Av,k · Su,k . (3.2)

The generation of a cascade unfolds as follows. First, we pick a topic zc which
specifies a topical-diffusion pattern, by drawing upon a multinomial distribution
over topics Θ = {π1, . . . , πk}. Then, we adopt a Poisson language model [16]
to generate the side-information by drawing the number of occurrences of each
term w in the cascade c, shorted as nw,c from a Poisson distribution governed
by the parameter set Φk = {ϕw,k}w∈W . Finally, the observed activation times
within a cascade are generated according to a survival model. A summary of the
conditional dependencies between latent and observed variables in our model is
given in Fig. 1 and discussed below.
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Figure 1: Graphical model of Survival Factorization.

Here, Weib(t; ⇢, �) = exp {log ⇢ + log � + (⇢� 1) log t � �t⇢}.
Different choice of ⇢ corresponds to different assumption
about the hazard: the hazard is rising if ⇢ > 1, constant
if ⇢ = 1 (exponential model), and declining if ⇢ < 1. The
corresponding survival and hazard functions are:

h(t;�, ⇢) = exp {log ⇢ + log � + (⇢� 1) log t} (3.5)
S(t;�, ⇢) = exp {��t⇢} (3.6)

As stated above, we only observe activation times but not
who triggered the activation. To model the hidden influencer
for the activation of each node u within a cascade, we
introduce latent binary variables yc

u,v , with the constraintP
v2V yc

u,v = 1. Let Y denote a M ⇥N ⇥N binary matrix,
where yc

u,v = 1 represents that the node v triggered the
activation of node u in the cascade c. For each pair of users
u and v, the prior probability that yc

u,v = 1 is governed by
a multinomial distribution ⇤. 1

Given the status of the hidden variables Z and Y, we can
finally formalize the likelihood of observing the activation
times within a cascade c:

Pr(tc|zc,Y
c,A,S) =

Y

u2V+(c)

 Y

v�cu

Y

k

h(�c
u,v;�c

v,u,k, ⇢)zc,k·yc
u,v ·

S(�c
u,v;�c

v,u,k, ⇢)zc,k
�
·Y

u2V�(c)

Y

v2V+(c)

Y

k

S(T c � tv(c);�c
v,u,k, ⇢)zc,k ,

(3.7)

while the overall likelihood over all cascades is

Pr({t1, · · · , tM}|Z,Y,A,S) =

MY

c=1

Pr(tc|zc,Y
c,A,S)

Likelihood of side-information. The probability of observ-
ing a side-information content wc under topic k is given
by the probability of observing the frequency count nw,c

of each word. We adopt a homogeneous Poisson model for

1. In the next we shall assume that this distribution is uniform, i.e., each
v has equal chances of activating u.

text, in which the frequency counts of each word w under
topic k follows a Poisson distribution with parameter 'w,k.
The latter is the expected number of occurrences of word w
in a unit of time, and the time associated to the generation
of side-information wc is assumed to be |wc| = len(c). Ac-
cording to this Poisson language model [26], the likelihood
of observing a bag-of-words wc when the topic is k can be
expressed as:

Pr(wc|�k) =
Y

w

(|wc| · 'w,k)
nw,c exp{�|wc| · 'w,k}

nw,c!
.

(3.8)
Since each cascade is generated independently from each
other, the overall likelihood of side information over all cas-
cades, given hidden topic-assignment Z, can be expressed
as:

Pr({w1, · · · ,wM}|�,Z) =

MY

c=1

Pr(wc|�zc
).

4. Inference and Parameter Estimation

Let ⌅ = {A,S,�,⇤,⇥} denote the status of parame-
ters of the model. Given latent assignments Z and Y, the
conditional data likelihood is

Pr(C|Z,Y,⌅) = Pr({t1, · · · , tM}|Z,Y,⌅)·
Pr({w1, · · · ,wM}|Z,⌅).

Thus, the optimal values for ⌅ can be obtained by optimizing
the likelihood

Pr(C|⌅) =
X

Z,Y

Pr(C|Z,Y,⌅) (4.1)

Exact inference is intractable, and we have to resort to
heuristic optimization strategies. A simple attempt consists
in devising an EM strategy for estimating the optimal pa-
rameters.

The log-likelihood of the observed cascades can be
written as

L(⌅; C) = log
X

Z,Y

Pr(C|Z,Y,⌅) Pr(Z,Y|⌅)

�
X

Z,Y

q(Z,Y) log
Pr(C,Z,Y|⌅)

q(Z,Y)
= Q(q; C,⌅),

where q is an arbitrary instrumental distribution over the
latent variables. It can be shown [27] that the lower bound
is tight for the exact posterior, i.e.,

argmax q(Z,Y)Q(q; C,⌅) = Pr(Z,Y|C,⌅)

Hence, the log-likelihood can be maximized iteratively in
the usual EM setting by computing the variational approxi-
mations given by the E and M steps:

E step: q(n)(Z,Y) = Pr(Z,Y|C,⌅(n�1))
M step: ⌅(n) = argmax⌅

P
Z,Y q(n)(Z,Y) log Pr(C,Z,Y|⌅)

In the following we omit the (n) superscript when the
components to be updated are clear from the context.

Fig. 1: Graphical model of Survival Factorization.

The modeling of activation times for each node in the cascade assumes that
the delay between the influencer v and the influenced u (tv(c) < tu(c)) is gener-
ated accordingly to a Weibull distribution, whose scale parameter is the trans-
mission rate, while the shape ρ is fixed:

f(tu(c)|tv(c), λv,u,k) =Weib(∆c
u,v;λv,u,k, ρ) . (3.3)

Here, Weib(t; ρ, λ) = ρλtρ−1e−λt
ρ

. Different choices of ρ correspond to different
assumptions about the hazard: the hazard is rising if ρ > 1, constant if ρ = 1
(exponential model), and declining if ρ < 1. The corresponding survival and
hazard functions are:

h(t;λ, ρ) = ρλtρ−1 , (3.4) S(t;λ, ρ) = e−λt
ρ

. (3.5)

As stated above, we only observe activation times but not who triggered the
activation. To model the hidden influencer for the activation of each node u
within a cascade, we introduce latent binary variables ycu,v, with the constraint∑
v∈V y

c
u,v = 1. Let Y denote a M × N × N binary matrix, where ycu,v = 1

represents the fact that node v triggered the activation of node u in the cascade
c. For each pair of users u and v, the prior probability that ycu,v = 1 is governed
by a multinomial distribution Λ 3.
Given the status of the hidden variables Z and Y, we can finally formalize the
likelihood of observing the activation times within a cascade c:

Pr(tc|Z,Y,Ak,Sk) =
∏

k


 ∏

u∈V−(c)

∏

v∈V+(c)

S(T c − tv(c);λv,u,k, ρ)

·
∏

u∈V+(c)

∏

v≺cu
h(∆c

u,v;λv,u,k, ρ)y
c
u,v · S(∆c

u,v;λv,u,k, ρ)



zc,k

.

(3.6)

3 In the next we shall assume that this distribution is uniform, i.e., each v has equal
chances of activating u.



Finally, the overall likelihood of all cascades is:

Pr({t1, · · · , tM}|Z,Y,A,S) =

M∏

c=1

Pr(tc|Z,Y,A,S) .

Compared to the modeling in eq. 3.1, the above model exhibits two main
differences. First, cascade are characterized by a topic which also governs the
propagation speed. Second, we explicitly model influencers by introducing the
Y matrix. In fact, eq. 3.6 is a refined extension of eq. 3.1, since the latter can
be obtained from the former by assuming K = 1 and marginalizing over Y.

Likelihood of side-information. The probability of observing content wc

under topic k is given by the probability of observing the frequency count nw,c
of each word. Within the homogeneous Poisson model [16], this frequency under
topic k follows a Poisson distribution with parameter ϕw,k. The latter is the
expected number of occurrences of w in a unit of time, and the time associated
to the generation of side-information wc is assumed to be |wc| = len(c). Thus,
according to this model, the likelihood of observing a bag-of-words wc when the
topic is k can be expressed as:

Pr(wc|Φk) =
∏
w

(|wc| · ϕw,k)nw,c exp{−|wc| · ϕw,k}
nw,c!

. (3.7)

Since each cascade is generated independently from each other, the overall like-
lihood of side information over all cascades, given hidden topic-assignment Z,
can be expressed as:

Pr({w1, · · · ,wM}|Φ,Z) =

M∏

c=1

∏

k

Pr(wc|Φk)zc,k .

4 Inference and Parameter Estimation

Let Ξ = {A,S,Φ,Λ,Θ} denote the status of parameters of the model. Given
latent assignments Z and Y, the conditional data likelihood is

Pr(C|Z,Y, Ξ) = Pr({t1, · · · , tM}|Z,Y, Ξ) · Pr({w1, · · · ,wM}|Z, Ξ) .

Thus, the optimal values for Ξ can be obtained by optimizing the likelihood

Pr(C, Ξ) =
∑

Z,Y

Pr(C|Z,Y, Ξ) Pr(Z,Y, Ξ) . (4.1)

Exact inference is intractable, and we have to resort to heuristic optimization
strategies. It turns out that the Expectation Maximization algorithm can be
easily adapted for estimating the optimal parameters. That is, it is easy to
devise an iterative alternating strategy consisting of the following two steps:

E step: estimate the posterior Pr(Z,Y|C,Ξ(n−1))



M step: exploit the posterior to solve

Ξ(n) = arg max
Ξ

∑

Z,Y

Pr(Z,Y|C,Ξ(n−1)) · log Pr(C,Z,Y, Ξ)

Both steps are tractable and the estimation produces closed formulas. The details
of the derivations can be found in the appendix submitted as supplemental
material.

In particular, for the E step the estimation of Pr(Z,Y|C,Ξ(n)) can be de-
composed into the specific components, thus yielding

Pr(zc,k, y
c
u,v|tc,wc, Ξ) = ηkc,u,v · γc,k ,

where

ηkc,u,v =
h(∆c

u,v;λv,u,k, ρ)∑
v′≺cu h(∆c

u,v′ ;λv′,u,k, ρ)
, (4.2)

γc,k =
Pr(tc|Ak,Sk) Pr(wc|Φk)πk∑
k Pr(tc|Ak,Sk) Pr(wc|Φk)πk

. (4.3)

Here, γc,k represents the posterior probability that cascade c is relative to topic
k, and ηkc,u,v the posterior probability that the activation of u was triggered
by v within topic k. The component Pr(wc|Φk) is specified by equation 3.7, and
Pr(tc|Ak,Sk) is obtained by marginalizing Pr(tc|zc,Yc,A,S) in 3.6 with respect
to Y.

For the M step, by plugging η and γ into the expected log-posterior we can
solve the optimization step with regards to all the available parameters. In par-
ticular, optimal values for Θ and Φ can be obtained directly:

πk =
1

M

∑

c

γc,k (4.4) ϕw,k =

∑
c γc,knw,c∑
c γc,k|wc| (4.5)

Concerning A and S, the expected likelihood expresses an interdependency
which can be resolved by block coordinate ascent optimization:

Su,k =

∑
c:u∈V+(c) γc,k∑M

c=1

∑
v≺cu γc,k · (∆c

u,v)
ρ ·Av,k

(4.6)

Av,k =

∑
c:v∈V+(c)

∑
u∈V+(c)
v≺cu

ηkc;u,v · γc,k
∑
c:v∈V+(c)

∑
u γc,k · (∆c

u,v)
ρ · Su,k

(4.7)

We deliberately choose not to optimize the ρ parameter, and to investigate
the case ρ = 1.

Scaling up the estimation
When ρ = 1, the Weibull distribution simplifies to an exponential distribu-

tion. In such a case, we can introduce the counters described in table 2 and
rewrite the update equations for A and S as shown in figure 2 (see appendix4

for details). Algorithm 1 describes the overall procedure for estimating the pa-
rameters.



Term Definition Term Definition

Ac,u,k

P
v�cu Av,k Sc,u,k

P
v�cu Sv,k

Ãc,u,k

P
v�cu tv(c)Av,k S̃c,u,k

P
v�cu tv(c)Sv,k

Ac,k

P
v2V+(c) Av,k Sc,k

P
v2V+(c) Sv,k

Ãc,k

P
v2V+(c) tv(c)Av,k S̃c,k

P
v2V+(c) tv(c)Sv,k

Rc,u,k

P
v2V+(c)

u�cv

(Ac,v,k)�1
Sk

P
v Sv,k

R̃c,v,k

P
u2V+(c)

v�cu

tu(c)
⇣

tu(c)Ac,u,k � Ãc.u,k

⌘�1

Lc,k

P
v2V+(c) log Sv,k

Table 2: Counters on the cascades.

Su,k =

P
c:u2V+(c) �c,k

P
c:u2V+(c) �c,k

⇣
tu(c)Ac,u,k � Ãc,u,k

⌘
+

P
c:u2V�(c) �c,k

⇣
T cAc,k � Ãc,k

⌘ (4.8)

Av,k =
A

(n�1)
v,k

P
c:v2V+(c) �c,kRc,v,k

P
c:v2V+(c) �c,k

n
S̃c,k � S̃c,v,k + T c(Sk � Sc,k)� tv(c)(Sk � Sc,v,k)

o (4.9)

log Pr(t
c|Ak, Sk) =Lc,k � (Sk � Sc,k)(T

c
Ac,k � Ãc,k)

+
X

u2V+(c)

n
log Ac,u,k � Su,k (tu(c)Ac,u,k � Ãc,u,k)

o
(4.10)

Figure 2: Optimized estimations for the exponential distribution. All equations rely on counters defined in table 7.
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⌘ (4.8)

Av,k =
A

(n�1)
v,k

P
c:v2V+(c) �c,kRc,v,k

P
c:v2V+(c) �c,k

n
S̃c,k � S̃c,v,k + T c(Sk � Sc,k)� tv(c)(Sk � Sc,v,k)

o (4.9)

log Pr(t
c|Ak, Sk) =Lc,k � (Sk � Sc,k)(T

c
Ac,k � Ãc,k)
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Rayleigh Distribution
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Figure 2: Optimized estimations for the exponential and the Rayleigh distributions. All equations rely on counters defined in table 2.
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Âc,k

P
v2V+(c) tv(c)2Av,k Ŝc,k
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TABLE 2: Counters on the cascades.

for example, assume that user v1 activates at time tv1 = 1,
user v2 at time tv2 = 100 and user u at time tu = 101.
Also, assume that Av1,k = 2, Av2,k = 1 and Su,k = 1. By
virtue of the definition of �, the influencer would be v1, but
the delay tu� tv1 would be extremely unlikely according to
the given parameters.

This bias does not hold for the Rayleigh distribution, for
which the �k

c,u,v includes the delay, �k
c,u,v =

Av,k�
c
u,vP

v�u Av,k�c
u,v

,
thus recovering the time dependency in the detection of the
influencer.

5. Experiments

In this section we report an experimental analysis aimed
at assessing the effectiveness of the proposed framework.
The evaluation is focused on the following aspects: (1)
Investigate the conditions upon which the proposed method
can actually detect authoritativeness and suceptibility from
propagation logs; (2) Evaluate proposed models under two
different prediction scenarios: (i) predicting which nodes
are more likely to become active given a partally observed
cascade and (ii) inferring the underlying propagation net-
work among nodes; (3) Assess the adequacy of the model

Table 3: Counters on the cascades.

S1 S2 S3 S4

Communities 9 7 11 6

Activations 215,608 275,633 171,501 313,972

Median activations/cascade 86 139 73 127

Median activations/user 220 276 173 314

Min activations/user 192 250 145 231

Table 4: Statistics for the synthesized cascades.

[9]: given a training and test sets Ctrain and Ctest of cascades,
we train the model on Ctrain and measure the accuracy of the
predictions on Ctest.

2 We chronologically split each cascade
c 2 Ctest into c1 and c2 (for each u 2 c1 and v 2 c2, tu(c) <
tv(c)) and pick a random subset c3 of vertices that did not
partecipate to corresponding cascade. We use c1 to predict
the most likely topic k by exploiting Eq. 4.3. Then, given a
target delay horizon T , for each user in c2 [ c3 we compute
�u = minv2c1 (Av,kSu,k)�1. The prediction on u is counted
as true positive (TP) if �u < T and u 2 c2; true negative
(TP) if �u > T and u 2 c3; false positive (FP) if �u < T and
u 2 c3; and false negative (FN) if �u > T and u 2 c2. By
varying the delay threshold T , we can evaluate the accuracy
in predicting the likelihood of activation of susceptible nodes
in the test set.

In our experiments we set a 90:10 training/test propor-
tion and vary the chronological split proportion from 50%
to 80%. The results of the experiments, reported in fig. 3,
show thathe proposed method is e↵ective in predicting ac-
tivation behaviour even when the propagation happens on
networks with an overlapping community structure. The
best performances are achieved on the network S3, despite
the fact that some communities are strongly interconnected.
A possible explanation is the higher number of communi-
ties exhibited by the dataset, which also makes the cascades
shorter and the co-occurrence of nodes less likely in cascades
where they are not susceptible/authoritative.

Cascade classification. In a second set of experiments,

2The two sets are obtained by randomly splitting the origi-
nal dataset by ensuring that there is no overlap among the
cascades of the two sets, but there is no vertex in the test
that has not been observed in the training.

Table 2: Counters on the cascades.

Algorithm 1 Optimized Survival Factorization EM
Require: C, the number of latent features K
Ensure: matrices A, S and Φ
1: Randomly initialization for A, S, Φ;
2: Compute all counters of table 2;
3: n← 0
4: while Increment in Likelihood is negligible do
5: for all cascades c and topic k do
6: Compute γc,k exploiting log Pr(tc|Ak,Sk) as defined in Eq. 4.10;
7: end for
8: for all topic k do
9: Update πk according to Eq. 4.4;
10: for all users u do
11: Compute Su,k according to Eq. 4.8;
12: end for
13: Update all counters relative to S as defined in table 2;
14: for all users u do
15: Compute Au,k according to Eq. 4.9;
16: end for
17: Update counters relative to A as defined in table 2;
18: for all words w do
19: Compute φw,k according to Eq. 4.5;
20: end for
21: end for
22: n← n+ 1
23: end while
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)

(4.8)

Av,k=
A

(n−1)
v,k

∑
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+
∑
u∈V+(c)

{
logAc,u,k−Su,k (tu(c)Ac,u,k−Ãc,u,k)

}
(4.10)

Fig. 2: Optimized estimations for the exponential distribution. All equations rely on
counters defined in table 2.

Theorem 1. Algorithm 1 has complexity O(
∑
cNc logNc+nK(N+W+

∑
cNc))

time (where n is the total number of iterations) and O(KN) space.

Proof. See appendix4.

5 Evaluation

The following experimental evaluation is aimed at exploring the following as-
pects: (1) Investigate the conditions upon which the proposed method can cor-
rectly detect authoritativeness and susceptibility from propagation logs; (2) Eval-
uate the proposed models under two different prediction scenarios: (i) given a
partially observed cascade, predict which nodes are more likely to become active
within a fixed time window and (ii) inferring the underlying propagation net-
work among nodes; (3) Assess the adequacy of the model at fitting real-world
data and at identifying topical diffusion patterns.

To perform such analyses we rely on both synthetic and real data, as reported
below. The implementation we we used in the experiments can be found at
http://github.com/gmanco/SurvivalFactorization.

5.1 Synthetic data

The first set of experiments is conducted in a controlled environment. We arti-
ficially generate the cascades by hypothesizing a diffusion process and measure
the goodness-of-fit of the algorithm to the underlying process.

We base the generation on the assumption (studied, e.g., in [20]) that vertices
are connected and the diffusion of information happens through the links of
the underlying network. Thus, to generate synthesized data, we, firstly, build
networks with a known community structure by varying connectivity structure
of the network. To this aim, we borrow the synthetic networks studied in [3].

Given a networkG = (V,E), we next generate synthetic propagation cascades
by simulating a propagation process which spreads over E. The process gener-



ates |I| propagation traces according to the following protocol. The degree of au-
thoritativeness and susceptibility of each node in each community depend on its
connectivity pattern. If the node u belongs to community k the values Au,k and

Su,k are sampled from lognormal distributions with means p · indegree(u)
maxv indegree(v) +

(1− p) · rand(0.1, 1) and p · (1− outdegree(u)
maxv outdegree(v) ) + (1− p) · rand(0.1, 1) respec-

tively. For all the remaning communities h 6= k, the values for Au,h and Su,h are
randomly sampled within a uniform range lower than Au,k (Su,k) by an order of
magnitude. The propagation cascades are generated exploiting A and S: for each
cascade to generate, we randomly sample a topic k and a maximal propagation
horizon Tmax. Then, we sample an initial node v with probability proportional
to Av,k. From this node we start the subsequent diffusion process. Given an ac-
tive node u and a neighbor v, we sample a hypothetical infection time tu,v using
tv and the rate Au,k · Sv,k. Node v then becomes active if there exist an influ-
encer u such that tu,v < Tmax. Finally, for each cascade we generate the content.
For each topic k, we generate ϕw,k randomly and then draw word-frequencies
according to the Poisson model and to the topic of the cascade.

In the following experiments, we set p = 0.9, |I| = 2, 048 and run the gener-
ation of cascades on 4 networks, with different degrees of overlapping. The main
properties of the synthesized data are summarized in Table 3.

S1 S2 S3 S4

Communities 9 7 11 6

Activations 215,608 275,633 171,501 313,972

Median activations/cascade 86 139 73 127

Median activations/user 220 276 173 314

Min activations/user 192 250 145 231

Table 3: Statistics for the synthesized cascades.

Predicting activation times. The first experiment is meant to evaluate the
accuracy in estimating the activation times. Given a training and test sets Ctrain
and Ctest of cascades, we train the model on Ctrain and measure the accuracy of
the predictions on Ctest4. We chronologically split each cascade c ∈ Ctest into c1
and c2 (for each u ∈ c1 and v ∈ c2, tu(c) < tv(c)) and pick a random subset c3 of
vertices that did not participate to corresponding cascade. We use c1 to predict
the most likely topic k by exploiting Eq. 4.3. Then, for each user in c2 ∪ c3 we
compute δu = minv∈c1 (Av,kSu,k)

−1
.

We set a 90:10 training/test proportion and a chronological split proportion
of 80%. Given a target delay horizon H, the prediction on u is considered as:
true positive (TP) if δu < H and u ∈ c2; true negative (TN) if δu > H and

4 The two sets are obtained by randomly splitting the original dataset by ensuring
that there is no overlap among the cascades of the two sets, but there is no vertex
in the test that has not been observed in the training.



u ∈ c3; false positive (FP) if δu < H and u ∈ c3; and false negative (FN) if
δu > H and u ∈ c2. By varying H, we can plot ROC and F curves.
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Fig. 3: AUC and Precision/Recall on predicting the activation time over synthetic data.

The results of the experiments, reported in Fig. 3, show that the proposed
method is effective in predicting activation behaviour even when the propagation
happens on networks with an overlapping community structure. The best perfor-
mances are achieved on the network S3, despite the fact that some communities
are strongly interconnected. A possible explanation is the higher number of com-
munities in the dataset, which also makes cascades shorter and the co-occurrence
of nodes less likely in cascades where they are not susceptible/authoritative.

5.2 Real data

In this section, we assess the performances of the proposed method on real data,
from a quantitative and qualitative perspective. First, we evaluate the accuracy
of the model at predicting when a user will retweet a post. Secondly, we analyze
and discuss topical and diffusion patterns inferred on the Memetracker dataset.

Twitter The following analysis is based on a sample of real-world propagation
cascades crawled from the public timeline of Twitter and studied in [2]. The
propagation of information on Twitter happens by retweet and in this dataset
tracks the propagation of URLs over the Twitter network during a period of
one month (July 2012) Each activation/adoption corresponds to the instance
when a user tweets a certain URL. Note that this dataset does not provide side-
information (e.g. hashtags associated to each tweet, or the actual URL being
shared). We also select a subset of the dataset by considering users who partici-
pated in at least 15 cascades and retweet cascades that involved at least 5 users.



We refer to this dataset as Twitter-Small. A summary of the properties of both
datasets is shown in Table 4.

Twitter-Large Twitter-Small

Nodes 28,585 6,030

Edges 1,636,451 259,568

Activations 516,412 187,941

Cascades 8,541 3,983

Max Delay 2,380,651 2,141,136

Avg Delay 36,775 50,117

Median activations/cascade 18 17

Median activations/user 15 26

Min activations/cascade 1 7

Min activations/user 11 15

Table 4: Summary of the Twitter data used for evaluation.

Predicting activation times. We apply the testing protocol detailed in Sec. 5.1
on the Twitter datasets for predicting users retweet times, by considering two
training/test chronological split (80%) and measuring prediction accuracy by
ROC analysis. Results, reported in Fig. 4, show that the model achieves high
accuracy in predicting which are the users more likely to become active on each
cascade within the prediction window. The prediction accuracy is higher on
Twitter-Small. This result is compatible with the intuition that the inference
works better when the focus is on users who actively participate into cascades.
Finally, like in the case of synthesized data, the accuracy is not affected by the
size of the cascade used for inferring the optimal topic.
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Fig. 4: Accuracy on predicting user’s retweet time on Twitter-Large (on the left) and
Twitter-Small (on the right).



Memetracker The evaluation on the Memetracker dataset [15] is aimed at
assessing the alignment between the topical and social influence structure. This
dataset tracks phrases and quotes over online-news providers and blogs; textual
variants of the same phrase are clustered together and the dataset specifies each
timestamp at which a particular blog mentioned a phrase belonging to a cluster.
We consider each cluster as a separate cascade, the root-phrase as the content
being diffused and the hostname extracted from the url of the blog as vertex
identifier. In this case, an activation within a information cascade represent
the first timestamp at which a given blog mentioned a phrase belonging to the
considered cluster. The raw dataset was cleaned from cascades with less than 10
activations and less than 10 words as content, and from vertices that belong to
less than 10 cascades. The final dataset contains 7k vertices and 28k cascades, the
word dictionary contains 3.5k tokens, with of 16 words for cascade on average.

For the sake of presentation, we run the survival factorization learning algo-
rithm setting K = 8. Table 5 reports the most relevant words for each topic,
i.e. the words w which exhibit the highest value of ϕw,k for each k, and our
interpretation of the topic is reported in the headings of the table.
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Table 5: Most relevant terms for each
topic.

Topic 1 Topic 2
(economy) (France/Germany)

businessweek.com
ft.com

pr−inside.com
prnewswire.co.uk

telegram.com

markets.chron.com
invertia.com

finanzas.com

money.canoe.ca

priceofoil.org

blogs.wsj.com
forexfactory.com

fr.biz.yahoo.com
finanzas.com

de.reuters.com
focus−fen.net

stjude.com.ve
tagblatt.ch

wellingtonhive.blogspot.com
presseportal.ch

tembam.wordpress.com
tagesspiegel.de

de.eonline.com

Topic 3 Topic 4
(presidential elections) (family)

cnjonline.com
freepressinternational.com

washingtonmonthly.com

electionfraudblog.com

blogrevolution.com

sj−r.com

democraticpartyofgeorgia.org

politicalsalsa.blogspot.com

mattjohnston.blogspot.com

mccaindemocrats.wordpress.com
washingtonindependent.com

pentictonherald.ca
theusreport.com

610cktb.com

retroskank.com

koreanpower999.wordpress.com

environmentalrepublican.blogspot.com

topix.net

justbarkingmad.com

factsoflife.wordpress.com

popcritics.com

mtv.co.uk

gamesarefun.com
celebglitz.com

tmrzoo.com

rss.computerandvideogames.com

dlife.com

Topic 5 Topic 6
(international crisis) (news in spanish)

us.oneworld.net
alertatotal.blogspot.com

breaktheterror.wordpress.com

timesofoman.comnews.balita.ph
earthside.com

stanvanhoucke.blogspot.com
swampland.blogs.time.com

abc.com.py
laurennroth.com
elnuevodiario.com.ni

laopiniondegranada.es

elmtreeforge.blogspot.com
howrah.org

ellitoral.com

eldigital.net
cooperativa.cl

Topic 7 Topic 8
(religion) (sport)

canadian−catholic.blogspot.com
inspiremagazine.org.uk

thepagansphinx.blogspot.com

breaktheterror.wordpress.com

stopwarblog.blogspot.com

all4jesus.wordpress.com

sermonaudio.com

uk.eurosport.yahoo.com
sportgate.de

smdailyjournal.com
news.cincinnati.com

sportal.com.au

ecanadanow.com

cricket.timesofindia.indiatimes.com
kltv.com

Table 6: Most influential hosts for each
topic.

Next, we analyze each cascade and compute:

• The most-likely topic as k̃c = arg maxk γc,k;



• The most-likely cascade tree for each cascade T̃c by computing the parent

of each active node (excluding the root) as par(u)c = arg maxv η
k̃c
c,u,v;

• For each cascade c the delay ∆c
u,v for each pair u, v such that par(u)c = v,

and compute the average delay over cascades in each topic;

• The Wiener index for each cascade tree, and use this information to compute
the average Wiener index for a topic k as w̄k = avgc: k̃c=k W (T̃c);

• The depth of each cascade tree, which is averaged across cascades in the
same topic to compute the average cascade topical depth.

The outcome of this analysis is summarized in Table 7. The topic labeled
as “sports” exhibits the shortest average trasmission delay, followed by “inter-
national crisis” and “news in spanish language”. In general, cascade trees are
shallow, which suggests that the propagation of information is due to few influ-
encers. The highest average Wiener index is observed on the topic “religion”.

Topic Average delay Avg Wiener index Avg depth

1 20.6h 1.73 1.77

2 22.8h 1.69 1.74

3 43.5h 1.82 1.93

4 21h 1.76 1.83

5 12.7h 1.80 1.92

6 12h 1.85 2.13

7 23.8h 1.89 2.20

8 7.8h 1.83 2.08

Table 7: Characterization of the cascade trees for each topic.

Finally, Table 6 shows the top influencers for each topic, computed by count-
ing the number of children of each node in each cascade and aggregating this
info at the topic level. The top influential blogs are well aligned with the topical
structure shown in Table 5.

6 Conclusions

In this work we proposed a model for information diffusion where adoptions can
be explained in terms of susceptibility and authoritativeness. The latter concepts
can be expressed as latent factors over a low-dimensional space representing
topical interests. We showed the adequacy of the resulting probabilistic model
both from a mathematical and an experimental point of view.

There are different points worth further investigation. For example, we showed
that the instantiation based on the Exponential distribution admit an efficient
implementation. In future work we will study if this property holds on other
models, e.g. Rayleigh. Also, the robustness of the model can be improved by
relying on a full bayesian framework.
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