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Abstract We propose an incremental technique for discovering duplicates in large
databases of textual sequences, i.e., syntactically different tuples, that refer to the same
real-world entity. The problem is approached from a clustering perspective: given a
set of tuples, the objective is to partition them into groups of duplicate tuples. Each
newly arrived tuple is assigned to an appropriate cluster via nearest-neighbor classifi-
cation. This is achieved by means of a suitable hash-based index, that maps any tuple
to a set of indexing keys and assigns tuples with high syntactic similarity to the same
buckets. Hence, the neighbors of a query tuple can be efficiently identified by simply
retrieving those tuples that appear in the same buckets associated to the query tuple
itself, without completely scanning the original database. Two alternative schemes
for computing indexing keys are discussed and compared. An extensive experimental
evaluation on both synthetic and real data shows the effectiveness of our approach.
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1 Introduction

Recognizing similarities in large collections of data is a major issue in the context of
designing information integration systems. The wide exploitation of new techniques
and systems for generating, collecting and storing data has made available a huge
amount of information. Large quantities of such data are stored as continuous text,
such as personal demographic data, bibliographic information, phone and mailing lists.
Often, the integration of such data is a problematic process, that involves dealing with
two major issues, namely structural and syntactic heterogeneity. The former occurs
when the data does not explicitly exhibit a common field structure. In this case, schema
reconciliation techniques (Agichtein and Ganti 2004; Monge and Elkan 2001; Cesario
et al. 2008) allow the segmentation of textual sequences into a uniform schema.

However, whether or not reconciled into a common database schema, data can still
be affected by syntactic heterogeneity. This is a fundamental issue in the context of
information integration systems, that consists in discovering duplicates within the
integrated data, i.e., syntactically different records that, as a matter of facts, refer to a
same real-world entity.

De-duplication is necessary in several applicative settings. A typical example is the
reconciliation of demographic data sources into a data warehousing setting. Names
and addresses can be stored in rather different formats, thus raising the need for an
effective reconciliation strategy, that could be crucial for effective decision making.
In these cases, a (typically large) volume of small strings is analyzed to reconstruct
the semantic information on the basis of few syntactic information. Consider, e.g., a
banking scenario, where the main interest is to rank the credit risk of a customer, by
looking at the past insolvency history. Since information about payments may come
from different sources, each of which conforming to a possibly different encoding-
format for the data, de-duplicating demographic tuples is crucial in order to correctly
analyze the attitude at insolvency of the customer.

In such applicative scenarios, tuples usually correspond to small sequences of strings,
characterized by an inherent segmentation in specific semantical entities. However,
such a segmentation is not known in advance and this further exacerbates the difficul-
ties behind the identification of duplicates.

In the current literature, the notion of Entity Resolution (Gu et al. 2003; Cochinwala
et al. 2005; Winkler 1999) has been used to denote a complex process for data manipu-
lation, that embraces schema reconciliation, data reconciliation and identity definition
(i.e., the act of grouping duplicate tuples, in order to extract a representative tuple for
each such a group). This paper aims at devising an effective and incremental approach
to the reconciliation of textual entities, that is capable to efficiently de-duplicate vol-
umes of data.

In particular, the requirement to process large bodies of data generally imposes
severe restrictions on the design of data structures and algorithms for de-duplication.
Such restrictions are necessary to ultimately limit both the computational complex-
ity of the de-duplication scheme (a required time, that is quadratic in the size of the
underlying database, is prohibitively high) and its I/O operations on disk (several
random accesses to secondary storage imply continuous paging activities). Thus, we
focus on scaling techniques for duplicate detection to large databases. The problem
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is approached from a clustering perspective: given a set of tuples, the objective is to
recognize subsets (clusters) of tuples such that intra-cluster similarity is high and inter-
cluster similarity is low. Three major peculiarities make the de-duplication problem,
that we intend to cope with, significantly different from the traditional one:

• tuples are represented as (small) sequences of tokens, where the set of possible
tokens is large;

• the number of clusters is too high to allow the adoption of traditional clustering
techniques;

• the streaming (constantly increasing) nature of the data calls for linear-time clus-
tering algorithms.

Typically, tuple de-duplication has been addressed from an accuracy viewpoint, by
attempting to minimize incorrect matchings: false-positives (i.e., records recognized
as similar, that actually do not correspond to the same entity) and false-negatives
(i.e., records corresponding to the same entity, that are not recognized as similar).
In principle, the pursuit of such objectives would call for the development of accu-
rate clustering methods, that exploit suitable distance metrics for catching syntactic
proximity between tuples with multiple fields. Viewed in this respect, one possible
approach would consist in the adoption of a hierarchical clustering method (this fam-
ily of algorithms is widely known in the literature for producing top quality results
Jain et al. 1999), equipped with a suitable record matching scheme, that leverages
accurate field-wise similarity metrics, such as Edit Distance, Affine Gap Distance,
Smith-Waterman Distance and Jaro Distance (see Ipeirotis et al. 2007 for a survey) to
match corresponding tuple tokens. However, the quadratic complexity of hierarchi-
cal clustering in the number of available tuples, combined with the high cost of field
matching schemes (that becomes quadratic w.r.t. the length of tokens in the case of
Edit Distance), would make the resulting approach impractical in the great majority
of applicative domains, where even a moderate volume of data is available.

Efficiency and scalability issues do play a predominant role in many applicative
contexts, where large data volumes are involved, especially when the object-identifi-
cation task is part of an interactive application, calling for short response times. For
instance, the typical volume of data collected on a daily basis in a banking context
amounts on average to 500,000 instances, representing credit transactions performed
by customers throughout the various agencies. In such a case, the naive solution of
comparing such instances in a pairwise manner, according to some given similarity
measure, is infeasible. As an example, for a set of 30,000,000 tuples (i.e., data col-
lected in a 2 months-monitoring), the hypothetical hierarchical strategy, would require
O(1015) (a quadrillion) comparisons, which is clearly prohibitive.

In order to meet the efficiency and scalability requirements, we study efficient
schemes for effectively approaching de-duplication in terms of clustering. The starting
point is to sensibly lower the overall number of tuple comparisons along with the cost
for evaluating similarity between individual tokens. A viable approach in this respect
consists in partitioning the original data into subsets, such that each subset includes
very similar tuples. The search for duplicates of a given tuple is thus narrowed to the
records within the subsets ascribable to the tuple. Canopies (McCallum et al. 2000)
may be taken into account to this purpose. Unfortunately, their construction does not
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satisfy the incrementality requirement. Rather, in this paper, we essentially rely on
efficient techniques, that allow to discover all clusters of duplicate tuples in an incre-
mental fashion. The intuition is to progressively construct some sort of canopies with a
single scan of the data, by exploiting a suitable index/storage structure, that efficiently
supports similarity queries. The de-duplication of any newly arrived tuple t is thus
achieved by retrieving a set of neighboring tuples in the database, which are mostly
similar to t and, hence, are expected to refer to the same real-world entity associated
with t . The cluster membership of t is then established via a majority vote from the
neighbors.

Conceptually, the M-Tree index structure (Ciaccia et al. 1997) seems useful for
indexing and organizing tuples, according to a certain similarity metric, so that near-
est-neighbor queries would be answered with minimal processing time and I/O cost.
However, the empirical analysis of the behavior of the M-Tree structure reveals that the
existence of several tuples, with heterogeneous syntactic representations, results into
multiple inner levels of the index, which makes the cost of proximity search almost
linear in the number of the original records. Such a phenomenon makes the M-Tree
index inadequate for de-duplication in the delineated applicative context.

A more convenient approach consists in adopting a hash-based index, capable of
executing nearest neighbor searches in a time, that is independent of the number of
database tuples. Here, a suitable hashing scheme assigns similar tuples to the same
corresponding buckets. Hence, the search for duplicates is focused only on the records
that fall within the same buckets associated to the query tuple.

The main contribution of this paper is thus a methodological approach to the detection
of syntactically similar strings in large databases, that is of great practical relevance in
a wide variety of applicative domains, other than the banking context that motivated
our research effort, such as the manipulation of search logs, customer data and census
applications.

In particular, we first introduce a general framework for formally characterizing the
problem of discovering and merging duplicate objects, essentially in terms of a spe-
cific clustering problem. For the sake of generality, we assume any database instance
to be represented as an itemset, thus going beyond the realm of structured data usually
considered in some related approaches.

We then study two different hashing schemes. The first approach, initially proposed
in Cesario et al. (2005), is tailored to a set-based distance function. Here, the man-
agement of each tuple is faced at a coarser granularity. Notwithstanding, such a naive
approach is compared against the M-Tree index structure (Ciaccia et al. 1997), and
the superiority of the former is shown. Moreover, the comprehension of the limita-
tions of the Naive hashing scheme (essentially, the required tradeoff between accuracy
and index updates as well as its incapability at properly dealing with nearly identical
tokens) provides essential hints for extending and improving the original proposal in
both effectiveness and efficiency.

The second approximated hashing scheme allows for a direct control on the degree
of granularity needed to properly discover the actual neighbors (i.e., duplicates) of a
tuple. More precisely, a refined key-generation technique is developed, which guar-
antees, for each tuple under consideration, a controlled level of approximation in the
search for the nearest neighbors of the tuple itself. To this purpose, we resort to a family
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of Locally-Sensitive hashing functions (Indyk and Motwani 1998; Broder et al. 1997;
Gionis et al. 1999), that are guaranteed to assign any two objects to the same buckets
with a probability that is directly related to their similarity degree. In particular, we
show how locally-sensitive hash functions can be fruitfully combined in a hierarchical
fashion, thus enabling effective on-line matching, at the expense of negligible accuracy
loss. As a preview, the key features of the devised methodology can be summarized
as follows.

• An incremental clustering algorithm, that scales to de-duplicate volumes of data
in terms of both effectiveness and efficiency. Incrementality has not been a major
requirement in previous approaches from the literature.

• The development of a hierarchical hashing scheme for catching tuple similarity,
that avoids resorting to costly similarity metrics.

• A mechanism for governing the behavior of the hash-based index, that is more
easily tunable w.r.t. to the ones in the current literature (such as, e.g., Gionis et al.
1999).

• A thorough experimental evaluation carried out over both real and synthetic data,
that reveals the better performance delivered by the Naive hashing technique
against the one resulting from the adoption of the M-Tree index and, also, an
additional improvement in efficiency, without substantial loss in effectiveness,
achieved by the second approximated method w.r.t. the first naive one.

It is worth remarking that the approach we propose in this paper is purely syntactic,
as it deals with lexical variations occurring across the textual sequences at hand. As
a matter of fact, our approach can be considered complementary to other methods,
that also attempt to reconstruct and exploit additional information, such as the link-
structure among the available sequences (Kalashnikov et al. 2005; Bhattacharya and
Getoor 2004). Also, notice that the techniques proposed in this paper are effective in
scenarios where large collections of data are available and, hence, can be exploited in
a preliminary exploratory phase, where the number of candidate duplicates is signifi-
cantly reduced.

The paper proceeds as follows. Section 2 provides a formal framework for the
overall entity-resolution process and introduces a series of algorithms, that pursue
tuple de-duplication via k-nearest neighbor clustering. A hash-based indexing scheme
is discussed in Sect. 3 as a basic nearest-neighbor procedure, that extracts tuple sub-
sets as indexing keys and naively matches such keys to retrieval purposes. Section 4
develops a refined, hierarchical scheme for tuple-key generation, that overcomes the
limitations of exact token-matching. Section 5 presents the results of an intensive
experimental evaluation. Section 6 overviews works from the literature, that are most
closely related to our study. Finally, Sect. 7 concludes the paper by drawing some
conclusions and highlighting some major directions, that are worth further research.

2 Problem statement and overview of the approach

We start by providing some basic notation and preliminary definitions. A domain
M = {a1, a2, . . . , am} is a collection of items. We assume m to be very large: typ-
ically, M represents the set of all possible strings available from a given alphabet.
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A textual sequence µ is a tuple a1, . . . , am , where each ai ∈ M. The set of all pos-
sible sequences is denoted by M∗. We assume that M is equipped with a distance
function distM(·, ·) : M × M �→ [0, 1], expressing the degree of dissimilarity
between two generic items ai and a j .

Also, we hypothesize that the set of all tuples is equipped with a distance function,
dist(µ, ν) ∈ [0, 1], which can be defined for comparing any two tuples µ and ν, by
suitably combining the distance values computed through distM on the basic items.

An input database is a set of tuples DB = {µ1, . . . , µN }. Data de-duplication
can be formally stated as the problem of partitioning a database DB into l groups
P = {C1, . . . , Cl}, where each group represents the same entity and each different
entity is enumerated in a different group. Notably, data de-duplication is essentially
a clustering problem, as it requires finding groups of sequences such that their intra-
cluster similarity is high, and inter-cluster similarity is low. However, it is formulated
in a specific situation, where there are several pairs of tuples in DB, that are quite
dissimilar from each other. This can be formalized by assuming that the size of the set
{〈µi , µ j 〉 | dist(µi , µ j ) � 1 } is O(N 2): thus, we can expect the number l of clusters
to be very high–typically, O(N ).

In addition, we intend to cope with the clustering problem in an incremental setting,
where a new input database DB� must be integrated within a previously de-duplicated
DB. Practically speaking, the cost of clustering tuples in DB� must be (almost) inde-
pendent of the size N of DB. To this purpose, each tuple in DB� must be associated
with an appropriate cluster in P , to be detected through a suitable of nearest-neighbor
classification scheme.

A key intuition is that the comparison of few “close” neighbors provides enough
information, in order to establish an appropriate cluster membership. Therefore, the
latter can be detected with a minimal number of comparisons by considering, for
each new tuple, only some relevant neighbors efficiently extracted from the current
database through a proper retrieval method. The algorithm in Fig. 1 summarizes our
solution to the data de-duplication problem. The clustering method is parametric w.r.t.
the distance function used to compare any two tuples and is defined in an incremental
way, so that to enable the integration of a new set of tuples into a previously computed
partition. Indeed, the algorithm receives a database DB and an associated partition
P , besides the set of new tuples DB�; as a result, it produces a new partition P ′ of
DB ∪ DB�, obtained by adapting P with the tuples from DB�.

More specifically, for each tuple µi in DB� to be clustered, the neighbors of µi

are retrieved by means of the procedure kNearestNeighbor, which searches for the
K most prominent neighbors within a bounded range δ from the query tuple µi . The
cluster membership for µi is determined by calling the MostLikelyClass procedure,
which estimates the likeliest cluster among the ones associated with the neighbors of
µi . Such an estimation is carried out via a voting strategy, where each neighbor µ j of
µi votes for the cluster it belongs to, by adding a contribution 1

dist(µi ,µ j )
to the score

of its cluster. Figure 2 details the process.
The score of each cluster is normalized by dividing it by the number of tuples that

voted for the cluster; tuple µi is then assigned to the cluster receiving the highest
normalized score, provided that this is greater than a given threshold—in our usual
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Fig. 1 Clustering algorithm

Fig. 2 Establishing cluster membership

setting we use 0.5 for the threshold. Otherwise, µi is estimated not to belong to any
of the existing clusters with a sufficient degree of certainty and, hence, it is assigned
to a newly generated cluster.

Interestingly, votes from neighbors may alternatively be used for estimating either
a probabilistic or a fuzzy degree of cluster membership for µi , so that to allow µi
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to belong to more than one cluster. However, in the envisaged applicative scenario,
pairwise dissimilarity among data tuples is quite high and duplicates of an individual
domain entity are not likely to appear also as potential duplicates of some other entity.
For this reason, we focus on exclusive clustering in the rest of the paper.

Procedure Propagate is meant to scan the neighbors of µi in order to possibly revise
their cluster memberships, since in principle they could be affected by the insertion of
µi . In particular, for each tuple µ j within the set of neighbors in input to Propagate,
the membership of µ j is estimated again by MostLikelyClass and, if it does not
agree with the cluster actually containing µ j , the membership of µ j is updated and
Propagate is recursively applied to the neighbors of µ j .

Notice that, in Fig. 1, the execution of the Propagate procedure is naturally
triggered at line 12 of the Generate- Clusters scheme whenever the cluster
membership of the current tuple µi can be estimated with a sufficient degree of cer-
tainty. In all other cases, the Generate- Clusters scheme simply creates a new
cluster Cm+1 and assigns µi to Cm+1 without invoking Propagate. This avoids
relocating, in the absence of sufficient certainty, those tuples whose cluster mem-
bership was confidently established. Nevertheless, this behavior simply postpones
the invocation of the Propagate procedure, in an attempt at accumulating suffi-
cient certainty for the new cluster Cm+1, i.e., a normalized score for Cm+1 over
the pre-specified threshold γ . Indeed, the incremental assignment of further tuples
to Cm+1 collects potential voting neighbors. As the size of cluster Cm+1 increases,
its elements tend to confidently vote in favor of Cm+1 itself. At a certain point in
time, any assignment to Cm+1 determines again the invocation of the Propagate
procedure.

Also, since the Propagate call is caused by an insertion of a new object not yet
considered in the partition, the assignment of this object to a cluster has the effect
of enlarging the cluster borders. Hence the possibility of attracting further objects
into this cluster. Thus, a chain effect may cause further relocations, which even-
tually end up with neighbor clusters merged. In principle, this task might cause
all clusters to merge, thus involving the whole dataset DB′. However, in typi-
cal de-duplication settings, where clusters are quite distant from each other, the
propagation affects only a reduced number of tuples and converges within few
iterations.

Notably, the complexity of Algorithm 1, given the size N of DB and M of DB�,
depends on the three major tasks: the search for neighbors (line 4, having cost
f (N )), the voting procedure (line 5, with a cost proportional to K ), and the prop-
agation of cluster labels (line 12, having a cost proportional to n, based on the dis-
cussion above). Being performed for each tuple in DB�, the overall complexity is
O(M( f (N )+ K )). Since K is O(1), it follows that the main contribution to the com-
plexity of the clustering procedure is due to the cost f (N ) of the kNearestNeighbor
procedure.

Therefore, the main efforts towards computational savings are to be geared along
the design of an efficient method for neighbor search. In pursuing such a goal, we
minimize the number of database accesses and avoid the computation of all pair-wise
distances.
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3 Optimizing the search for neighbors

The retrieval of neighbors in the clustering algorithm of Fig. 1 can be performed by
using an indexing scheme, that supports the execution of similarity queries and can
be incrementally updated with new tuples.

A substantial improvement to the performance of the Generate- Clusters
algorithm can be achieved by exploiting a hash-based indexing scheme, which could
guarantee, on average, the execution of neighbor searches in a time that does not
depend on the number of database tuples.

A basic idea is to map any tuple to a proper set of features, so that the similarity
between two tuples can be evaluated by simply looking at their respective features.
Under this perspective, the role of the hashing method is to maintain the association
between tuples and the corresponding features, so that the neighbors of a tuple µ can
be efficiently computed, by simply retrieving the tuples that appear in the same buckets
as µ.

To this purpose, a hash-based index structure, simply called Hash Index, is intro-
duced, which consists of a pair H = 〈F I, E S〉, where:

• E S, referred to as External Store, is a storage structure devoted to manage a set
of tuple buckets through an optimized usage of disk pages: each bucket gathers
tuples that are estimated to be similar to each other, for they sharing a relevant set
of properly defined features;

• F I , referred to as Feature Index, is an indexing structure which, for each given
feature s, allows to efficiently recognize all the buckets in E S that contain tuples
exhibiting s.

Figure 3 illustrates how such an index can be exploited for performing nearest-
neighbor searches and, then, supporting the whole clustering approach previously
described. The algorithm works according to two main parameters: the number K of
desired neighbors and the maximum allowed distance δ from the query tuple µ. It is
worth noticing that both the indexing of a tuple and the retrieval of its neighbors are
based on generating relevant features for the tuple itself.

The algorithm uses two auxiliary structures, namely the set S of features to be
generated as well as the set N of neighbor tuples to return as an answer. For conve-
nience, tuples in N are sorted according to their distance from the query tuple µ.

Lines 3–16 specify how the set N is filled. First, a feature x is extracted (line 4)
and the FI.Search method is exploited to retrieve the logical address of the bucket
associated with x . For each of these buckets lines 9–13 iteratively extract the indexed
tuples (using ES.Read) and try to insert them into N . Specifically, a tuple ν can be
inserted within N in two cases: (1) either the size of N does not exceed its capacity, or
(2) N capacity is K , but it contains an element whose distance from µ is higher than
the distance between ν and µ—actually, N .Max Dist () here denotes the maximum
distance between µ and any tuple in N . If needed, the element least similar to µ is
removed from N , in order to make room for ν. As a side effect, the algorithm updates
F I and E S, in order to correctly refer to the novel tuple µ.
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Fig. 3 The kNearestNeighbor procedure

3.1 Naïve hashing based on exact matching

A fundamental aspect in our approach concerns the choice of features for indexing
tuples, which heavily impacts the effectiveness and efficiency of the overall method-
ology, and should be carefully tailored to the criterion adopted for comparing tuples.
An interesting starting point is proposed in Cesario et al. (2005), that defines an index-
ing scheme for the retrieval of similar tuples, relying on a set-based dissimilarity
function, namely the Jaccard distance: for any two tuples µ, ν ⊆ M, dist(µ, ν) =
1 − |µ ∩ ν|/|µ ∪ ν|. In practice, distM is assumed to correspond to the Dirichlet
function. Hence, the dissimilarity between two itemsets is measured by evaluating
their degree of overlap.

In this case, a possible strategy for indexing a tuple µ simply consists in extracting a
number of non-empty subsets of µ, named subkeys of µ, as indexing features. As the
number of all subkeys for a given tuple is exponential in the cardinality of the tuple
itself, the method was tuned to produce a minimal set of “significant” subkeys, which
yet allow to retrieve all the tuples, whose distance from µ is lower than a specified
threshold δ. In particular, a subkey s of µ is said δ-significant if �|µ| × (1 − δ)
 ≤
|s| ≤ |µ|. Notice that, if we restrict ourselves to 1-subkeys, then the indexing scheme
behaves exactly like an inverted-list index. However, inverted indexes do not guarantee
that a minimal set of candidate tuples is retrieved.

Notably, any tuple ν such that dist J (µ, ν) ≤ δ must contain at least one of the
δ-significant subkeys of µ (Cesario et al. 2005). Indeed, dist J (µ, ν) ≤ δ implies that

|µ ∩ ν| ≥ |µ ∪ ν| × (1 − δ) ≥ |µ| × (1 − δ)

from which it follows that |µ ∩ ν| is a δ-significant subkey of µ.
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Therefore, searching for tuples that include at least one of the δ-significant subkeys
derived from a tuple µ, constitutes a strategy for retrieving the neighbors of µ with-
out scanning the whole database. Such a strategy also guarantees an adequate level
of selectivity: indeed, if µ and ν contain a sensible number of different items, then
their δ-significant subkeys do not overlap. As a consequence, the probability that ν is
retrieved for comparison with µ is low.

Despite its simplicity, the indexing strategy sketched above was proven to work quite
well in practical cases (Cesario et al. 2005). Notwithstanding, two main drawbacks
can be observed:

1. The cost of the approach critically depends on the number of δ-relevant subkeys:
the larger is the set of subkeys, the higher is the number of writes needed to update
the index.

2. More importantly, the proposed key-generation technique does not recognize
nearly identical tokens, i.e., highly resemblant tokens, that exhibit few syntactic
variations. As a consequence, any two tuples made up of nearly identical tokens
would not be treated as duplicates. As an example, the tuples

µ1 Jeff, Lynch, Maverick, Road, 181, Woodstock
µ2 Jef, Lync, Maverik, Rd, 181, Woodstock

would not be recognized as duplicates, even though they clearly refer to the same
entity, due mainly to semantically irrelevant syntactic differences between pairs of
corresponding tokens, that cannot be properly treated via exact matching. Notice
that, lowering the degree δ of dissimilarity, partially alleviates such an effect,
though considerably worsening the performances of the index.

4 Hierarchical approximated hashing based on q-grams

We here define a hash-based index that overcomes the aforementioned limitations. In
particular, we aim at developing a key-generation scheme, that allows a constant num-
ber of disk writes and reads, being simultaneously capable of keeping a fixed (low)
rate of false negatives. Notice that these are contrasting objectives in the approach
described in Sect. 3.1, since in order to keep I/O operations low we need to generate
few δ-significant subkeys, whereas low values of δ produce more false negatives.

To overcome these limitations, we have to generate a fixed number of subkeys,
which, however, are capable of reflecting both the differences among itemsets and
those among tokens. To this purpose, we define a key-generation scheme by combin-
ing two different techniques:

• the adoption of hash functions based on the notion of minwise independent
permutation (Gionis et al. 1999; Broder et al. 1998), for bounding the probability
of collisions;

• the use of q-grams (i.e., contiguous substrings of size q) for a proper approximation
of the similarity among string tokens (Gravano et al. 2001).

A locally sensitive hash function H for a set S, equipped with a distance function D,
is a function that bounds the probability of collisions to the distance between elements.
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Formally, given H , for each pair of elements p, q ∈ S and each distance value ε, there
exist values Pε

1 and Pε
2 such that

• if D(p, q) ≤ ε then Pr[H(p) = H(q)] ≥ Pε
1 , and

• if D(p, q) > ε then Pr[(H(p) = H(q)] > Pε
2 .

Clearly, such a function H provides a simple solution to the problem of false negatives
described in the previous section. Indeed, for each tuple µ, we can define a representa-
tion rep(µ) = {H(a)|a ∈ µ}, and fill the hash-based index by exploiting δ-significant
subkeys from such a representation.

To this purpose, we can exploit the theory of minwise independent permutations
(Broder et al. 1998). A minwise independent permutation is a coding function π of a
set X of generic items such that, for each x ∈ X , the probability that x is associated
with the minimum code is uniformly distributed, i.e.,

Pr[min(π(X)) = π(x)] = 1

|X |
A minwise independent permutation π naturally defines a locally sensitive hash func-
tion H over an itemset X , defined as H(X) = minx∈X (π(x)). Indeed, for each two
itemsets X and Y , it can be easily verified that

Pr[min(π(X)) = min(π(Y ))] = |X ∩ Y |
|X ∪ Y |

This suggests that, by approximating distM(ai , a j ) with the Jaccard similarity among
some given features of ai and a j , we can adopt the above envisaged solution to the
problem of false negatives. When M contains string tokens (as it usually happens in
a typical entity resolution setting), the features of interest of a given token a can be
represented by the q-grams of a. It has been shown (Gravano et al. 2001; Ukkonen
1982) that the comparison of the q-grams provides a suitable approximation of the
Edit distance, which is typically adopted as a classical tool for comparing strings.

The theory of minwise independent permutations can even help us in solving the
problem of bounding the number of I/O operations. Indeed, the generation of δ-signif-
icant subkeys can be avoided by resorting to a further minwise hash function defined
over the tuples. If two tuples µ and ν exhibit dist J (µ, ν) = δ, then a minwise encoding
H specifically tailored to tuples guarantees Pr[H(µ) = H(ν)] = 1−δ. Hence, H can
contribute to build the set S of relevant features to exploit in the kNearestNeigh-
bor procedure of Fig. 3, by identifying a feature of µ with H(µ). By exploiting a
fixed number of different encoding functions, we populate the set S with a controlled
number of features to be exploited within the index.

Thus, given a tuple µ to be encoded, the key-generation scheme we propose works
in two different hierarchical levels:

• at the first level, each element a ∈ µ is encoded by exploiting a minwise hash
function Hl . This guarantees that two similar but different tokens a and b are with
high probability associated with a same code. As a side effect, tuples µ and ν
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sharing “almost similar” tokens are purged into two representations, where such
tokens converge towards unique representations.

• at the second level, the set rep(µ) obtained from the first level is encoded by
exploiting a further minwise hash function Hu . Again, this guarantees that purged
tuples sharing several codes are associated with a same key.

The key resulting from the final, second-level coding can be effectively adopted in the
indexing structure described in Sect. 3.

As an example, let us consider the tuples

µ1 Jeff, Lynch, Maverick, Road, 181, Woodstock
µ2 Jef, Lync, Maverik, Rd, 181, Woodstock

By exploiting 1-g, distM(Jeff,Jef) = 0, distM(Lynch,Lync) = 0.2, distM
(Maverick,Maverik) = 0.125 and distM(Rd,Road) = 0.5. An appropri-
ate minwise function would hence likely associate the same code to the first 3
terms and a distinct code to the remaining terms with higher syntactic difference.
Hence, a first-level encoding would likely result in the transformations rep(µ1) =
{h1, h2, h3, h4, h5, h6} and rep(µ2) = {h1, h2, h3, h7, h5, h6}. Notice now that
dist(rep(µ1), rep(µ2)) = 0.285: as a consequence, a second-level minwise hash func-
tion would likely associate the same code to both rep(µ1) and rep(µ2). This would
allow to achieve an effective indexing strategy in support of the kNearestNeighbors
procedure.

A key point is the definition of a proper family of minwise independent permutations
upon which to define the hash functions. A very simple idea is to randomly map a fea-
ture x of a generic set X to a natural number. Then, provided that the mapping is truly
random, the resulting probability that a generic x ∈ X is mapped in a minimum num-
ber is uniformly distributed, as required. In practice, it is hard to obtain a truly random
mapping. Hence, we exploit a family of “practically” minwise independent permuta-
tions (Broder et al. 1998), i.e., the functions π(x) = (ac(x)+ b) mod p, where a �= 0
and c(x) is a unique numeric code associated with x (such as, e.g., the code obtained
by the concatenation of the ascii characters it includes). Provided that a, b, c(x) and
p are sufficiently large, the behavior of π is practically random, as we expect.

We further act on the randomness of the encoding, by combining several alternative
functions (obtained by choosing different values of a, b and p) as shown in Fig. 4.
Recall that a hash function on π is defined as Hπ (X) = minx∈X (π(X)), and that
Pr[Hπ (X) = Hπ (Y )] = |X ∩ Y |/|X ∪ Y | = ε. Notice that the choice of a, b and p
in π introduces a probabilistic bias in Hπ , which can in principle leverage false nega-
tives. Let us consider the events A ≡”sets X and Y are associated with the same code”,
and B = ¬A. Then, pA = ε and pB = 1 − ε. By exploiting h different encodings
Hl

1, . . . , Hl
h (which differ in the underlying π permutations), the probability that all

the encodings exhibit a different code for X and Y is (1 − ε)h . If ε > 1
2 represents the

average similarity of items, we can exploit the h different encodings for computing
h alternative representations rep1(µ), . . . , reph(µ) of a tuple µ. Then, by exploiting
all these representations in a disjunctive manner, we lower the probability of false
negatives to (1 − ε)h .

In general, allowing several trials generally flavors high probabilities. Consider the
case where ε < 1

2 . Then, the probability that, in k trials (corresponding to k different

123



An incremental clustering scheme for data de-duplication 165

Fig. 4 The hierarchical key-generation procedure

choices of a, b and p) at least one trial is B is 1 − εk . We can apply this to the second-
level encoding, where, conversely from the previous case, the probabilistic bias can
influence false positives. Indeed, two dissimilar tuples µ and ν could in principle be
associated with the same token, due to a specific bias in π which affects the computa-
tion of minimum random code both in repi (µ) and in repi (ν). If, by the converse a key
is computed as a concatenation of k different encodings Hu

1 , . . . , Hu
k , the probability

of having a different key for µ and ν is 1−εk , where ε is the Jaccard similarity between
repi (µ) and repi (ν).

5 Experimental results

In this section we study the behavior of the Generate- Clusters algorithm proposed
in Fig. 1. Experiments are aimed at evaluating whether the proposed indexing methods
allow substantial efficiency in the clustering task and whether an appropriate number
of clusters is generated. In particular, we study the behavior of the algorithm equipped
with both types of hash-based indexing structures, introduced in Sect. 3, to investi-
gate its performances (i.e., its efficiency and effectiveness) in the two cases. Both the
indexes are made of basic blocks of a fixed size (1 k). Disk usage is evaluated, for each
retrieval, by measuring the number of blocks involved in the operation (either read or
write). The effects of caching are ignored: in principle, what we show in the graphs is
a worst-case analysis. Experiments are conducted on both real and synthesized data.
The algorithm was executed on an Intel Itanium processor with 4 Gb of memory and
2 Ghz of clock speed.

The section is structured as follows. First of all, Table 1 summarizes all the different
parameters mentioned throughout the section. Section 5.1 describes the features of
the data exploited for evaluation purposes, as well as the quality measures adopted
for assessing the effectiveness of the proposed approaches. In Sect. 5.2 we measure
the effectiveness and the efficiency of the Naive hashing approach. To this purpose,
we equip the search for neighbors with both the Naive hashing scheme and a differ-
ent, state-of-the-art, indexing scheme. The purpose, here, is to evaluate whether the
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Table 1 Summary notation
for all the parameters

Parameter Meaning
q Size of contiguous substrings of a token

h Number of different lower-level encodings

k Number of different upper-level encodings

δ Maximum distance threshold

K Number of neighbors

N Size of the data

C Number of clusters

Naive approach is competitive w.r.t. other methods in the literature. Finally, Sect. 5.3
is devoted to the study of the Hierarchical Approximated hashing approach. The main
purpose here is to study a suitable setting of the parameters h, k and q influencing the
effectiveness of the approach.

The effectiveness of the Hierarchical Approximated hashing approach (see Sect. 4)
relies on a proper setting of parameters h and k. Low values of h leverage false
negatives, whereas high values leverage false positives. Analogously, low values of
k leverage false positives, whereas high values should, in principle, leverage false
negatives.

We aim at finding suitable values of these parameters, that fix a high correspondence
between the retrieved and the expected neighbors of a tuple.

5.1 Experimental setting

Efficiency was tested by applying the algorithm to the task of de-duplicating tuples
representing demographic information in a banking scenario. The real data set used for
this purpose consists of a collection of about 105, 140 tuples (not publicly available),
corresponding to information about customers of an Italian bank. In particular, each
record corresponds to registry information about a customer. Data was preliminary
preprocessed by exploiting the techniques detailed in Cesario et al. (2008). In addi-
tion, records corresponding to the same individual were known from background
knowledge: in particular, each tuple exhibits an average of 8 relevant neighbors, and in
general distances between two tuples referring to different individuals exhibit high val-
ues. Hence, data refers to almost 13,000 individuals, and different individuals exhibit
a high degree of separation.

Effectiveness, on the other side, was tested on synthetic data sets. Data generation
was tuned according to the following parameters:

• the average size T of the itemsets associated with each attribute in the tuple;
• the number of clusters C ;
• the number of tuples N ;
• the percentage of perturbation p.

Each cluster was obtained by first generating a representative of the cluster and,
then, producing the desired duplicates as perturbations of the representative itself.
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The individual cluster-representative is generated by randomly picking a certain
number of tokens from one common set of tokens. In principle, this generation scheme
allows for any supplied extent of overlap between different representatives. However,
we did not generate overlapping representatives, since our intent was to investigate the
behavior of the devised approaches in identifying groups of actual duplicates of neatly
distinct entities. Within each cluster, a perturbation was obtained by either deleting,
adding or modifying an original token within the corresponding cluster-representa-
tive. The number of perturbations was governed by a Gaussian distribution with p
as mean value. The parameter p was eventually exploited to study the sensitivity of
the proposed approaches to the level of noise affecting the data (due, for example, to
misspelling errors).

Effectiveness was measured by evaluating the degree of overlap between the
expected and the actual number of clusters. To this purpose, we adapted some standard
quality measures from the literature. For a generic tuple µ in DB, we are interested
in evaluating the number T Pµ of true positives (i.e., the tuples which are retrieved
from the index and that belong to the same cluster of µ) and compare the latter with
the number of false positives F Pµ (i.e., tuples retrieved without being neighbors of
µ) as well as false negatives F Nµ (i.e., neighbors of µ which are not retrieved).
The indexes TP-rate, FP-rate and FN-rate represent moving-window aver-
ages, i.e., the average values of, respectively, TPµ, FPµ and FNµ, relative to the
current portion of the database DB� (with � ranging from ∅ to DB). We also intro-
duce some global indicators, i.e., T P = ∑

µ∈DB T Pµ, F P = ∑
µ∈DB F Pµ and

F N = ∑
µ∈DB F Nµ, in addition to the average precision and recall per tuple, i.e.,

precision = 1
N

∑
µ∈DB

T Pµ

T Pµ+F Pµ
and recall = 1

N

∑
µ∈DB

T Pµ

T Pµ+F Nµ
.

5.2 Evaluation of the Naïve hashing approach

In the first part of our experimentation, we measure the effectiveness and the efficiency
of the Naive hashing approach. To this purpose, we equip the search for neighbors
with both the Naive hashing scheme and a different, state-of-the-art, indexing scheme.
The purpose, here, is to evaluate whether the Naive approach is competitive w.r.t. other
methods in the literature. The Naive index resides on secondary memory and, hence,
it is necessary to evaluate its behavior on disk too. Thus, we consider the following
three parameters in our experimentation:

• The number of distances computed during the selection of the neighbors. This is
an effective evaluation parameter, which represents how many comparisons are
performed during an insert/select operation and provides for an estimation of the
CPU overhead.

• The number of disk pages read during the selection of objects. In principle, the
hash-based approach could cause continuous leaps in the read operations, even if
a small number of comparisons is needed.

• The number of disk pages written while updating the index. Since the index has
to be incrementally maintained, it is important to evaluate the cost of such a
maintenance.
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Fig. 5 Performance comparison. a M-Tree: No. of distances computed per tuple. b Hash: No. of distances
computed per tuple. c M-Tree: No. of I/O reads. d Hash: No. of I/O reads. e M-Tree: No. of I/O writes.
f Hash: No. of I/O writes

We chose to compare the Naive hashing scheme with the M-Tree (Ciaccia et al. 1997)
index structure, where tuple proximity is measured in terms of Jaccard distance.

Figures 5 and 6 compare the performance of the clustering algorithm, equipped with
both the M-Tree and the Naive hash index structures, on real data. We adopted the
M-Tree implementation available on the Web.1 The tree was tuned by setting node
size to 4K and adopting a random split policy. In both techniques we fixed δ = 0.2
and K = 10.

1 Details can be found at http://www-db.deis.unibo.it/Mtree/.
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(a) (b)

(c)

Fig. 6 Summary of evaluation. a No. of distances on real data. b No. of I/O reads on real data. c No. of
I/O writes on real data

The graphs represent the performances of the approaches w.r.t. the data size. In
particular, the horizontal axis represents the portion of data examined thus far. The
evaluation of the incremental behavior of the approach can be made by observing
whether the increase of the measure under consideration is bounded. This clearly does
not happen in Fig. 5a, c, representing, respectively, the number of distances and I/O
Reads of the M-Tree approach.

Table 2 summarizes the above graphs, by reporting the amount of comparisons, I/O
Reads and I/O Writes for increasing amounts of data stored in the index. Notice that,
on average, the amount of comparisons and I/O reads is low. Nevertheless, a search
in the M-Tree exhibits a substantially linear behavior in the number of objects stored
in the tree. This is also testified by Fig. 6a, b. In these graphs, the performances of the
approaches have been averaged on 5,000 tuples.

On the other side, the Naive hashing scheme exhibits a performance which is
bounded by a constant factor, as shown in Fig. 5b, d. In particular, 90% of the
tuples retrieve their neighbors by exploiting less than 41 comparisons and 15 disk
reads, as shown in Table 2. Also, graphs in Fig. 6 show a substantial difference in the
performance of the approach based on hashing w.r.t. the one based on the M-Tree.

Notice that, at first glance, it seems that the two graphs in Fig. 6a, b show the same
behavior. However, such graphs highlight a subtle difference in the selectivity of both
indexes. Indeed, the average number of neighbors retrieved for each disk I/O read
is around 10 for the M-Tree; by contrast the hash index detects a lower number of
neighbors (1–2 objects per I/O read).
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Table 2 Performances of the approaches for increasing amounts of examined data

Index size 0 10513 21027 31541 42055 52569 63083 73597 84111 94625 105139

Distances
M-Tree 0 15 57 121 201 298 425 620 1013 1956 8719

Hash 0 0 0 1 5 11 24 28 32 41 291

I/O Reads
M-Tree 1 2 8 12 16 22 30 47 74 139 633

Hash 2 5 5 6 6 8 8 10 11 15 232

I/O Writes
M-Tree 0 0 0 1 1 1 1 1 2 2 12

Hash 2 4 5 5 5 6 6 7 8 10 232

An opposite trend can be seen in the number of disk writes. This is mainly due to the
different inner mechanisms, around which the two structures are built. The number of
disk writes in the Naive hashing method depends on the number of δ-relevant subkeys.
The larger is the set of subkeys, the higher is the number of writes needed in order to
update the index. On the contrary, the M-Tree is a balanced structure whose update
causes (at most) a number of writes proportional to the depth of the tree. Indeed, in
order to update its structure, the M-Tree has to select the most appropriate position of
the current tuple. After a suitable node has been identified (which does not necessarily
correspond to the most suitable node), the tree inserts the tuple in the node and writes
the node back to the disk. An overhead is possible only if the insertion causes a node
overflow. In such a case, the node is split and the insertion is propagated upward in
the tree.

Effectiveness was evaluated by measuring the overlap between the expected number
of clusters and the actual number of discovered clusters. Clearly, the latter depends
from the K and δ parameters (Sect. 3.1). Since such parameters directly influence
an indexing scheme while performing neighbor searches, a major issue is whether
the neighbors, retrieved from the index, suffice to perform a correct classification. To
properly answer such a question, we exploit the FP-rate. The synthetic data sets,
used to test the effectiveness of the Naive hashing approach, were generated according
to the following parameters: T = [5,10,20], N = 100,000 and C = 20,000. Since the
Naive hashing approach is insensitive to the dissimilarity between single tokens, we
set the perturbation percentage p = 0.

Figure 7 summarizes the values of the FP-rate with K = 10 and δ = 0.2. Here,
the FP-rate is constant (fairly low) except in the case T = 5. The latter exhibits
higher values mainly because the size of the itemsets contained in the tuples causes
the generation of 1-subkeys, that ultimately yield a large number of false positives.

The discussion above shows that, despite its simplicity, the Naive hashing approach
is more efficient than the M-Tree structure. To this point, we underline that the Hierar-
chical Approximated hashing technique overtakes some deficiencies of our previous
approach. In particular, as we show next, it is capable of determining a further improve-
ment in efficiency, without lowering effectiveness.
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Fig. 7 FP-rate on artificial data (K = 10 and δ = 0.2)

5.3 Evaluation of the hierarchical approximated hashing approach

The effectiveness of the Hierarchical Approximated hashing approach (see Sect. 4)
relies on a proper setting of parameters h and 0k. Low values of h leverage false
negatives, whereas high values leverage false positives. Analogously, low values of
k leverage false positives, whereas high values should, in principle, leverage false
negatives. We aim at finding suitable values of these parameters, that fix a high cor-
respondence between the retrieved and the expected neighbors of a tuple. We do not
compare the running times of Hierarchical Approximated hashing to Naive Hashing:
clearly, the hierarchical approach allows to bound the number of accesses to disk (and
consequently the number of prospective neighbors discovered) by h (that is, the num-
ber of keys associated to a record). Hence, there is a direct way of keeping the running
times of the hierarchical approach low.

The values of quality indicators, such as precision and recall, influence the effec-
tiveness of the clustering scheme of Fig. 1. In general, high values of precision allow
for correct de-duplication: indeed, the retrieval of true positives directly influences the
MostLikelyClass procedure, that assigns each tuple to a cluster. When precision is
low, the clustering method can be effective only if recall is high.

Notice that low precision may cause a degradation of performances, if the number
of false positives is not bounded. Thus, we also evaluate the efficiency of the indexing
scheme, in terms of the number of tuples retrieved by each search. This value depends
on h and k and is, clearly, related to the rate of false positives.

The synthetic data set, used to the test the Hierarchical Approximated hashing
approach, was produced by setting the foresaid generation parameters as follows:
T = 20, N = 1,000,000 and C = 50,000 (i.e., an average of 20 tuples per cluster).

We decided to use a larger synthetic data set of 1,000,000 of tuples to fully test and
highlight the scalability of the Hierarchical Approximated hashing approach.

Figures 8 and 9 illustrate the results of some tests conducted on the synthesized data,
in order to analyze the sensitivity of retrieval to the parameters q, h and k (relative
to the indexing scheme) as well as p (relative to noise in the data). In particular, the
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(a)

(b)

Fig. 8 Precision and recall on synthetic data w.r.t. q-gram size (q) and nr. of hash functions (h, k).
a Precision vs. h, k and q, b recall vs. h, k and q

values of q ranged over 2, 3, 1-2 (both 1 and 2-g) and 1-2-3 (q-grams with sizes 1, 2
and 3).

Figure 8a, b show the results of precision and recall for different values of h and k,
with p = 2. We can notice that precision raises on increasing values of k and decreases
on increasing values of h. The latter statement does not hold when q-grams of size 1
are considered. In general, stabler results are guaranteed by using q-grams of size 3.
As to the recall, we can notice that, when k is fixed, increasing values of h correspond
to improvements as well. If h is fixed and k is increased, the recall decreases only
when q = 3. Here, the best results are guaranteed by fixing q = 1-2-3. In general,
when h ≥ 3 and k ≥ 3, the indexing scheme exhibits good performances.

Figure 9a, b are useful to check the robustness of the index. As expected, the
effectiveness of the Hierarchical Approximated hashing approach tends to degrade
when higher values of the perturbation factor p are used to increase intra-cluster
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(a)

(b)

Fig. 9 Precision and recall on synthetic data w.r.t. q-gram size (q) and perturbation. a Precision vs.
perturbation and q, b recall vs. perturbation and q

dissimilarity. However, the proposed retrieval strategy keeps on exhibiting values of
precision and recall, that can still enable an effective clustering. More precisely, the
impact of perturbation on precision is clearly emphasized when tuples are encoded by
using also 1-g, whereas using only either 2 or 3-g allows for making precision results
stabler. Notice that for q = 3 a nearly maximum value of precision is achieved, even
when a quite perturbed data set is used.

Figure 10 provides some details on the progress of the number of retrieved neigh-
bors, T P, F P and F N , when an increasing number of tuples is inserted in the index.2

Conceptually, we can expect a given number n of true neighbors. However, the label
Retrievals refers to the number of actual neighbors detected by the technique. In
practice, Retrievals = T P + F P and n = T P + F N . In other words, the objects
detected by the algorithm are either true neighbors or wrong “side effects”, and F N

2 The y-axis in the graphs represent the number of prospective neighbors.
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(a) (b)

(c) (d)

(e)

Fig. 10 Scalability w.r.t. the data size. a q = 2; h = 3; k = 3, b q = 2; h = 5; k = 5, c q = 3; h =
3; k = 3, d q = 3; h = 5; k = 5, e q = 3, one level of hashing

represents the neighbors missed. The graphs are a compact representation of all these
measures.

Due to space limitations, only some selected combinations of h and k, and q are
considered, which were deemed as quite effective in previous analysis. Anyway, we
pinpoint that some general results of the analysis illustrated here also apply to other
cases. As usual, the values are averaged on a window of 5,000 tuples.
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It is interesting to observe that the number of retrievals for each tuple is always
bounded, although for increasing values of the data size the index grows. This general
behavior, which we verified for all configurations of h, k and q, clearly demonstrates
the scalability of this approach. In particular, we highlight that for q = 3 the number of
retrievals is always very low and nearly independent of the number of tuples inserted
(see Fig. 10c, d). In general, the figures confirm the conceptual analysis that the num-
ber of I/O operations directly depends on the parameter h, the latter determining the
number of searches and updates against the index.

All these figures also agree with the main outcomes of the analysis on effectiveness
we previously conducted with the help of Fig. 8. In particular, notice the rapid decrease
of F P and F N when both k and h turn from 3 to 5, in the case of q = 2 (Fig. 10a, b),
that motivates the improvement in both precision and recall observed in these cases.
Moreover, the high precision guaranteed by using our Hierarchical Approximated
hashing approach with q-grams of size 3, is substantiated by Fig. 10c, d, where the
number of retrieved tuples is very close to the number of T P; in particular, for k = 5
(Fig. 10d), the F P curve definitely flattens on the horizontal axis as well as the best
behavior obtained by the Naive hashing approach in Fig. 7 for T = 20. Figure 10e
shows the baseline performance of one level of approximated hashing, in which one
key is generated for each tuple and token similarity is approximated by means of
q-grams with size 3. A comparison of the performances in Fig. 10c, d against the
one in Fig. 10e is particularly helpful to highlight the actual improvement inherent in
using two levels of hashing versus one level of hashing. Notice that, in the latter case,
despite the high degree of precision enforced by setting q to 3, retrieved neighbors
are essentially false positives and the number of false negatives sensibly increases. As
discussed at the end of Sect. 4, the presence of one hash function to provide a single-
level encoding of the available data tuples prevents from suitably dealing with false
negatives, which has been empirically shown to require multiple first-level encodings
in a disjunctive manner. In addition, the absence of a second-level encoding does not
allow to cope with false positives, which would conversely require the conjunctive
exploitation of multiple second-level encodings.

The considerations drawn from the above analysis are confirmed by experiments
on real data. Figure 11a shows the results obtained for precision and recall by using
different values of q. Notably, precision is measured by exploiting the true identity
associated with each record, as anticipated in Sect. 5.1. In practice, this means that real
data also contains class information. This ultimately allows us to compute meaningful
T P, F P , and F N measures. As we can see, recall is quite high even if precision is
low (which still enables an effective clustering). Figure 11b summarizes the average
number of retrievals and quality indices. Notice that the average number of retrievals
is fairly low, thus guaranteeing a good scalability of this approach.

Figure 11b allows a direct comparison with the average number of retrievals obtained
by the Naive hashing approach in Fig. 5b and, also, shows the superiority in efficiency
of the Hierarchical Approximated hashing scheme. To this purpose notice that, in the
worst case (q = 1, 2), the average number of retrievals obtained by the Hierarchical
Approximated hashing approach is lower than 9, whereas in the case of Naive hashing
technique, it reaches 50.
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Fig. 11 Results on real data using different q-gram sizes. a Precision and recall, b average number of
retrievals, T P, F P and F N

We next report on two further aspects related to the incremental de-duplication pro-
cess based on Hierarchical Approximated hashing, i.e., the dependence of both the
index size as well as the running time on the number of clusters in the underlying
data. This allows to highlight the performance of incremental de-duplication, when
the number of clusters is significantly less than O(N ). Interestingly, such an objec-
tive neatly contrasts with the underlying assumption of the previous tests, where the
number of clusters is implicitly O(N ) (N represents the size of the underlying data),
which is a particularly beneficial setting since the Propagate procedure does not
end up reorganizing the whole database. For the evaluation, we studied the behavior
of incremental de-duplication obtained by fixing parameters q, h, k to some specific
values, that were previously found capable of ensuring effectiveness, on three syn-
thetic datasets of 1,000,000 tuples including, respectively, 1, 10 and 100K clusters.
Specifically, q was set to 3, while both h (i.e., the number of disjunctive hash functions
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Table 3 Running times in minutes for de-duplication with disk-resident index versus number of clusters

Number of clusters (k) Parameter configuration

q = 3, h = 3, k = 3 q = 3, h = 3, k = 5 q = 3, h = 5, k = 5

1 2,096 2,562 3,919

10 1,062 1,155 1,765

100 985 1,062 1,714

Fig. 12 Size of the disk-resident index-structure versus number of clusters

at the lower level of the encoding scheme) and k (i.e., the number of conjunctive hash
functions at the upper level of the encoding scheme) ranged into the set {3, 5}. The
number of retrieved neighbors was fixed to 5. Table 3 summarizes the running times
expressed in minutes for a certain combination of parameter values over any cluster
number, while Fig. 12 indicates the respective index size. By looking at Fig. 12 and
Table 3, one can notice that both the index size and the running time increase when
q, h, k are increased. In particular, higher values of h and k result into a larger number
of longer keys for each tuple, which requires more storage space and also involves
an increasing amount of computation since the kNearestNeighbor procedure must
search for such keys within both the Feature Index and the External Store. Furthermore,
the foresaid illustrations reveal that, in general, as the number of clusters in the data
increases, the overall running time decreases. The rationale is twofold. Foremost, with
a decreasing number of clusters, the kNearestNeighbors procedure must scan, for
each newly arrived tuple, a far larger number of candidate neighbors to distill 5 actual
neighbors that are nearest to the tuple. Moreover, with a smaller number of clusters,
the de-duplication of a new tuple is essentially a further vote in favor of one among
fewer classes and, hence, it is likelier to alter the cluster memberships of its neighbors.
Sporadic propagation tends to degenerate into massive relocation as the number of
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clusters is decreased to much less than O(N ). Indeed, in such cases the Propagate
procedure is invoked at each reassignment of a tuple to a cluster, thus becoming a
workload for the incremental clustering process of linear complexity w.r.t. the size of
the data at hand.

The index size in Fig. 12 is also at the basis of one further consideration. More
specifically, for a certain number of clusters, the two settings q = 3, h = 3, k = 3 and
q = 3, h = 3, k = 5 lead to an index size that in some cases might in principle fit into
main memory, being 4 Gb the memory equipment exploited within our experimental
setting. Nonetheless, the combination q = 3, h = 5, k = 5 produces a sensible growth
of the index structure, whose size is far larger than primary memory for any number
of clusters in the data. Therefore, in the preceding experiments, the index structure
was resident on secondary memory. Obviously, this inflates the running times reported
in Table 3, that are adversely affected by the workloads due to the I/O operations on
secondary memory.

To conclude, Fig. 13 shows the results of a series of experiments with which we
investigated the actual running time of incremental de-duplication when the entire
index structure is loaded into main memory. Again, we stressed incremental de-dupli-
cation by reducing the number of clusters to considerably less than O(N ).

Each curve in Fig. 13 highlights the performance of incremental clustering for a
meaningful combination of parameters h, k. The analysis was conducted on four syn-
thetic datasets of 1,000,000 tuples including, respectively, 100, 1K, 10K and 100K
clusters. In particular, we underline that the three datasets with 1, 10 and 100K clus-
ters are exactly the same as those employed in the set of experiments behind Fig. 12 and
Table 3. Parameter q was set to 3, while the number of retrieved neighbors was fixed to
5. Tests were performed on an Intel Itanium processor with 16 Gb of memory. All other
software/hardware equipments are identical to the ones in the original experimental
setting. As expected, the computational cost of incremental clustering is still influenced
by both the number of hash functions employed at each level and the overall number

Fig. 13 Running times in minutes for de-duplication with memory-resident index versus cluster number
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of clusters in the data. Nevertheless, for each number of clusters, the overall running
time is at least one order of magnitude less than the corresponding one in Table 3.

6 Related work

In the following, we shortly review some prominent proposals for the detection and
management of duplicated data. As a matter of facts, this problem has given rise to
a large body of works in several research communities, where it is referred to with
as many umbrella names, such as, e.g., Merge/Purge (Hernández and Stolfo 1995),
Record Linkage (Fellegi and Sunter 1969; Winkler 1990), De-duplication (Sarawagi
and Bhamidipaty 2002), Entity-Name Matching (Cohen and Richman 2002), Object
Identification (Neiling and Jurk 2003).

In most of these approaches, a major issue is represented by the definition of a method
for comparing objects, especially when information on object identity is carried by tex-
tual fields (indeed, these are subject to various kinds of heterogeneity and mismatches
across different information sources). To this purpose, in addition to classical string
(dis)similarity functions (Gunsfield 1997), several methods (Monge and Elkan 1996,
1997; Cohen et al. 2003; Bilenko and Mooney 2003a; Sarawagi and Bhamidipaty
2002) were defined, which allow to effectively compare textual information in the
context of duplicated data.

Many approaches to the de-duplication problem essentially attempt to match or
cluster duplicated records (Cohen and Richman 2001, 2002; Monge and Elkan 1996),
based on suitable similarity functions. Unfortunately, effectiveness is a major point of
emphasis for the majority of these approaches, that pay minor attention to scalability
and, hence, reveal inadequate under stronger efficiency requirements.

In general, de-duplication approaches can be divided into supervised and
unsupervised.

Supervised approaches learn rules characterizing pairs of duplicates from training
data, consisting of known duplicates (Bilenko and Mooney 2003a; Cohen and Richman
2002). Such methods assume that training data contain the wide variety of possible
errors in practice. However, such a comprehensive collection of training data very
rarely exists in practice. Partially, this issue was addressed by approaches based on
active learning (Sarawagi and Bhamidipaty 2002; Tejada et al. 2002). These require
an interactive manual guidance. In many scenarios, it is not plain to obtain satisfying
training data or interactive user guidance.

It is worth noticing that resorting to unsupervised methods, as consolidated clus-
tering algorithms (Hernández and Stolfo 1995; Ester et al. 1996; Guha et al. 1998,
2001; Ganti et al. 1999), could not guarantee an adequate level of scalability either.
Indeed, even these algorithms would not work adequately in a situation where far too
many clusters are expected to be found, as it does happen in a typical de-duplication
scenario, where the number of clusters can be of the same order as the size of the
database. To the best of our knowledge, the only suitable approaches appear to be the
ones in McCallum et al. (2000); Chaudhuri et al. (2005).

Precisely McCallum et al. (2000) avoids costly pairwise comparisons by grouping
objects in “canopies”, i.e., subsets containing objects suspected to be similar according
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to some cheap (i.e., computationally inexpensive) similarity function and, then, com-
puting actual pairwise similarities only within the discovered canopies. Since in a
typical duplicate detection scenario there are several canopies, and an object is shared
in a very few number of canopies, the main issue in the approach is the creation of
canopies. The authors proposed an effective solution to this issue: nevertheless their
approach is not incremental. In a sense, our approach also builds canopies (which
are collected within the same buckets in the index). The main difference is that the
properties of minwise hashing functions allow to approximately detect such canopies
incrementally.

In Chaudhuri et al. (2005), an efficient two-phase approach is proposed: first deter-
mine the nearest neighbors of every tuple in the database and, then, partition the
original collection into groups of duplicates. The efficiency of the algorithm strictly
relies on the nearest neighbors computation phase, where the availability of any disk-
based index (i.e., inverted index associated with edit or fuzzy similarity functions)
is assumed. Efficiency comes from the lookup order in which the input tuples are
scanned, in order to retrieve nearest neighbors. The order corresponds to a breadth
first traversal of a tree, where the children of any node are its nearest neighbors. The
benefit consists in accessing, for consecutive tuples, the same portion of the index,
thus improving the buffer hit ratio. Our Hierarchical Approximated hashing approach
allows a more direct control on the quality of the neighbors retrieved, also simulating
(by means of q-grams) the edit distance behavior. This could lead to better values of
precision and recall measures. Moreover, with respect to Chaudhuri et al. (2005), our
approach is completely incremental.

There is a plenty of approaches for distance-based search in metric spaces (see, e.g.,
Chavez et al. 2001; Hjatason and Samet 2003 for a survey). Again, these approaches
suffer from the high dimensionality of the space, where search is performed, as
described in Weber et al. (1998): indeed, high dimensionality causes too sparse
regions to analyze and, thus, invalidates the proposed index methods. Recently, some
approaches have been proposed Gravano et al. (2001), Ananthakrishna et al. (2002),
and Chaudhuri et al. (2003), that exploit efficient indexing schemes based on the
extraction of relevant features from the tuples at hand. Such approaches could be
adapted to deal with the problem of de-duplication, even though they are not specif-
ically designed to approach the problem from an incremental clustering perspective,
as we instead discussed here.

Approaches to de-duplication based on locality-sensitive hashing have been pro-
posed in the literature (Gionis et al. 1999; Indyk and Motwani 1998; Broder et al.
1997) as well. Precisely, locality-sensitive hashing was originally developed in Indyk
and Motwani (1998), as an efficient technique for accurately approximating the near-
est-neighbor search problem. Here, the basic idea consists in hashing data points by
means of suitable locality-sensitive hash functions, that bound the probability of col-
lisions to the distance between the points: i.e., similar data points are likelier to be
assigned to a same bucket than dissimilar ones. The approach in Gionis et al. (1999)
refines this basic strategy in several respects, among which new theoretical guaran-
tees on the worst-case time required for performing a nearest neighbor search and
the generalization to the case of external memory. In particular, a high-dimensional
space P of data points is randomly partitioned into hash buckets. The bucket storing
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each point p ∈ P is identified by a corresponding k-bit signature, that is suitably built
from p. Since the overall number of buckets identified in this manner can be very
large, a second level of standard hashing is exploited to arrange such bitstrings into a
single hash table T , whose buckets are directly mapped to disk blocks. In general, it is
possible to loose proximity relationships if a point and its nearest neighbor are hashed
to distinct buckets. Therefore, in order to lower the probability of such an event, the
technique stores a same point into l hash tables T1, . . . , Tl , respectively, indexed by
as many independently-constructed bitstrings. At retrieval time, the query point q is
hashed to a bucket within the individual hash tables T1, . . . , Tl . Objects previously
hashed within the same buckets are collected as candidate neighbors. An exhaustive
search is then carried out across these candidates, in order to find the neighbors closest
to q. These are guaranteed to be at a distance from q within a small error factor of the
corresponding optimal neighbors. The technique requires the identification of an opti-
mal, data-specific tradeoff between two contrasting aspects of the index (Bawa et al.
2005), namely its accuracy and required storage space. By increasing l, accuracy is
guaranteed for the great majority of queries, through a correspondingly larger number
of hash tables. However, this makes the storage requirement inversely proportional
to the error factor. Also, it raises the number of potential neighbors and, hence, the
overall response time. In such a case, one may act on the signature size k, since a high
value of such a parameter would sensibly lower the number of collisions and, hence,
mitigate the increase in response time. Unfortunately, large values of k augment the
miss rate. By the converse, small values of parameter l cannot guarantee accuracy for
all queries.

In our approach, the tradeoff between accuracy and storage space is much less chal-
lenging, since there exists a single hash-based index. Here, guaranteeing accuracy for
all queries, i.e., lowering both the false positive and false negative rates, can be simply
achieved by hashing a same tuple into as many buckets of the index as the number
of lower-level encodings of the tuple itself (for each such a representation, the con-
catenation of its upper-level encodings yields the hash key associated to the tuple).
In practice, a very limited number of encodings suffices to enforce high values of
precision and recall for similarity search, at the cost of a compact storage space. Yet,
from massive empirical evidence, the number of retrievals for each tuple is always
bounded, across all configurations of lower- and upper-level encodings. This gen-
eral behavior determines the efficiency and scalability of the overall de-duplication
process.

An approach for identifying near duplicate Web pages is proposed in Broder et al.
(1997). Here, each Web page is first tokenized and then represented as the set of its
distinct, contiguous n-grams (referred to as shingles). The most frequent shingles are
removed from the set to both improve performance and avoid potential causes of false
resemblance. After preprocessing, near duplicates are identified via a clustering strat-
egy that consists of the following four steps. A sketch is computed for each Web page,
by applying a suitable min-wise independent permutation to its shingle representation.
Sketches are then expanded to generate a list of all the individual shingles and the Web
pages they appear in. Subsequently, this list is exploited to generate a new list of all
the pairs of Web pages with common shingles, along with the number of shared shin-
gles. Clustering is eventually achieved by examining the triplet elements of the latter
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list. If a certain pair of Web pages exceeds a pre-specified threshold for resemblance
(estimated by the ratio of the number of shingles they have in common to the total
number of shingles between them), the two Web pages are connected by a link in a
union-find algorithm, that outputs final clusters in terms of connected components.

The algorithm requires a considerable amount of time and space on disk, especially
due to the third phase, which makes it unscalable. Optimizations based on the notion of
super-shingle addressed such an aspect, although these do not properly work with short
Web pages, which corresponds to the case of small sequences of tokens, addressed in
this paper.

Yet, the de-duplication process strictly requires that the resemblance threshold is
very high to effectively prune several candidate pairs of similar Web pages. Lower
values of the threshold, corresponding to a typical setting for similarity search, cause
several negative effects. False positive candidates are not appropriately filtered, which
lowers precision. Very low values of the similarity threshold may also diminish false
negatives, with a consequently moderate increase in recall. However, in such cases,
the impact on effectiveness of a small gain in recall would be vanished by the corre-
sponding (much larger) loss in precision. As a further remark, the overall clustering
strategy is not incremental.

Similarity-search plays a major goal also in the context of our procedure for the
retrieval of neighbors of a given tuple. In principle, this could be achieved by incor-
porating in our clustering algorithm an indexing scheme that supports the execution
of similarity queries and can be incrementally updated with new tuples. A possible
solution is the adoption of the M-Tree index (Ciaccia et al. 1997), a well-known, state-
of-the-art index/storage structure, which looks like a n-ary tree. The M-Tree structure
represents a balanced, hierarchical clustering structure, in which each cluster has a
fixed size (related to the size of a page to be stored on disk). Similarity search can be
accomplished by traversing the tree and ignoring those subtrees, reputed uninteresting
for the search purpose. The index exhibits the following major features. Firstly, it is
a paged, balanced, and dynamic secondary-memory structure able to index data sets
from generic metric spaces. Secondly, similarity range and nearest-neighbor queries
can be performed and results can be ranked with respect to a given query object.
Thirdly, query execution is optimized to reduce both the number of pages read and
the number of distance computations. These peculiarities, combined with its gener-
ality, make the M-Tree particularly worthwhile to consider in our setting. However,
the benefits of this indexing structure is likely to degrade in a typical entity resolution
scenario. Notably, in such a setting, most of the internal nodes in the tree tend to cor-
respond to a quite “heterogeneous” set of tuples, and hence a high number of levels,
i.e., nearly linear in the number of distinct entities, is required to suitably partition
the whole data set. This causes a general degradation in the performance of the tree
structure.

The exploitation of a hash-based indexing scheme substantially improves the per-
formance of the Generate- Clusters algorithm. Indeed, on average, it guarantees
the execution of neighbor searches in a time that does not depend on the number of
database tuples.

The problem of finding tuples that are similar to a certain query record has been
intensively studied within the database and information retrieval communities.
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Some works from the database community, such as Arasu et al. (2006) and Sarawagi
and Kirpal (2004), focused on solving the problem exactly, by defining set-similar-
ity joins, i.e., suitable operators for database management systems. The techniques
behind such operator are referred to as signature-based algorithms. Here, for a collec-
tion of input sets, the idea is to yield signatures with the desirable property that, if the
similarity of two tuples exceeds a certain threshold, then such tuples share a common
signature. By exploiting this property, signature-based schemes find all pairs of sets
with common features and, eventually, filter all those sets, whose pairwise similarity
actually trespasses the foresaid threshold. An important drawback of the operators
in Sarawagi and Kirpal (2004) is that their scaling is quadratic w.r.r. input size, which
makes it impractical in several applicative domains. Arasu et al. (2006) enhances the
basic scheme of signature-based algorithms in two respects, namely the adoption of
a different scheme for computing set signatures and the incorporation of a theoretical
guarantee, according to which two highly dissimilar sets are not considered as dupli-
cates with a high probability. Clearly, this considerably lowers the overall number of
false-positive candidate pairs and increases the efficiency of the resulting operators,
that scale almost linearly in the size of the input set. However, linear scalability requires
a non trivial parameter tuning, since no single parameter setting is appropriate for all
computations. In practice, for a fixed setting, the operators still scale quadratically
and some properties of the input data must be analyzed so that to establish an optimal
tuning, that ensures linear scalability.

However, exact search is not always desirable, since even a linear dependence on the
database size tends to be critical with volumes of data, thus representing a major limi-
tation for scalability. Rather, in such cases, an approximate answer should be preferred
(Gionis et al. 1999). Due to the peculiarities of the underlying applicative setting, we
approach the problem of finding pairwise similar tuples approximately, i.e., from a
proximity search perspective. Here, there exist several tuples, that are predominantly
dissimilar from one another and, hence, the number K of tuple clusters is expected
to be of the same order as the overall number N of tuples. In this context, finding
a number of tuples, that are mostly similar to a certain query tuple provides enough
information for establishing an appropriate cluster membership for the latter. To this
purpose, locality-sensitive hashing is used to build an approximated answer from all
those tuples, whose features are similar to the ones within the query tuple. In our
de-duplication scenario, relevant neighbors are far closer to the query tuple than the
irrelevant ones and, hence, the retrieved neighbors collectively represent an accurate
approximation of the exact answer. The exploitation of locality-sensitive hashing for
finding similar sets has been proven to deliver performances, that are competitive with
the ones provided by the operators in Arasu et al. (2006). Interestingly, the basic fil-
tering-effectiveness of our proximity search strategy is guaranteed as in Arasu et al.
(2006): the probability that two tuples are associated with a similar encoding is propor-
tional to their degree of overlap. Moreover, by suitably combining several min-wise
independent permutations, we develop a mechanism with which to somehow govern
the false positive and false negative rates. Notice that the effectiveness of Arasu et al.
(2006) in proximity search has not yet been investigated.

Recently, an approach inspired to information retrieval methods (Bayardo et al.
2007) proposed to scale exact join-set methods to large volumes of real-valued vector
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data. This work refines the basic intuition in Sarawagi and Kirpal (2004) of dynam-
ically building an inverted list index of the input sets with some major indexing and
optimization strategies, mainly concerning how the index is manipulated to evaluate
the (cosine) similarity between the indexed records and the query one. From a meth-
odological point of view, our approach exhibits analogies with the ones in Bayardo
et al. (2007); Sarawagi and Kirpal (2004). Indeed, a hash-based index is employed to
maintain associations between a certain tuple feature and the subset of all available
tuples that share that same feature. Also, the index can be incrementally updated as
soon as further tuples need be de-duplicated.

What actually differentiates the proposed search strategy from Bayardo et al. (2007);
Sarawagi and Kirpal (2004) is that these methods essentially pre-compute nearest
neighbors, so that retrieving them becomes a dictionary lookup. The devised hash-
based indexing strategy does not support neighbor pre-computation. Notwithstanding,
it enables neighbor search in a time, that is not dependent on the number of database
tuples. In principle, this basic performance may be improved by incrementally build-
ing and updating a hash-based dictionary, that stores the identified neighbors of the
processed tuples.

Finally, notice that this work embraces the proposal in Cesario et al. (2005) and
improves it in both effectiveness and efficiency. As a matter of facts, by introducing
the Hierarchical Approximated hashing approach, we gain a direct control over the
number of features used for indexing any tuple, which is a major parameter, that criti-
cally impacts on the overall cost of the approach. Moreover, we may tune the approach
to be less sensitive to little differences between matching tokens.

7 Conclusions and future works

We discussed an incremental technique for de-duplicating sequences within the pro-
cess for pursuing Entity Resolution in text data.

The de-duplication technique foresees the identification of duplicate information
and it is explicitly designed for dealing with the scalability and incrementality issues,
that typically arise in this setting. It relies on an incremental clustering algorithm,
that aims at discovering clusters of duplicate tuples. To this purpose, we studied two
key-generation schemes, that allow a controlled level of approximation in the search
for the nearest neighbors of a tuple. These are employed in a coarse-grained approach
in Sect. 3.1, that fails in those cases where likeliness among single tokens is to be
recognized as well, and in a more refined hash-based indexing scheme, in Sect. 4.
An empirical analysis conducted both on synthesized and on real data, showed the
validity of our coarse-grained approach w.r.t. M-Tree, an alternative, state-of-the-art
index scheme. Furthermore, the empirical evaluation also revealed a higher efficiency,
with no effectiveness loss, of the field-wise hash-based indexing scheme w.r.t. the
coarse-grained approach.

Three challenging issues represent major directions for future research.
A first line of research concerns the incorporation of the underlying database schema

into the de-duplication process. Our approach treats the individual database tuple as
a whole textual field and, hence, ignores key information provided by the underlying
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schema of the tuples at hand. Indeed, it considers as nearly duplicates those pairs of
data tuples, whose first-level encodings are mostly overlapping. In general, this could
originate false positives. The point is that a very large extent of overlap between the
first-level encodings of two tuples µ1 and µ2 tends to nullify the effects of those rare
(though relevant) mismatches, that would instead be expected to prevent µ1 and µ2
from being considered as nearly duplicates.

Viewed in this respect, one can exploit the available database schema to refine the
basic key-generation scheme. The idea is as follows. Let S = { f1, . . . , f p} denote
(suitable groupings of) the schema attributes of the tuples at hand. For each original
tuple µ, the first-level encoding yields rep(µ) = {vµ

1 , . . . , v
µ
p }, i.e., a properly frag-

mented encoding, where v
µ
i is the token-by-token purged representation of the attribute

value fi . Subsequently, the second-level encoding separately encodes the distinct field
values v

µ
1 , . . . , v

µ
p . The retrieval of similar tuples is hence accomplished by combining

the keys relative to the different fields and exploiting the resulting aggregate key within
the hash-based index. This corresponds to consider two tuples as nearly duplicates if
their corresponding attributes exhibit strongly matching first-level encodings.

The resulting key-generation scheme implicitly considers the individual (groups of)
schema attributes as equally relevant. Indeed, the second-level min-wise hashing sim-
ply bounds the probability of collisions, between corresponding fields of two tuples µ1
and µ2, to the Jaccard distance of their first-level encodings, i.e., dist(µ1. fi , µ2. fi ) =
1 − |vµ1

i ∩ v
µ2
i |

|vµ1
i ∪ v

µ2
i | . The contribution of individual field resemblance to the overall tuple

proximity is not further weighted by domain-specific attribute-relevance. This pre-
vents from more effectively recognizing, as near-duplicates, those pairs of tuples with
strong matchings over certain attributes, that are actually relevant for the specific
application-purpose. In this regard, the naive indexing scheme in Sect. 3.1 enables
to somehow manipulate the relative relevance of tuple features, by increasing (resp.
decreasing) the number of extracted subkeys.

The challenge of identifying a flexible scheme for explicitly weighting (domain-
specific) attribute relevance motivates a second direction of further research. Our ongo-
ing effort is at devising a field-wise tuple encoding scheme, that allows to measure
the overall dissimilarity of two tuples as the weighted distance of their correspond-
ing attribute values. This is useful in those applicative domains, where two tuples
are considered as nearly duplicates if they exhibit similar values in correspondence
of some particular fields, whatever their overlap degree over the remaining schema
attributes. As an example, in a collection of personal demographic information, two
tuples t1 and t2 generally refer to the same individual when both have similar values
for the SSN, Name and Surname attributes. Possible mismatches over secondary
attributes, such as Street, City, State and Zipcode, may not significantly concur to
prevent the recognition of t1 and t2 as nearly duplicates. Viewed in this perspective,
the possibility of suitably ranking field relevance enables the use of domain-specific
attribute-semantic for more effective de-duplication.

Finally, when strings are too small or too different to contain enough informa-
tive content, the de-duplication task cannot be properly accomplished by the pro-
posed clustering algorithm. To this purpose, we also plan to study the exploitation of
more informative similarity functions. An example is the adoption of link-based
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similarity: recently, some techniques (Kalashnikov et al. 2005) have been proved effec-
tive, though affected by the incrementality issues, that are instead a main motivation
of our work.
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