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Abstract. We propose two models for improving the performance of rule-based classification un-
der unbalanced and highly imprecise domains. Both models are probabilistic frameworks aimed
to boost the performance of basic rule-based classifiers. The first model implements a global-
to-local scheme, where the response of a global rule-based classifier is refined by performing
a probabilistic analysis of the coverage of its rules. In particular, the coverage of the individual
rules is used to learn local probabilistic models, that ultimately refine the predictions from the
corresponding rules of the global classifier. The second model implements a dual local-to-global
strategy, in which single classification rules are combined within an exponential probabilistic
model in order to boost the overall performance as a side effect of mutual influence. Several vari-
ants of the basic ideas are studied and their performances are thoroughly evaluated and compared
with state-of-the-art algorithms on standard benchmark datasets.
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1. Introduction
Classification is one of the most extensively studied tasks in machine learning, pattern
recognition and data mining. Given a collection of labeled training data, the aim is to
learn a suitable model, referred to as a classifier, wherein the regularities in the labeled
data are exploited to induce a reasonable approximation (i.e. a hypothesis) on the actual
mappings between any data case from the same domain and one of multiple predefined
class labels. A classifier is, hence, useful to predict the unknown class of a previously
unseen case, on the basis of the other observable features of the same case. Various
types of classifiers have been proposed in the literature, that meet several different re-
quirements in a wealth of distinct applicative settings, such as decision trees, rule-based
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classifiers, neural networks, naı̈ve Bayes classifiers, support vector machines and statis-
tical classifiers (Duda et al, 2001). In particular, rule learning is a method for inducing
minimal rule-based concept descriptions, that can be used for classification. Rule-based
classifiers are a mainstay of research in machine learning, because of various desir-
able properties such as, e.g., their expressiveness and intelligibility to humans as well as
their efficiency and effectiveness in classification. Such classifiers have been empirically
shown to be effective in processing (sparse) high-dimensional training data with cate-
gorical attributes (Wang and Karypis, 2005) and are comparable in performance with
other classification methods in several applicative domains (Mitchell, 1997). Unfortu-
nately, like most classification models, rule-based classifiers exhibit a poor classification
performance in imprecise (multi-class) learning environments, which are challenging
domains wherein cases and classes of primary interest for the learning task are rare. Be-
sides, minority and majority classes can be hardly separable and the cost of misclassi-
fying a case of a minority class as belonging to a predominant class is much higher than
the cost of the dual error. Also, training data may be corrupted by noise, which further
obstacles the identification of rarities. Imprecise domains are often encountered in prac-
tical applications. Examples include fraud detection (Fawcett and Provost, 1997; Phua et
al, 2004), intrusion detection (Tang et al, 2007), manufacturing line monitoring (Riddle
et al, 1994), risk management, telecommunications management (Ezawa et al, 1996),
medical diagnosis (Chawla et al, 2002), text classification (Weiss, 2004) and oil-spill
detection in satellite images (Kubat et al, 1998). The peculiarities of such settings pose
several challenging issues to traditional algorithms for learning rule-based classifiers,
that essentially make the resulting models low sensitive to rarities.

Rarity is clearly the major obstacle. Rare classes corresponds to the well known
class imbalance issue (Japkowicz, 2000; Japkowicz and Stephen, 2002), i.e. an evenly
distribution of classes, such that majority classes overwhelm minority ones. Instead,
rare cases are very small portions of the training data, that can be viewed as exceptional
sub-concepts seldom occurring within predominant or rare classes. As it is pointed out
in (Weiss, 2004), rarity actually prevents conventional algorithms for rule induction
from finding and reliably generalizing the regularities within infrequent classes and
exceptional cases.

Indeed, class imbalance generally leads to classification models tending to exhibit
a high specificity (i.e. capability at recognizing majority classes), coupled with a low
sensitivity (i.e. capability at recognizing minority classes).

Rare cases, instead, tend to materialize within the learnt classification models as
small disjuncts (Holte et al, 1989), i.e. rules covering very few training cases (Weiss,
2000). Small disjuncts were empirically shown to be a major cause of poor predictive
performance (Weiss and Hirsh, 2000) and cannot be easily removed without adversely
affecting the remaining classification rules.

The foregoing effects of rarity on rule learning are exacerbated by noise. On one
hand, the latter may further skew class imbalance. On the other hand, it may also appear
to the learner as nearly indistinguishable from rare cases.

Besides rarity and noise, different misclassification costs as well as low class sepa-
rability also have a role in making conventional rule learning schemes inadequate within
imprecise domains.

Cost-sensitive methods (Elkan, 2001; Pazzani et al, 1994) may be used to account
for different misclassification costs by explicitly assigning an appropriately higher value
to the recognition of minority classes with respect to the identification of majority
classes. The overall learning process would thus be biased towards rare classes and the
corresponding decision regions within the resulting classification models would have
broader boundaries, suitably extended to cover more minority classes, even if at the
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expense of an increased number of (misclassified) majority classes. Nonetheless, the
domain-specific information on misclassification costs is either seldom known or hardly
quantifiable in an objective manner whenever related to domain experts’ subjectiveness.

In the last decade, classification based on frequent patterns, also known as asso-
ciative classification, has emerged as a powerful enhancement of conventional rule
learning, based on converging research efforts in machine learning and data mining
(for instance see (Hämäläinen, 2010)). Precisely, the basic intuition behind associa-
tive classification is to substitute conventional rule induction with an association-rule
mining step. The resulting classification models, said associative classifiers, consist of
class association rules, i.e. suitable association rules meeting some specific constraints.
The antecedents of these rules are co-occurrent attribute values, that frequently appear
across the training data, while their consequents are suitable values of the target class
attribute. Associative classification is in principle better suited for unsupervised predic-
tive modeling within imprecise learning settings: it retains the advantages of traditional
rule learning and also tends to achieve a better performance for several reasons. Fore-
most, while rule induction dilutes rarity and produces overly biased rules, associative
classification yields rules with an appropriate degree of generality/specificity, that sum-
marize the whole training data. Also, the individual class association rules catch strong,
i.e. frequently occurring, associations between (combinations of) data items and class
labels. This is a robust mechanism with which to handle noise in data. Additionally,
such associations reflect the inherent semantics of the training data and, thus, have a
high discriminative power. The resulting associative classifiers are statistically signifi-
cant and are hence deemed to properly generalize on unseen data (Cheng et al, 2007).
Furthermore, frequent patterns represent a more expressive feature space, where the
original training data is likelier to be linearly separable.

One limitation for associative classification, that is particularly relevant in imprecise
learning settings, is borrowed from traditional rule learning. More specifically, the de-
cision regions induced by a rule-based classifier and the true distribution of the classes
in the space of data do not match. Indeed, classes form regions with irregular and inter-
leaved shapes, whereas the induced decision regions are neatly separated by boundaries
parallel to the features of the data space. As a consequence, those cases falling within
and close to the boundary of a decision region may be misleadingly predicted as belong-
ing to the class associated with that decision region, even if the true class membership
in the surroundings of the boundary is different. This is problematic in imprecise ap-
plicative domains, wherein the separability between classes is low, since these form
true overlapping (or embedded) regions. In such cases, indeed, the true regions formed
by rare classes may be (partly or completely) overlapped by the decision regions asso-
ciated to the predominant classes and, thus, the recognition of previously unseen cases
of the rare classes becomes a major concern.

In this manuscript, we explore associative classification as an enabling mechanism
for designing new classification schemes, capable to induce predictive models that ef-
fectively discriminate rare classes within imprecise (multi-class) learning environments.
We do not deliberately deal with rare cases. As it is pointed out in (Weiss, 2004), the
effectiveness of a classification strategy on rare cases cannot be directly evaluated, since
these are usually unknown. Notwithstanding, both rare classes and rare cases are argued
to be two strongly related facets of rarity, whose issues can be addressed with the same
methods. Hence, it is reasonable to expect that if an approach is effective with rare
classes, it is also useful for dealing with rare cases.

Two approaches are proposed that look at associative classification from two dual
perspectives.

From the global-to-local point of view, associative rule learning yields a global
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(high level) classification model, whose class assignments are then refined locally to
the individual classifier rules. In this regard, one approach essentially builds a hierarchi-
cal classification framework, that combines associative rule learning and probabilistic
smoothing (Costa et al, 2009). The underlying idea is to use the individual rules of an
associative classifier to divide the original training data into as many segments, wherein
it is likely that some globally rare cases/classes become less rare. The resulting seg-
ments are then used to build as many local probabilistic generative models, that better
catch the forms of rarity local to their segments. These probabilistic generative models
are then used to refine the predictions from the classifier rules. Two distinct schemes are
proposed for tightly integrating associative classification and probabilistic smoothing,
that decide the class of an unlabeled case by considering multiple class association rules
as well as their corresponding probabilistic generative models.

From the local-to-global point of view, instead, associative rule learning provides
local data features, that determine global assignments of class probabilities. Therein, in
the second approach, the individual rules of an associative classifier are used as features.
Given a data case, classification takes into account the predictions from all those rules
that are local to the case (i.e. that cover the case). The relevance of a rule with respect
to its targeted class determines the weight of the corresponding feature on the discrimi-
nation of that particular class. This enables the recognition of minority classes via those
classification rules, that are highly representative of such classes (i.e. whose antecedent
reflects item co-occurrences that are inherently characteristic of such classes). The max-
imum entropy framework is used to elegantly and seamlessly integrate associative clas-
sification with discriminative learning.

An intensive empirical evaluation shows that both the global-to-local and the local-
to-global approaches are competitive and often superior in accuracy and precision w.r.t.
established competitors, while overcoming them in the ability to deal with rare classes.

To summarize, our contributions include:

– A study on associative classification as the basic building block for designing new
classification schemes, capable to discriminate rare classes within imprecise (multi-
class) domains. The study considers associative classification both from the global-
to-local and the local-to-global perspectives.

– A hierarchical framework for global-to-local classification, wherein we exploit prob-
abilistic smoothing to locally refine the classification decisions from a (global) asso-
ciative classifier.

– A probabilistic framework for local-to-global classification, based on maximum en-
tropy modeling, that learns a discriminative classifier, i.e. the conditional probability
distribution of classes given an unlabeled case, in which the rules of an associative
classifier are viewed as features (local to the case) influencing (global) class proba-
bility assignments.

– A thorough comparative experimentation of both the global-to-local and the local-
to-global approaches.

The outline of the rest of this manuscript is as follows. Section 2 introduces notation
and preliminaries. Sections 3 and 4 discuss, respectively, the global-to-local and local-
to-global approaches. Section 5 presents the empirical evaluation of both approaches.
Section 6 overviews some seminal works from the current literature that are closely re-
lated to our approaches. Finally, section 7 concludes and highlights promising directions
of further research.



Uses of Associative Rule Learning for Classification in Imprecise Environments 5

2. Preliminaries

We begin by introducing the notation used throughout the manuscript and some basic
notions. Let D be a relation storing the labeled training cases. Also, let the schema of
D be a set A = {A1 : Dom(A1), . . . , An : Dom(An), L : L} of descriptive attributes.
In particular, features A1, . . . , An are defined over as many categorical or numeric do-
mains, whereas the target class attribute L is a categorical feature. The generic labeled
training case t ∈ D is a structured tuple, i.e. t ∈ Dom(A1)× . . .Dom(An)×Dom(L).
Each tuple t can also be equivalently represented in a transactional form. Therein, as-
sume thatM = {i1, . . . , im} is a finite set of items denoting relationships between any
attribute of A but L and a corresponding value. Precisely, the generic item i has the
form A = v where A ∈ A − L. In our formulation, v ∈ Dom(A) if A is a categorical
attribute. Otherwise, if A is a numeric attribute, v stands for the label of some suitable
range of numeric values, whose center is closest in Euclidean distance to the original
value of A (more details on the discretization of numeric attributes are provided within
section 5).

Any unlabeled case I defined over A can be represented as some suitable subset of
items inM. Notice that there must be exactly one item in I for each attribute of the rela-
tional schemaA. This is concisely expressed by means of the ⊂ operator, whose mean-
ing is revised as follows I ⊂ M = {ij1 , . . . , ijn | ijh ∈ M ∧ attr(ijh) = Ah, ∀h =
1, . . . , n}, where notation attr(·) indicates the attribute referred to by the individual
items of I . Viewed from this perspective, a labeled case over A simply becomes an un-
labeled case supplemented with its corresponding class label. Let L be a finite domain
of class labels, the original datasetD can thus be equivalently expressed in transactional
form overM as a collectionD = {t1, . . . , tn}, in which the generic labeled case is rep-
resented as t = I ∪ {class(t)}, where I ⊂M and class(t) ∈ L denotes the class label
of t. Henceforth, for convenience, we shall refer to the transactional representation and
use the corresponding notation.

A number of definitions recalled throughout the manuscript are reported next.

Definition 2.1 (Class association rule). According to the original proposal in (Liu et
al, 1998), a class association rule (CAR) r : I → c is an implicative pattern, that catches
the association (i.e. the co-occurrence) inD of some subset of items I ⊂Mwith a class
label c from L. 2

The notions of support, coverage and confidence are typically employed to define
the interestingness of a rule r.

Definition 2.2 (Support of a class association rule). Let D be a set of training cases.
A training case t ∈ D is said to support rule r : I → c if it holds that (I ∪ {c}) ⊆ t.
The support count of r, denoted by σ(r), is the overall number of training cases that
support r, i.e., σ(r) = |{t ∈ D|(I ∪ {c}) ⊆ t}|. The support of r is instead the fraction
of training cases supporting r, i.e., supp(r) = σ(r)

|D| , where |D| indicates the cardinality
of D. 2

Support is useful to avoid spurious rules. Intuitively, rule antecedents with high
support in the individual classes capture the inherent semantics of the underlying data,
rather than being artifacts.

Definition 2.3 (Coverage of a class association rule). LetD be a set of training cases.
Rule r : I → c is said to cover a training case t ∈ D (and, dually, t is said to trigger
or fire r) if the condition I ⊆ (t− {class(t)}) holds. The set of training cases covered
by r is denoted by Dr = {t ∈ D|I ⊆ (t− {class(t)})}. Hence, the coverage of r can
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be defined as the fraction of cases in D that are covered by r, i.e. coverage(r) = |Dr |
|D| .

Analogously, the foresaid rule r : I → c is said to cover an unlabeled training case I ′ if
it holds that I ⊆ I ′. 2

Definition 2.4 (Confidence of a class association rule). The confidence of a rule r, de-
noted by conf (r), is the ratio of support to coverage, i.e. conf (r) = supp(r)

coverage(r) . 2

Confidence measures the predictive strength of a CAR.
Although the traditional support and confidence framework allows to effectively dis-

cover all the required class association rules, it still produces uninteresting rules when
the class distribution is imbalanced. The point is that, in such cases, confidence is not
a reliable measure of the interestingness of a rule (Tatti, 2008), since it does not prop-
erly take into account the actual implicative strength of the rule, whose antecedent and
consequent can be negatively correlated (Arunasalam and Chawla, 2006; Antonie and
Zaı̈ane, 2004). To overcome such a limitation, we also consider the degree of positive
correlation between the antecedent and the consequent of a rule.

Definition 2.5 (CAR correlation). The correlation of a rule r : I → c, denoted by
corr(r), measures the relationship between the antecedent I and the consequent c. For-
mally, it is defined as corr(r) = P (I∪c)

P (I)P (c) , where P (I ∪ c) is the occurrence frequency
supp(I ∪ c) of I ∪ c across a set D of training cases. Analogously, P (I) and P (c) cor-
respond to the occurrence frequencies of I and c in D. If corr(r) < 1, r is negatively
correlated. Instead, corr(r) = 1 denotes absence of correlation (i.e. I and c co-occur
by chance), whereas corr(r) > 1 represents positive correlation. 2

In highly imprecise learning settings, a class association rule r is interesting if it is
positively correlated and also meets certain minimum requirements on its support and
confidence. An associative classifier is a suitable disjunction of propositional if-then
rules, that can be used for the classification of unlabeled cases.

Definition 2.6 (Associative classifier). An associative classifier C approximates the (un-
known) discrete-valued case labeling function behind D. The learnt approximation is
represented as a disjunction C = {r1 ∨ . . . ∨ rk} of interesting class association rules
extracted from D. 2

An associative classifier C is used in section 3 to globally segment the whole training
data, for the purpose of bringing to the surface those originally rare data, that becomes
less rare within each resulting segment. Instead, in section 4, the CARs of C are viewed
as properties local to each individual data case.

3. The Global-to-Local Supervised Learning Framework

We here discuss a global-to-local approach aimed to learn a hierarchical framework
from the training cases D, that consists of two classification levels. At the higher level,
an associative classifier is built such that its component CARs meet some requirements
on the minimum support and confidence. For each CAR r ∈ C, the lowest level of the
framework includes a local probabilistic generative model P (r) that allows to confirm
or rectify r in the classification of an unlabeled case. The overall learning process is
shown in figure 1. Given a database D of training cases (defined over a setM of items
and a set L of class labels), the algorithm begins (at line 1) by extracting a setR of class
association rules from D via the MINECARS search strategy.
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HIERARCHICALLEARNING(M,D,L,τ )
Input: a finite setM of boolean attributes;

a training dataset D;
a set L of class labels in D;
and a support threshold τ ;

Output: An associative classifier C = {r1 ∨ . . . ∨ rk} and a set of local classifier Pri ;
1: R← MINECARS(M,D, τ);
2: R← ORDER(R);
3: C ← PRUNE(R);
4: if there are cases in D that are not covered by any rule within C then
5: C ← C ∪ {rd};
6: end if
7: for each rule r ∈ C, such that r 6= rd do
8: P(r) ← TRAINLOCALCLASSIFIER(r);
9: end for
10: RETURN C and P(r) for each r ∈ C

Fig. 1. The hierarchical global-to-local learning framework

The rule setR is subsequently sorted (at line 2) according to the total order≺, which
is a refinement of the one in (Liu et al, 1998). Precisely, given two rules ri, rj ∈ R, ri
precedes rj , which is denoted by ri ≺ rj , if (i) the confidence of ri is greater than that
of rj , or (ii) their confidences are the same, but the support of ri is greater than that of
rj , or (iii) both confidences and supports are the same, but ri is shorter than rj .

The learning process proceeds (at line 3) to distil a classifier C by pruningR, which
generally includes a very large number of CARs, that may overfit the training cases.
For this purpose, the overfitting avoidance strategy presented in (Cesario et al, 2008) is
exploited to reduce the complexity of the discovered CARs, while still improving their
error rate. This is essentially accomplished via the removal of individual items and/or
whole rules.

The resulting classifier C may leave some training cases uncovered. Therefore, a
default rule rd : ∅ → c∗ is appended to C (at line 5), such that its antecedent is empty
and c∗ is the majority class among the uncovered training cases.

As a remark, notice that, due to the total order ≺ enforced over R, the associative
classifier C is actually a decision list: each training case is classified by the first CAR
in C that covers it. In other words, the CARs in C are mutually exclusive, i.e. a training
case is covered by at most one rule of the classifier. As a consequence, the generic CAR
r : I → c hereinafter covers the set of all those training cases that are not covered by
any other CAR with higher precedence. More precisely, the definition of the coverage
Dr of CAR r is refined into Dr = {t ∈ D|I ⊆ (t− {class(t)}) ∧ @r′ ∈ C : r′ ≺ r, r′ :
I ′ → c′, I ′ ⊆ (t − {class(t)})}. Moreover, the addition to C (at line 5) of the default
rule rd ensures that C is also exhaustive, i.e. that every training case of D is covered by
at least one CAR of C.

Finally, for each CAR r ∈ C other than rd, a local probabilistic model P(r) is built
(lines 7-9) over Dr to catch a better generalization of those globally rare cases/classes
that become less rare within Dr. This allows to refine the prediction from r with a local
generative model that is better suited to deal with the local facets of rarity.

The MINECARS procedure is covered in subsection 3.1. The TRAINLOCALCLAS-
SIFIER step is instead discussed in subsection 3.2, that also covers the classification
of unlabeled cases (not reported in figure 1) in the context of two schemes for a tight
integration between associative and local probabilistic classification.
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3.1. Mining the Class Association Rules

MINECARS is an Apriori-based algorithm, adopted to mine positively-correlated CARs
from the available training data D. MINECARS combines into the basic Apriori algo-
rithm (Agrawal and Srikant, 1994) two individually effective mechanisms, namely mul-
tiple minimum class support (Liu et al, 2000) and complement class support (Arunasalam
and Chawla, 2006). Although both designed to deal with rarity in data, to the best of
our knowledge, the joint effectiveness of such mechanisms has not yet been exploited.
Figure 2 sketches the scheme of MINECARS algorithm, which divides into frequent
itemset discovery (lines M1- M18) and CAR generation (lines M19- M26).

Frequent itemset discovery starts (at line M3) with C2, a set of candidate 2-itemsets,
including an item and a class label. At the generic iteration, MINECARS builds Lk, a
set of frequent k-itemsets, from Lk−1. Two steps are performed to this purpose. The
join step (at line M14) involves joining Lk−1 with itself to yield C ′k, a collection of
candidate k-itemsets. Notice that this requires joining pairs of frequent k − 1-itemsets
with identical class labels. The well-known Apriori property, according to which an un-
frequent itemset cannot have frequent supersets, is then used (at line M15) to drop from
C ′k those k-itemsets with at least one k − 1-subset that is not in Lk−1. The support
counting step (lines M5- M12) involves counting the occurrences of the surveyed can-
didate itemsets in Ck by scanning the training data D. Those candidates whose support
exceeds a class-specific threshold are considered to be frequent and retained within Lk.
The level-wise search halts when no more frequent itemsets can be discovered.

Multiple minimum class support (Liu et al, 2000) is employed at line M13 to the
purpose of automatically adjusting the global minimum support threshold τ provided by
the user to minimum support threshold specific for each class. Essentially, the generic
candidate itemset c is frequent if its support is over τ · σ(class(c)), the minimum sup-
port threshold for class(c). Multiple minimum class support implements a first stage
of focused pruning, that dynamically assigns a higher minimum support threshold to
majority classes (which prevents from yielding several overfitting rules) and a lower
minimum support threshold to minority classes (which enforces the generation of an
appropriate number of rules).

Complement class support (Arunasalam and Chawla, 2006) is instead used in the
CAR generation stage, to avoid the specification of a global minimum confidence thresh-
old. In particular, a specific property of complement class support (shown in (Arunasalam
and Chawla, 2006)) is exploited at line M22 to automatically identify a class-specific
minimum confidence threshold. According to such a property, a rule r : I → c is such
that I and c are positively correlated if and only if conf (I → c) > σ(c)

|D| , where σ(c)

is the overall number of occurrences of class c in D. Therefore, the CARs whose con-
fidence exceeds (at line M22) the minimum threshold corresponding to their targeted
class are guaranteed to be positively correlated. Thus, both confidence and positive cor-
relation between rule components can be verified without additional parameters or fur-
ther correlation analysis.

The dynamic selection of a class-specific minimum confidence threshold acts es-
sentially a second stage of focused pruning, that ensures the discovery of accurate rules
targeting the rare classes and still avoids the generation of an overwhelming number of
rules from the predominant classes.
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MINECARS(M,D,τ )
Input: a finite set of boolean attributesM;

a training dataset D;
and a support threshold τ ;

Output: a setR of class association rules;
/* Frequent itemset discovery */

M1: I ← ∅, k ← 2;
M2: Let L be the set of class labels in D;
M3: Let C2 ← {c|c = {l, i} where l ∈ L, i ∈M};
M4: while Ck 6= ∅ do
M5: for each candidate itemset c ∈ Ck do
M6: supp(c)← 0;
M7: end for
M8: for t ∈ D do
M9: for c ∈ Ck such that c ⊆ t do
M10: supp(c)← supp(c) + 1

|D| ;
M11: end for
M12: end for
M13: Lk ← {c ∈ Ck|supp(c) > τ · supp(class(c))};
M14: C′k+1 ← {ci∪cj |ci, cj ∈ Lk∧class(ci) = class(cj)∧|ci∪cj | = k+1};

M15: Ck+1 ← {c ∈ C′k+1|∀c
′ ⊂ c such that |c′| = k it holds that c′ ∈ Lk};

M16: k ← k + 1;
M17: end while
M18: I ← ∪kLk;

/* CAR generation */
M19: R← ∅;
M20: for each frequent itemset I ∈ I do
M21: create rule r : I − class(I)→ class(I);
M22: if conf (r) > σ(class(I))

|D| then
M23: R← R∪ {r};
M24: end if
M25: end for
M26: RETURNR;

Fig. 2. The process for mining class association rules from data with rarity

3.2. Training Local Classifiers

The individual CARs of the associative classifier C predict classes for unlabeled cases
based on global statistics, that take into account the regularities across the whole training
data D. This makes targeting rare classes problematic. Therein, it is reasonable to as-
sume that the class assigned to the unlabeled cases covered by the generic CAR r should
be influenced more strongly by the classes of the training cases local to r (i.e., falling
within Dr) and less strongly by the classes of farther training cases (covered by CARs
other than r). According to this intuition, the prediction of each CAR r ∈ C can be re-
fined by associating the latter with a local probabilistic generative model P(r), trained
over the regularities across the training cases falling within Dr. In principle, such regu-
larities are likely to be more descriptive of those globally rare classes that become less
rare withinDr. Consequently, the individual P(r) can be involved into the classification
process for more accurately dealing with the corresponding forms of rarity. As a matter
of fact, coupling C with local probabilistic classification models is useful to improve the
classification performance of C both in the surroundings of the decision boundaries of
its CARs as well as within the inner areas of CARs’ decision regions (wherein classes
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other than the ones associated to the whole regions are likely to meaningfully influence
the classification of nearby unlabeled cases).

In the following, we adopt two different probabilistic generative models based, re-
spectively, on the naı̈ve Bayes and nearest neighbor classification models. Precisely,
naı̈ve Bayes naturally allows to incorporate the effects of locality on classes and cases
in terms of, respectively, class priors and item posteriors. To elucidate, an unlabeled
case I ⊂ M is assigned by the generic generative model P(r) to the class c ∈ L with
highest posterior probability

P(r)(c|I) , p(c|I, r) =

∏
i∈I p(i|c, r)p(c|r)∑

c∈L
∏
i∈I p(i|c, r)p(c|r)

Locality influences factors p(c|r)’s and p(i|c, r)’s, whose values are estimated by
computing p(c) and p(i|c) over Dr, and allows to better value rare cases/classes. In-
deed, if a significant extent of some form of rarity falls within Dr, the corresponding
cases/classes are obviously less rare than in D and, hence, factors p(c)’s and p(i|c)’s
are accordingly higher (w.r.t. their values in D). Dually, p(c)’s and p(i|c)’s are sensibly
lower, if the density of that form of rarity within Dr is much lower than in D. However,
this is acceptable, since most of that form of rarity is still captured within some other
region(s). An inconvenient behind the adoption of naı̈ve Bayes as the underlying model
for local probabilistic classifiers is their performance degrade (e.g. accuracy loss) due
to the violation of the attribute independence assumption. To alleviate such an issue, the
weaker attribute independence assumption postulated in AODE (Webb et al, 2005) can
be plugged into the above formulation, that simply refines naı̈ve Bayes by considering
each attribute dependent upon at most n other attributes in addition to the class. This
is more realistic in practical applications and is empirically shown in section 5 to yield
a better performance. We omit the formal discussion on the n-dependence estimation
technique behind AODE and refer to (Webb et al, 2005).

The nearest neighbor model can be alternatively used as a local model to compute
probabilities P(r)(c|I) from the distribution of classes withinDr through the generative
approach below

P(r)(c|I) ,

∑
I′∈Dr

wI′p(c|I ′)∑
c∈L

∑
I′∈Dr

wI′p(c|I ′)

The above is essentially a probabilistic re-formulation of a distance-weighted voting
scheme, in which each neighbor I ′ votes for the class that should be assigned to I . The
vote from the generic neighbor I ′ is suitably weighted by a corresponding factor w(r)

I′ ,
which takes into account the actual distance between I ′ and I . Formally,

wI′ =
e−d

2(I,I′)∑
I′∈Dr

e−d2(I,I′)

where d(I, I ′) is any suitable function that defines a notion of distance between I
and I ′.

Notice that, whatever the distance between cases, the chosen weight-definition at-
tributes higher influences to those neighbors in Dr that are actually closest to I .

Two alternative approaches for refining the predictions from the associative classi-
fier C through the local probabilistic generative models P(r)’s are discussed next.
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Local priors and local instance posteriors. The idea is to reformulate a generative
approach to classification which spans into local generative models. Given an unlabeled
case I , we introduce a space of events Ω = {er|r ∈ C} related to the classification of I
via an associative classifier C. More precisely, the individual event er corresponds to the
coverage of I through a corresponding CAR r ∈ C. The exclusiveness and exhaustive-
ness of the CARs in C imply, respectively, the mutual exclusiveness and the collective
exhaustiveness of the events in Ω. Therefore, it is possible to employ the well-known
law of total probability to define a joint probability distribution over unlabeled cases
and class labels as shown below

p(c, I) =
∑
er∈Ω

p(c, I, r) =
∑
er∈Ω

p(c, I|r)p(r) =
∑
er∈Ω

P(r)(c|I)p(I|r)p(r)

The interpretation of the terms within the above formula is provided next. p(I|r)
represents the compatibility of I with the rule r. We choose to model p(I|r) as the
relative number of items that I shares with r: intuitively, the number of (mis)matches
represents the closeness of I to the region bounded by r. P(r)(c|I) denotes the prob-
ability associated with c by the local naı̈ve Bayes classifier P(r) trained over Dr. p(r)
indicates the support supp(r) of CAR r and weights its contributions to p(c, I) by the
relative degree of rarity of its antecedent and consequent.

Finally, the probability of class c given the unlabeled case I can be formalized as
the following generative model

p(c|I) =
p(c, I)∑
c∈L p(c, I)

Cumulative rule effect. A stronger type of interaction between global and local ef-
fects can be injected into the classification process, if the predictions from a CAR r and
unrelated local generative model P(r′) (with r 6= r′) are compared for selecting the
most confident one. The overall approach is sketched in figure 3. Precisely, the generic
unlabeled case I ⊂ M is presented to the associative classifier C and the first CAR
r : I → c (in the precedence order ≺ enforced over C) is chosen (at line N1). If r
does not cover I , it is skipped and the next rule is recursively taken into account (at
line N20). Otherwise, r is used for prediction. However, its target class c is not directly
assigned to I . Rather, the local probabilistic generative model P(r) corresponding to r
is exploited to produce a possibly more accurate prediction (at line N4). Some tests are
performed to identify the more confident prediction (lines N9- N15). If both counter-
parts agree or one is deemed to be more reliable than the other one, the better prediction
(in terms of class-membership probability distribution) is returned (lines N10 and N12).
Otherwise, in the absence of strong evidence to reject the prediction from P(r) (which
is in principle preferable to r, being more representative of the local regularities that
may come from globally rare cases/classes that fall within Dr), r is skipped in favor of
the next CAR r′ ∈ C covering I (at line N14). To this point, if P(r′) predicts I more
confidently than P(r) (at line N5), the probability distribution from P(r′) replaces the
current best distribution yielded by P(r) (at line N6) and the choice of a better predic-
tion is hence made between r′ and P(r′). In the opposite case, the choice involves r′ and
the current best distribution P(r). If no prediction is clearly eligible as the most confi-
dent throughout the search, the process halts when the default rule is met and the current
best distribution is returned (at line N17). Notice that the sofar best class-membership
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PREDICTION(C,I ,p1, . . . , pk)
Input: An associative classifier C;

an unlabeled case I ⊂M;
Output: the class distribution for I;
N1: select the first rule r : I′ → ch in sequence within C;
N2: if r covers I (i.e. I′ ⊆ I) then
N3: if |C| > 1 (i.e. r is not the default rule) then
N4: let pi = P(r)(ci|I) · acc(ci)

(
P(r)

)
, ∀i = 1, . . . , k;

N5: if max i(pi) > max i(pi) then
N6: let pi = pi, ∀i = 1, . . . , k;
N7: end if
N8: let p∗ = max i(pi) and i∗ = argmax i(pi) and p =

∑
i pi;

N9: if acc(ch)(r) < p∗ then
N10: RETURN the distribution (p1/p, . . . , pk/p);
N11: else if i∗ = h or acc(ch)(r) > p∗

p
then

N12: RETURN the distribution (acc(c1)(r), . . . , acc(ck)(r));
N13: else
N14: PREDICTION(C − {r},I ,p1, . . . , pk);
N15: end if
N16: else
N17: RETURN the distribution (p1/p, . . . , pk/p);
N18: end if
N19: else
N20: PREDICTION(C − {r},I ,p1, . . . , pk);
N21: end if

Fig. 3. The scheme of the cumulative rule effect

probability distribution is remembered throughout the consecutive stages of the search
process via the input arguments p1, . . . , pk (such arguments are individually set to 0
at the beginning of the search process). A key aspect of the overall search process is
represented by the criteria adopted to choose the more confident prediction between the
ones from a CAR rh and a local probabilistic generative model P(ri). Accuracy is used
as a discriminant between the alternatives. In particular, the accuracy acc(c)

(
P(ri)

)
is

the percent of cases in D(r) correctly predicted by P(ri) as belonging to class c. The
accuracy acc(c)(rh) of a CAR rh predicting class c is its confidence conf (rh). When
comparing the accuracies of a CAR rh and a local probabilistic generative model P(ri)

there are four possible outcomes.

1. P(ri) is clearly deemed more reliable than rh (at line N9), if the weighted accuracy
of the former, p∗, is greater than the accuracy of the latter.

2. rh is preferred to P(ri) (at line N11) if the accuracy of the former is greater than or
equal to the weighted accuracy of the latter and both agree anyhow.

3. rh is preferred to P(ri) (again at line N11) if its accuracy is much greater than the
weighted accuracy of P(ri). Therein, p

∗

p > p∗ is a prudential threshold, that repre-
sents the normalized weighted accuracy from P(ri). In practice, rh is actually prefer-
able to P(ri) if its accuracy exceeds p∗

p .

4. There is no strong evidence (at line N16) to reject either rh or P(ri) when the ac-
curacy of rh lies in the interval (p∗, p

∗

p ). In such a case, r is skipped and the search
proceeds to considering the next CAR in the associative classifier C that covers I
(through the recursive call at line N14).
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4. The Local-to-Global Supervised Learning Framework

We here propose a local-to-global learning framework, that uses suitable features local
to a data case, for predicting the global conditional probability of classes given the case.
Features are a sort of declarative mechanism for specifying aspects of data cases that are
relevant, to some extent, towards classification into the individual classes. The relevance
of a feature with respect to a certain class determines the weight of that feature on the
discrimination of the particular class. Thus, the recognition of minority classes can be
addressed by identifying specific features that are highly representative of such classes.

The starting point is the observation that the training data D generally provides par-
tial information on the associations between data cases and corresponding class labels.
The latter is especially true in imprecise domains because of rarity. This suggests that
the conditional probability distribution of classes should minimize commitment, i.e. fit
the evidence observable in D and still be as uniform as possible in the prediction of
whatever is not observable in D. Such a conditional probability distribution represents
the most unbiased assignment of class probabilities complying with the observable evi-
dence. Any other probabilistic assignment would be biased, i.e. would assume the avail-
ability of arbitrary information that is not present in D.

To elucidate, consider an hypothetical four-class classification setting, where L =
{c1, c2, c3, c4}. Classes c1 and c2 are rare, whereas c3 and c4 are predominant. Assume
that an exploratory analysis of D reveals that a certain itemset I ⊂ M appears within
classes c1 and c2 with a frequency that amounts to, respectively, 50% and 30% of the
overall number of its occurrences. I can be viewed as a data feature and the statistical
observations concerning I can be stated as constraints for the conditional probability
distribution in order for the latter to agree with the empirical evidence. When a newly
arrived case I ′ is presented to the conditional probability distribution for classification,
there are two possibilities. If I ′ includes I (i.e. I ⊆ I ′), the conditional probability
distribution provides the assignments p(c1|I ′) = 0.5 and p(c2|I ′) = 0.3. The remaining
0.2 of the probability mass is uniformly distributed between classes c3 and c4 (in the
absence of any further specific information on this aspect), so that p(c3|I ′) = 0.1 and
p(c4|I ′) = 0.1. Notably, I is inherently characteristic of the rare classes c1 and c2 and its
adoption as a data feature allows for a proper discrimination of such classes. If instead
I ′ does not contain I , the conditional probability distribution assumes (in the absence of
any further evidence observable in D) maximal ignorance and, hence, predicts each of
the four possible classes with uniform probability, i.e. p(c1|I ′) = p(c2|I ′) = p(c3|I ′) =
p(c4|I ′) = 0.25. In this manner, the conditional probability distribution agrees with the
observed evidence in D and still avoids assumptions on whatever is unknown.

The local-to-global approach relies on statistical modeling and learning to fit the
evidence in D. For this purpose, the training data is used to identify a set of features
useful for classification. The individual features are then employed to specify as many
constraints for the conditional probability distribution to learn. The generic constraint
essentially forces the expected value that the conditional probability distribution assigns
to some corresponding feature to be the same as the expected value of that feature em-
pirically observed in D. In general, the space of features can be potentially very large.
In these cases, computing the optimal conditional probability distribution as a closed
form solution that meets all the specified constraints is prohibitive. Maximum entropy
model (Berger et al, 1996) provides an expressive and powerful mathematical frame-
work for iteratively computing the required distribution. It is also used to elegantly and
seamlessly integrate two established methods from the fields of machine learning and
data mining. On the machine learning side, discriminative learning is used to directly
compute the conditional probability distribution of the classes, given an unseen case.
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The main difference with respect to generative learning, that would instead model a
joint probability distribution over classes and cases, is that discriminative learning al-
lows to better fit the training data by carefully setting the distribution parameters. On
the data mining side, associative classification provides the space of features to which
the training and newly arrived data is mapped.

4.1. Modeling Data Evidence through CARs, Features and Constraints

In the proposed local-to-global learning framework, features are associated to the in-
dividual CARs of an associative classifier formed as described in subsection 3.1 (no
further post-pruning is applied to these CARs). Therein, let C be an associative classi-
fier. The space of features F = {fri |ri ∈ C} is essentially a finite set of real-valued
indicator functions fri , each of which is associated to a corresponding CAR ri ∈ C.
Assume that the generic ri has the implicative structure ri : I ′ → c′, with I ′ ⊂M and
c′ ∈ L. Moreover, let I ⊂ M denote a data case and c ∈ L represent any class label.
The generic feature fri is defined as the following indicator function

fri:I′→c′(I, c) =

{
1 if I ′ ⊆ I ∧ c′ = c
0 otherwise

The individual feature fri:I′→c′ is said to be local to I if fri:I′→c′(I, c) > 0. Train-
ing and newly arrived cases can hence be represented as suitable configurations of local
features, which are useful for classification. Intuitively, the interpretation of CAR ri is
that I ′ can be viewed as a sort of contrast set (Bay and Pazzani, 2001) for the targeted
class c′, i.e. as a co-occurrence of items that is inherently characteristic of c′, since its
distribution in D is meaningfully associated with the class c′. Therefore, if ri covers I
(i.e. I ′ ⊆ I) and the class c considered for I coincides with the class c′ targeted by ri,
c′ is an eligible class for I . Therein, a measure of the suitability of c′ for I is provided
by the value of fri:I′→c′ .

Actually, features are normalized so that their sum amounts to 1. Here, we specify
that the generic feature fri:I′→c′(I, c) is normalized into the corresponding

f ′ri:I′→c′(I, c) =
fri:I′→c′(I, c)∑
ri
fri:I′→c′(I, c)

and additionally highlight that, for simplicity, the original notation fri:I′→c′(I, c) is still
maintained in the ongoing discussion to mean f ′ri:I′→c′(I, c).

Features are the basic building block for specifying constrains. These are necessary
to make the required conditional probability distribution fit the observed evidence in
D. To elaborate, the empirical evidence relative to each feature fri is summarized into
ED(fri), which is the expected value of fri observed in D. Its definition is

ED(fri) =
∑
t∈D

pD(t)fri(t− class(t), class(t))

where pD is the observed occurrence frequency of t in D, i.e. pD(t) = 1
|D| . Constraints

force the required conditional probability distribution P to agree with the feature expec-
tations observed in D. In other words, for each feature fri , a corresponding constraint
is specified that equates the expected value that P assigns to fri to the expected value
ED(fri) observed in D. With respect to the generic feature fri , the expected value of
fri due to P can be approximated as shown below:
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E(fri) =
∑

I⊂M,c∈L
p(I, c)fri(I, c)

=
∑
I⊂M

p(I)
∑
c∈L
P(c|I)fri(I, c)

≈
∑
I⊂M

pD(I)
∑
c∈L
P(c|I)fri(I, c)

where the (unknown) prior probability distribution of cases p(·) is approximated by
the empirical distribution pD(·). The term pD(I) approximates p(I) by the occurrence
frequency of I in D.

Finally, restricting P to have the same feature expectations as the ones observed in
D requires setting the following constraints

E(fri) = ED(fri) for each fri ∈ F
The above restrictions exclude from further consideration all those conditional prob-

ability distributions, that do not accord with the observed feature expectations.
In principle, there are infinitely many conditional probability distributions consis-

tent with the specified constraints. The maximum entropy principle suggests to choose
the conditional probability distribution P that fits the constraints (i.e. agrees with the
observed evidence) and maximizes entropy for those cases that are not subject to the
constraints. These latter cases are hence predicted to be members of the distinct classes
with the most uniform probability distribution.

The mathematical derivation of the required conditional distribution P as well as
the estimation of its parameters are beyond the scope of this manuscript. The interested
reader is referred to (Berger et al, 1996) for an exhaustive coverage.

5. Evaluation

We conduct a systematic experimental study devoted to understanding whether the pro-
posed hierarchical classification scheme exhibits improvement in classification perfor-
mance with respect to established competitors. To this purpose, the comparative eval-
uation is carried out over some standard datasets. In particular, we use some datasets
chosen from the UCI KDD repository (Asuncion and Newman, 2007), with high class
imbalance. Also, we test our approach over the KDD99 intrusion detection dataset,
named kdd99. The latter is an extremely unbalanced dataset, wherein low-frequency
classes are characterized by noise. A further non-publicly available test dataset, fraud,
is a real-life fraud detection dataset, with a very low class separability.

Notice that, even if the number of tuples belonging to the class u2r is very lim-
ited, kdd99 is a standard benchmark dataset utilized for classification with unbalanced
classes, and the challenge there is in particular to detect the minority classes (including
the class u2r). However the improvements in our methodology is testified also by the
fraud dataset, where the differences in frequency are not so skewed.

Experiments consists in comparisons against several established rule-based and as-
sociative classifiers. The selected rule-based competitors are Ripper (Cohen, 1995) and
PART (Frank and Witten, 1998), while the associative ones include CBA (Liu et al,
1998) and CMAR (Xin and Han, 2003). In particular, we exploited the implementa-
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tions of CBA and CMAR in (Coenen, 2004). All tests are conducted on an Intel Itanium
processor with 4Gb of memory and 2Ghz of clock speed.

All numeric attributes in the selected datasets are suitably discretized prior to the
application of the devised schemes. The adopted discretization strategy partitions the
values of each numeric attribute into natural clusters, via model-based clustering. The
idea is to view the values of a numeric attribute as the result of a statistical genera-
tive process, which is modeled through a mixture of univariate Gaussian distributions.
For each numeric attribute, the choice of the most appropriate number of clusters (i.e.
distinct Gaussian distributions in the mixture model) is performed by letting such num-
ber range from 1 up to a certain maximum, which is fixed to 16 in our experimental
setting. The discretization of each numeric attribute into any number of clusters in the
foresaid range is then assessed through 5-fold cross validation. More precisely, 4 folds
of attribute values are used to estimate the values of the parameters in the hypothesized
mixture model (i.e. the mean and standard deviation for each Gaussian distribution as
well as the weights of the individual distributions) by means of the well-known EM
algorithm (McLachlan and Peel, 2000). The remaining fold is employed to evaluate
discretization quality. This latter step involves employing the estimates of model pa-
rameters to compute the likelihood of the attribute values in the test fold. Eventually,
the number of clusters chosen to partition the values of the generic numeric attribute
is the one with maximum average likelihood on the test fold and, thus, the values of
the attribute are replaced by the label of the cluster to which they belong with highest
probability.

The execution of the selected classifiers is reiterated several times, under differ-
ent parameter configurations and the result of the individual execution were averaged
through leave-one-out method. For each classifier, we next report the results correspond-
ing to the best parameter configuration.

Our schemes simply require the specification of a global minimum support. Due to
the adoption of minimum class support (Liu et al, 2000), such threshold is automatically
adjusted to become a class specific threshold. In particular, we fixed the global support
threshold to 20%, which is transparently adjusted to be, within the individual class in
the data at hand, the 20% of the frequency of that class. The exploitation of complement
class support (Arunasalam and Chawla, 2006) permits to avoid specifying a minimum
confidence threshold.

We compare the approaches using accuracy, some meaningful ROC curves and the
Area Under the Curve (AUC) relative to the minority class. Tables 1 and 2 display
the results. Within the tables, competitors are numbered from (1) to (4). Precisely,
(1) indicates Ripper, (2) corresponds to PART, while (3) and (4) stand for CBA and
CMAR, respectively. Our schemes are instead numbered from (5) to (11). More specif-
ically, (5) and (6) indicate naive Bayesian smoothing (respectively through local priors
or cumulative effect). (7) and (8) stand for nearest-neighbor smoothing (respectively,
through local priors or cumulative effect). (9) and (10) are AODE smoothing (respec-
tively, through local priors or cumulative effect). Finally, (11) represents the maximum
entropy approach.

The results clearly state that the combination of associative classification and prob-
abilistic smoothing is at least as accurate as the seminal rule-based classifiers chosen
for the comparison. In many cases, however, (5) and (11) achieve improvements in
accuracy, reported in bold within table 1, that are statistically significant according to
the t-test. In addition, a deeper analysis reveals that the response versus the classes
of interest is strongly improved. Such an improvement can be appreciated by looking
at the details of the individual datasets. To elucidate, we report in table 5 the confu-
sion matrices originated by (1) and (9) over the german-credit dataset. Notice that
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Table 1. Classification accuracy (expressed in %)
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Table 1. Classification accuracy (percentage %)
Dataset (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
anneal 98.26 98.25 92.81 96.33 98.53 98.53 99.41 99.10 98.43 98.43 66.70
balance-scale 80.30 83.17 68.81 68.49 81.40 81.04 81.98 82.27 80.27 80.30 63.52
breast-cancer 71.45 69.41 69.20 67.67 70.34 70.34 72.25 68.62 72.30 72.30 76.02
horse-colic 85.10 84.37 81.62 83.96 82.56 82.56 82.74 82.74 83.20 83.20 85.21
credit-rating 85.16 84.45 81.74 83.76 80.48 80.48 81.36 81.36 85.90 85.90 85.32
german credit 72.21 70.54 73.10 73.34 74.03 74.03 71.00 71.00 74.87 74.87 69.67
pima diabetes 75.18 73.45 77.87 73.03 73.31 73.31 70.48 70.48 75.02 75.02 64.39
Glass 66.78 68.75 72.69 74.23 58.94 59.17 68.15 68.15 67.48 67.15 67.32
cleveland-14-heart-diseas 79.95 78.00 82.12 75.12 81.29 81.29 77.49 77.49 81.15 81.01 90.54
hungarian-14-heart-diseas 79.57 81.14 82.06 79.69 81.24 81.24 77.64 77.64 82.62 82.38 86.70
heart-statlog 78.70 77.33 82.59 84.19 80.41 80.41 75.74 75.74 78.96 78.96 88.70
hepatitis 78.13 79.80 79.89 81.08 81.22 81.22 80.34 80.34 81.10 81.10 80.63
ionosphere 89.16 90.83 87.89 89.74 82.85 82.85 89.47 89.47 88.30 88.30 75.21
labor 83.70 77.73 86.67 88.77 84.60 84.60 85.50 85.50 87.13 87.13 100.00
lymphography 76.31 76.37 81.18 89.59 78.38 78.38 78.31 77.92 78.00 78.08 88.54
sick 98.29 98.62 97.51 97.64 98.25 98.25 98.58 98.58 98.39 98.39 97.64
sonar 73.40 77.40 80.00 82.78 75.28 75.28 78.39 78.39 73.79 73.79 96.63
fraud 93.07 93.02 80.82 90.52 91.78 91.79 93.05 92.96 92.61 92.61 93.27
kdd99 96.61 96.98 94.65 94.63 95.98 95.98 96.78 96.73 96.65 96.65 92.85

hood of the attribute values in the test fold. Eventually, the number of clusters chosen to
partition the values of the generic numeric attribute is the one with maximum average
likelihood on the test fold and, thus, the values of the attribute are replaced by the label
of the cluster to which they belong with highest probability.

The execution of the selected classifiers is reiterated several times, under differ-
ent parameter configurations and the result of the individual execution were averaged
through leave-one-out method. For each classifier, we next report the results correspond-
ing to the best parameter configuration.

Our schemes simply require the specification of a global minimum support. Due to
the adoption of minimum class support [32], such threshold is automatically adjusted
to become a class specific threshold. In particular, we fixed the global support threshold
to 20%, which is transparently adjusted to be, within the individual class in the data
at hand, the 20% of the frequency of that class. The exploitation of complement class
support [4] permits to avoid specifying a minimum confidence threshold.

We compare the approaches using accuracy, some meaningful ROC curves and the
Area Under the Curve (AUC) relative to the minority class. Tables 1 and 2 display
the results. Within the tables, competitors are numbered from (1) to (4). Precisely,
(1) indicates Ripper, (2) corresponds to PART, while (3) and (4) stand for CBA and
CMAR, respectively. Our schemes are instead numbered from (5) to (11). More specif-
ically, (5) and (6) indicate naive Bayesian smoothing (respectively through local priors
or cumulative effect). (7) and (8) stand for nearest-neighbor smoothing (respectively,
through local priors or cumulative effect). (9) and (10) are AODE smoothing (respec-
tively, through local priors or cumulative effect). Finally, (11) represents the maximum
entropy approach.

The results clearly state that the combination of associative classification and prob-
abilistic smoothing is at least as accurate as the seminal rule-based classifiers chosen
for the comparison. In many cases, however, (5) and (11) achieve improvements in
accuracy, reported in bold within table 1, that are statistically significant according to
the t-test. In addition, a deeper analysis reveals that the response versus the classes
of interest is strongly improved. Such an improvement can be appreciated by looking
at the details of the individual datasets. To elucidate, we report in table 5 the confu-
sion matrices originated by (1) and (9) over the german-credit dataset. Notice that

Table 2. Area Under the Curve
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Table 2. Area Under the Curve
Dataset (1) (2) (5) (6) (7) (8) (9) (10) (11)
anneal 0.76 0.88 0.93 0.93 0.90 0.74 0.93 0.93 0.90
balance-scale 0.86 0.92 0.94 0.94 0.96 0.95 0.87 0.87 0.67
breast-cancer 0.60 0.59 0.67 0.67 0.63 0.62 0.69 0.69 0.75
horse-colic 0.83 0.86 0.85 0.85 0.81 0.81 0.88 0.88 0.95
credit-rating 0.87 0.88 0.88 0.88 0.82 0.82 0.93 0.93 0.94
german credit 0.63 0.67 0.77 0.77 0.66 0.66 0.78 0.78 0.71
pima diabetes 0.72 0.78 0.78 0.78 0.70 0.70 0.79 0.79 0.76
Glass 0.80 0.79 0.80 0.80 0.77 0.77 0.81 0.80 0.76
cleveland-14-heart-diseas 0.81 0.80 0.88 0.88 0.78 0.78 0.90 0.89 0.97
hungarian-14-heart-diseas 0.78 0.86 0.88 0.88 0.78 0.78 0.90 0.90 0.92
heart-statlog 0.80 0.78 0.86 0.86 0.77 0.77 0.81 0.81 0.96
hepatitis 0.62 0.78 0.80 0.80 0.68 0.68 0.84 0.84 0.99
ionosphere 0.89 0.89 0.90 0.90 0.91 0.91 0.90 0.90 0.97
labor 0.82 0.73 0.86 0.86 0.83 0.83 0.95 0.95 1.00
lymphography 0.40 0.64 0.56 0.56 0.66 0.68 0.98 0.89 0.94
sick 0.94 0.95 0.97 0.97 0.95 0.95 0.96 0.96 0.90
sonar 0.75 0.79 0.80 0.80 0.80 0.80 0.77 0.77 1.00
fraud 0.97 0.97 0.90 0.90 0.97 0.97 0.98 0.97 0.97
kdd99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.94

Predicted -> good bad
good 607 93
bad 155 145

Predicted -> good bad
good 611 89
bad 194 106

AODE local priors (9) Ripper (1)

Table 3. A comparison between the confusion matrices yielded by AODE local priors (9) and Ripper (1)

A further analysis of the results obtained over the fraud and the kdd99 datasets
provides an in-depth into the effects of smoothing. Figure 4 shows the ROC curves
relative to (1), (2), (5), (7) and (9). There is an evident improvement in the underlying
area with respect to the competitors (1) and (2), whose trends are plotted in red. Results
with the kdd99 dataset are even more surprising, and in particular with the u2r class,
as shown in figure 4, that represents the curves relative to the schemes (1), (2) and (9).
The u2r class is made of 56 tuples (out of 150K), and still the probabilistic adjustment
is capable of recovering some problematic cases.

Fig. 4. ROC curve for the minority class of the fraud data set

the probabilistic smoothing recovers 39 tuples to the minority class, thus allowing to
achieve higher precision.

A further analysis of the results obtained over the fraud and the kdd99 datasets
provides an in-depth into the effects of smoothing. Figure 4 shows the ROC curves
relative to (1), (2), (5), (7) and (9). There is an evident improvement in the underlying
area with respect to the competitors (1) and (2), whose trends are plotted in red. Results
with the kdd99 dataset are even more surprising, and in particular with the u2r class,
as shown in figure 4, that represents the curves relative to the schemes (1), (2) and (9).

Predicted -> good bad
good 607 93
bad 155 145

Predicted -> good bad
good 611 89
bad 194 106

AODE local priors (9) Ripper (1)

Table 3. A comparison between the confusion matrices yielded by AODE local priors (9) and Ripper (1)
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Fig. 4. ROC curve for the minority class of the fraud data set

Fig. 5. ROC curve for the minority u2r class within the kdd99 dataset

The u2r class is made of 56 tuples (out of 500K), and still the probabilistic adjustment
is capable of recovering some problematic cases.

The ability of the approaches at dealing with the classes is compared in table 2,
which tabulates the average of the AUC values over the classes within the selected
datasets. Overall, the devised schemes outperform the competitors by exhibiting a sig-
nificantly improved performance (i.e. a considerable increase in the area under the ROC
curve) across all classes within the distinct datasets and, in particular, with hepatitis,
lymphography and fraud, where the improvement is over 10%. As witnessed by
the graphs in figures 4 and 5, such an overall improvement is primarily obtained on the
minority classes.

A detailed comparison of the above described approaches is provided in tables 5, 6,
7 and 8 in the appendix. In these tables, for each class label, we report precision, recall,
f-measure and AUC to better highlight the effects of the proposed techniques on highly
unbalanced datasets.

Finally, the table 4 shows shows the running times of the representative schemes in
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Table 4. Running times (in seconds) vs. data size
Dataset Size # Attributes Ripper (1) MRNB (5) MaxEnt (11)
german credit 1000 21 0.13 0.17 14
sick 3772 28 0.33 0.88 29
fraud 45442 76 321 436 795
kdd99 494020 42 68 152 396

the above mentioned tables, for datasets of increasing size. There is an obvious over-
head in the proposed two-step processes, with regards to the baseline Ripper approach.
Notwithstanding, all of the three approaches follow the same trend. Notice that fraud
is the is more problematic than the (larger) kdd99 dataset. This is due to the complex-
ity of the former: several attributes (mostly numerical), which clearly affect the rule
generation phase.

6. Related Work

In this section, we review some seminal works from the current literature, that are most
closely related to ours. Discussion aims to establish suitable connections as well as
highlight major differences with respect to two major categories of approaches. We
begin with an overview of research in classification within imprecise domains and then
we cover some approaches to associative classification

6.1. Classification in Imprecise Domains

A wealth of approaches to learning classification models within imprecise domains
exists in the literature, whose emphasis is mainly at addressing the issues related to
class imbalance and different misclassification costs. We next provide an overview of
some major methods, which is by no means exhaustive. The interested reader is referred
to (Weiss, 2004) for a more a comprehensive survey on these topics.

Cost-sensitive learning methods (Elkan, 2001; Pazzani et al, 1994) have been ex-
plored for accounting the issues related to rare classes and different misclassification
costs. The idea is to bias the learning process towards rare classes by assigning an
appropriately higher value to the recognition of the minority class(es) with respect to
the identification of the majority class(es). The resulting classification model has hence
broader decision regions associated to the minority class(es), would boundaries are suit-
ably extended via the specification of misclassification costs to cover more cases from
the minority class(es), even if at the expense of an increased number of (misclassified)
cases from the majority class(es). Nonetheless, the domain-specific information on the
individual misclassification costs is seldom known or hardly quantifiable in an objective
manner whenever related to domain experts’ subjectiveness.

Various specific evaluation metrics have been also investigated for dealing with rare
classes and different misclassification costs. The starting point here is that classification
accuracy is not well-suited for imprecise domains, since it is strongly biased against
rare classes and assumes equal misclassification costs. This has caused the widespread
use of some alternative metrics in imprecise domains. ROC analysis is commonly used
in machine learning for visualizing and evaluating the performance of classifiers. In
particular, within an imprecise domain, the ROC space allows to decouple classifier
performance from knowledge of both class and cost distributions. The overall perfor-
mance can be summarized into a single figure, namely the Area Under the ROC Curve
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(AUC), which is not biased in favor of the majority classes. The approach in (Provost
and Fawcett, 2001) proposes an elegant framework that combines ROC analysis, de-
cision analysis and computational geometry for robust classification in imprecise do-
mains. However, a disadvantage of the method is that it requires the apriori identification
of some classifiers, whose ROC curves are dominating for certain operating conditions.
This clearly involves the selection and exploitation of different induction schemes to
learn as many classification models under various operating conditions as well as their
experimental evaluation for the purpose of identifying those areas of the ROC space, in
which the curve of one classifier dominates over the others. Such a preliminary process
also impacts the time efficiency of building the ROC convex hull.

Sampling involves altering the original class distribution for the purpose of attenuat-
ing or removing rarity. There are two basic forms of sampling. In particular, undersam-
pling (Kubat and Matwin, 1997) aims at filtering cases from the majority classes, while
retaining the initial population of the minority classes. Oversampling (Japkowicz, 2000)
is instead devoted to replicate examples from the minority classes. Both methods have
disadvantages. Precisely, undersampling wastes potentially significant examples from
the majority classes that may be useful to enforce class separation, thereby hindering
the performance of the resulting classifier. Oversampling prevents from missing certain
portions of the data space, in which a very small number of cases from the minor-
ity classes are located. This leads to the formation of the associated decision regions.
Replication clearly involves augmenting the duration of the learning process. Also, since
no new information is injected into the training data, oversampling is also susceptible
to overfitting especially when data is noisy. In some circumstances, this could lead to
the formation of classification rules that cover one replicated case. Advanced sampling
methods have also been considered. In particular, undersampling for majority classes
is coupled in (Chawla et al, 2002) with a special form of oversampling for the minor-
ity classes, that creates new synthetic cases from these latter classes. The technique is
effective at inducing a stronger generalization for the minority classes which neatly con-
trasts to the specialization induced by pure replication. However, it is still susceptible
to overfitting. Progressive sampling (Weiss and Provost, 2003) approximates the best
class distribution for learning by iteratively adding to some initial training data a cer-
tain proportion of cases from the majority and minority classes, by using a geometric
sampling schedule. The method is empirically proven to converge towards a nearly op-
timal class distribution for training. Nonetheless, it assumes the existence of costs for
procuring additional training data and thus it is actually useful when procurement costs
are known.

Cost-sensitive boosting (Ting, 2000) has been considered for addressing two ma-
jor characteristics of imprecise environments, namely the rare classes and the different
misclassification costs. Boosting is an iterative meta-technique for learning ensemble
classifiers, that associates a weight with each training data. Weights determine the prob-
ability with which the corresponding training cases are adaptively sampled at each it-
eration for the purpose of forming a new dataset. The latter is used to learn a classifier
through the application of some basic learning scheme. Cost-sensitive boosting lends
to being used for improving the recognition of minority classes (Fan et al, 1999; Joshi
et al, 2001; Chawla et al, 2003), since the latter are more error-prone w.r.t. to major-
ity classes and, hence, their weights are suitably increased. While weight updating is
uniform in pure boosting, i.e. no focus is paid on differentiating between correct and in-
correct predictions of a certain kind, cost-sensitive boosting assigns varying weights to
training cases on the basis of their classifications (e.g., in the two-class scenario, TP, FP,
TN and FN). The weight updating process in (Fan et al, 1999) incorporates a misclas-
sification cost adjustment function: the weights assigned to misclassified (resp. classi-
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fied) cases from a minority class are more aggressively (resp. conservatively) increased
(resp. decreased) with respect to the ones associated to misclassified (resp. classified)
cases from majority classes. However, since no distinction is made between cases from
a minority class that are incorrectly classified into a majority class and the viceversa,
the approach in (Fan et al, 1999) may overly favor recall at the expense of a much lower
precision. The latter limitation is avoided in (Joshi et al, 2001) through a finer weight
modification scheme. A criticism to such approaches is that cost-sensitive boosting may
incur into overfitting (Weiss, 2004), by progressively increasing the weights for cases
of the minority classes that are misclassified. For the purpose of avoiding overfitting
and better catching the minority class, synthetic creation of cases of the minority class
and boosting are combined in (Chawla et al, 2003). At each boosting iteration, a certain
amount of artificial cases from the minority class are created. This allows to sample a
higher number of cases from such a class, which ultimately enables the basic learning
scheme to focus more on (i.e. to learn more general decision regions for) the minority
class without modifying the weights of the training cases. However, it is not clear how to
establish the appropriate amount of synthetic minority-class cases to generate. Besides
the specific disadvantages of the enumerated methods, cost-sensitive boosting presents
some general weaknesses when used for learning classification models in an imprecise
domain. One such a weakness follows from the well-known inability of boosting at
properly working in the presence of noise. Additionally, there is not general guarantee
that it can improve the recognition of the rare class(es) since its performance is strictly
dependent on the performance of the basic learning scheme. If the underlying scheme
always achieves low recall or precision on the rare class(es) of an imprecise domains,
the performance of boosting is also poor (Joshi et al, 2002).

Finally, segmentation (Weiss, 2004) is another major method for catching rare classes
in imprecise domains. The underlying idea is to suitably divide the data space into dis-
joint regions, wherein globally rare classes tend to become less rare. Within each such a
region there are two possibilities. The density of rarity is (much) higher w.r.t. the density
in the whole training data. This clearly allows to focus on the rarities local to the region,
which are also less affected by noise. Alternatively, the density of rarity is (much) lower
than the corresponding density in the training data. In this circumstance, rarity becomes
nearly unidentifiable in the specific region. Nonetheless, this is acceptable in practice,
since most of the original class rarity is still captured within other regions. Segmentation
is adopted in subsection 3.2 to better model rare classes. This is achieved by training a
probabilistic generative model over the subset of training data covered by each individ-
ual rule of an associative classifier.

6.2. Associative Classification

Several approaches to associative classification have been proposed in the literature,
with differences in three major aspects, i.e the discovery of class association rules, the
extraction of a classifier and the class prediction for unlabeled cases (Thabtah, 2007).
The search for class association rules is a critical aspect due to the implied amount
of computation. A greedy strategy that refines the basic FOIL algorithm (Quinlan and
Cameron-Jones, 1993) is leveraged in (Xin and Han, 2003). Search strategies based on
Apriori (Agrawal and Srikant, 1994) are applied in (Liu et al, 1998; Liu et al, 2000; An-
tonie and Zaı̈ane, 2002), whereas a variant of the FP-growth algorithm (Han and Yin,
2000) is at the basis of (Li et al, 2001) A row enumeration method (Cong et al, 2004) is
used in (Arunasalam and Chawla, 2006). The covering rules with highest confidence for
each training case are directly mined in (Wang and Karypis, 2005). In many cases, the
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huge number of resulting class association rules, that may potentially overfit the training
data, is pruned to obtain a compact associative classifier. For instance, redundant rules,
i.e. those rules whose confidence is lower than the confidence of more general rules, are
pruned in (Li et al, 2001; Antonie and Zaı̈ane, 2002). χ2 testing is performed in (Li et
al, 2001) to filter those rules whose antecedents and consequents are not positively cor-
related. The minimum class support and the complement class support are introduced
in (Liu et al, 2000; Arunasalam and Chawla, 2006), respectively, to prune those rules
whose support or confidence is lower that than a threshold automatically identified for
the targeted class. The database coverage method is used in (Liu et al, 1998; Liu et
al, 2000; Antonie and Zaı̈ane, 2002) to extract a classifier from the class association
rules. As far as the prediction of an unlabeled case is concerned, associative classifi-
cation methods can be divided into two categories. On one hand are those approaches
that exploit the top-quality rule covering the case (Liu et al, 1998; Liu et al, 2000). On
the other hand, the eventual prediction is delivered by taking into account multiple rules
applicable to the case (Li et al, 2001; Xin and Han, 2003; Wang and Karypis, 2005; An-
tonie and Zaı̈ane, 2002).
Learning in imprecise domains has not been a primary focus of research on associa-
tive classification, apart from few approaches such as (Liu et al, 1998; Liu et al, 2000),
that account for imbalance in class distribution. The MINECARS scheme discussed
in subsection 3.1 situates in the foregoing framework of related works as follows. It
is an Apriori-based search method designed for mining class association rules within
imprecise domains. In principle, MINECARS can exhaustively search for class associ-
ation rules and, hence, is potentially capable to unveil meaningful associations among
rare items. Therein, one inherent difficulty is that catching such associations may re-
quire a very low value for the minimum support threshold. This would ultimately make
the search for meaningful class association rules computationally intractable, because
of the resulting combinatorial explosion in the number of ways in which the individ-
ual items would be associated with one another. In order to ensure tractability, mini-
mum class support (Liu et al, 2000) and complement class support (Arunasalam and
Chawla, 2006) are both integrated into MINECARS. The former requires setting one
parameter, a global threshold for minimum class support, that is dynamically adjusted
to become a class-specific minimum support threshold. Such a mechanism enables the
discovery of an appropriate number of rules within each individual class, thus avoiding
that the rules targeting the majority classes overwhelm the ones predicting the minority
classes. Additionally, complement class support is used to guarantee that the discovered
class association rules are positively correlated, without performing any further corre-
lation analysis and testing (which are instead an essential requirement in approaches
such as (Li et al, 2001)). Complement class support avoids the flaw with the tradi-
tional support-and-confidence framework, wherein the antecedents and consequents of
high confidence rules may be negatively correlated in the presence of imbalanced class
distributions. Within imprecise domains, such a flaw is clearly a concern for primary
approaches such as (Liu et al, 2000; Wang and Karypis, 2005). The potentially large set
of class association rules found by MINECARS is pruned through a suitable overfitting
avoidance strategy, that removes whole rules on the basis of statistical arguments. As to
the classification of unlabeled cases, two schemes are adopted in subsection 3.2 for class
prediction that consider multiple class association rules as well as their corresponding
probabilistic generative models.
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7. Conclusions and Future Work

This manuscript proposed two probabilistic frameworks for improving the performance
of rule-based classification in highly-imprecise (multi-class) learning environments.

In particular, the global-to-local scheme couples the individual rules of an associa-
tive classifier with as many local probabilistic discriminative models. The individual
model is built over the coverage of each classifier rule and is, then, involved into the
classification process for more effectively dealing with those globally rare classes, that
are likely to become less rare within the coverage. Two novel schemes for a tight inte-
gration between associative and local probabilistic models were discussed.

Instead, the local-to-global scheme elegantly and seamlessly integrates associative
classification with discriminative learning through the maximum entropy framework in
order to boost the overall classification as a side effect of mutual influence.

A massive evaluation revealed that both learning frameworks are competitive and
often superior in classification performance w.r.t. established rule-based competitors.

The ongoing research efforts are mainly geared towards the improvement of the
accuracy of the local probabilistic models in the global-to-local scheme through the
analysis of ROC curves. The point is that the classification threshold typically used in
our framework assigns a class label when the associated probability is higher than 0.5.
However, the latter may not necessarily be the best threshold, especially if we consider
the bias introduced by the CAR associated with the probabilistic classifier. In general,
lower thresholds produce improvements in recall, by contemporarily degrading preci-
sion as a side effect. However, as suggested by figure 5 where a better threshold value
can be obtained in correspondence to the (0.8, 0.01) pair (corresponding to the threshold
0.2), by automatically choosing the best class-specific threshold, probabilistic smooth-
ing can still allow to remove some locality effects within the CAR and maintain high
precision as well.

A. Further Details Classification Performances

The following tables 5, 6, 7 and 8 report the values of, respectively, precision, recall,
f-measure and AUC achieved by both the devised techniques and their competitors over
each class of the chosen datasets. Precisely, each row of such tables indicates the corre-
sponding classification performance over a particular class of a certain dataset, whose
identities are specified in the respective entry of the Dataset and class column accord-
ing to the notation dataset class. Moreover, for each selected dataset, the above
tables also include an additional summarization row, that specifies the average classi-
fication performance across all classes of that dataset. Such rows are distinguished by
the values in the respective entries of the Dataset and class column, which read as
mean(dataset). Notice that, within every table, the best classification performance
over each class of the chosen datasets is highlighted in bold.
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Table 5. Precision
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Table 4. Precision
Dataset and class Size (1) (2) (5) (6) (7) (8) (9) (10) (11)
anneal 1 8 1.000 0.800 0.778 0.778 1.000 1.000 1.000 1.000 0.013
anneal 2 99 0.961 0.971 0.960 0.960 0.980 0.980 0.961 0.961 1.000
anneal 3 684 0.988 0.983 0.990 0.990 0.997 0.997 0.988 0.988 1.000
anneal 5 67 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
anneal U 40 0.947 0.941 0.900 0.900 1.000 1.000 0.947 0.947 1.000
mean(anneal) 898 0.984 0.979 0.981 0.981 0.996 0.996 0.984 0.984 0.996
balance-scale L 288 0.813 0.603 0.832 0.826 0.859 0.864 0.810 0.813 0.567
balance-scale B 49 0.000 0.163 0.083 0.000 0.000 0.000 0.000 0.000 0.000
balance-scale R 288 0.803 0.624 0.826 0.826 0.878 0.851 0.806 0.803 0.918
mean(balance-scale) 625 0.745 0.578 0.770 0.761 0.800 0.790 0.745 0.745 0.684
breast-cancer no-rec. 201 0.761 0.745 0.749 0.749 0.760 0.760 0.752 0.752 0.751
breast-cancer rec. 85 0.583 0.535 0.475 0.475 0.547 0.527 0.568 0.568 0.905
mean(breast-cancer) 286 0.708 0.682 0.667 0.667 0.697 0.691 0.697 0.697 0.797
horse-colic yes 232 0.854 0.849 0.851 0.851 0.852 0.852 0.840 0.840 0.819
horse-colic no 136 0.820 0.845 0.759 0.759 0.765 0.765 0.776 0.776 0.945
mean(horse-colic) 368 0.841 0.848 0.817 0.817 0.820 0.820 0.816 0.816 0.866
credit-rating + 307 0.828 0.832 0.830 0.830 0.792 0.792 0.863 0.863 0.787
credit-rating - 383 0.884 0.871 0.770 0.770 0.835 0.835 0.875 0.875 0.922
mean(credit-rating) 690 0.859 0.854 0.797 0.797 0.816 0.816 0.869 0.869 0.862
german credit good 700 0.759 0.779 0.803 0.803 0.778 0.778 0.790 0.790 0.700
german credit bad 300 0.544 0.504 0.599 0.599 0.495 0.495 0.599 0.599 0.250
mean(german credit) 1000 0.694 0.696 0.742 0.742 0.693 0.693 0.733 0.733 0.565
diabetes negative 500 0.793 0.790 0.776 0.776 0.758 0.758 0.798 0.798 0.648
diabetes positive 268 0.684 0.667 0.629 0.629 0.570 0.570 0.684 0.684 0.000
mean(diabetes) 768 0.755 0.747 0.725 0.725 0.692 0.692 0.758 0.758 0.422
Glass build wind float 70 0.723 0.667 0.530 0.535 0.721 0.721 0.723 0.723 0.516
Glass build wind non-float 76 0.652 0.640 0.625 0.625 0.684 0.675 0.656 0.656 0.939
Glass vehic wind float 17 0.250 0.545 0.188 0.200 0.267 0.267 0.250 0.250 1.000
Glass containers 13 0.667 0.750 0.769 0.769 0.667 0.643 0.667 0.714 1.000
Glass tableware 9 0.700 0.727 0.700 0.700 0.700 0.700 0.700 0.700 1.000
Glass headlamps 29 0.852 0.852 0.852 0.852 0.815 0.815 0.846 0.852 0.813
mean(Glass) 214 0.673 0.680 0.602 0.604 0.680 0.676 0.674 0.677 0.795
cleveland-heart <50 165 0.834 0.853 0.871 0.871 0.801 0.801 0.838 0.838 0.910
cleveland-heart >50 1 138 0.793 0.782 0.797 0.797 0.766 0.766 0.816 0.816 0.898
mean(cleveland-heart) 303 0.815 0.821 0.837 0.837 0.785 0.785 0.828 0.828 0.904
hungarian-heart <50 188 0.808 0.820 0.862 0.862 0.815 0.815 0.858 0.858 0.866
hungarian-heart >50 1 106 0.736 0.775 0.762 0.762 0.676 0.676 0.804 0.804 0.859
mean(hungarian-heart) 294 0.782 0.804 0.826 0.826 0.765 0.765 0.838 0.838 0.864
heart-statlog absent 150 0.789 0.757 0.805 0.805 0.776 0.776 0.790 0.790 0.870
heart-statlog present 120 0.789 0.703 0.752 0.752 0.707 0.707 0.796 0.796 0.917
mean(heart-statlog) 270 0.789 0.733 0.782 0.782 0.745 0.745 0.793 0.793 0.891
hepatitis DIE 32 0.458 0.618 0.458 0.458 0.533 0.533 0.529 0.529 0.516
hepatitis LIVE 123 0.840 0.909 0.840 0.840 0.872 0.872 0.884 0.884 1.000
mean(hepatitis) 155 0.761 0.849 0.761 0.761 0.802 0.802 0.811 0.811 0.900
ionosphere b 126 0.852 0.922 0.761 0.761 0.950 0.950 0.858 0.858 0.592
ionosphere g 225 0.904 0.915 0.901 0.901 0.880 0.880 0.900 0.900 1.000
mean(ionosphere) 351 0.885 0.918 0.851 0.851 0.905 0.905 0.885 0.885 0.853
labor bad 20 0.684 0.700 0.684 0.684 0.684 0.684 0.722 0.722 1.000
labor good 37 0.816 0.838 0.816 0.816 0.816 0.816 0.821 0.821 1.000
mean(labor) 57 0.770 0.789 0.770 0.770 0.770 0.770 0.786 0.786 1.000
lymphography normal 2 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000
lymphography metastases 81 0.798 0.775 0.825 0.825 0.807 0.807 0.807 0.807 1.000
lymphography malign 61 0.750 0.788 0.719 0.719 0.742 0.742 0.738 0.750 1.000
lymphography fibrosis 4 0.750 0.600 0.750 0.750 1.000 1.000 1.000 0.750 1.000
mean(lymphography) 148 0.766 0.765 0.768 0.768 0.775 0.775 0.786 0.785 1.000
sick negative 3541 0.992 0.993 0.990 0.990 0.991 0.991 0.991 0.991 0.977
sick sick 231 0.852 0.887 0.859 0.859 0.896 0.896 0.888 0.888 0.973
mean(sick) 3772 0.983 0.986 0.982 0.982 0.985 0.985 0.985 0.985 0.976
sonar Rock 97 0.725 0.775 0.694 0.694 0.795 0.795 0.744 0.744 0.933
sonar Mine 111 0.735 0.830 0.780 0.780 0.775 0.775 0.730 0.730 1.000
mean(sonar) 208 0.730 0.804 0.740 0.740 0.785 0.785 0.736 0.736 0.969
fraud 0 22109 0.980 0.977 0.974 0.974 0.970 0.970 0.977 0.977 0.972
fraud 1 11667 0.895 0.889 0.401 0.401 0.891 0.891 0.899 0.899 0.893
fraud 2 8167 0.879 0.870 0.550 0.550 0.849 0.849 0.875 0.876 0.851
fraud 3 3499 0.878 0.874 0.767 0.767 0.877 0.877 0.895 0.895 0.880
mean(fraud) 45442 0.932 0.927 0.734 0.734 0.921 0.921 0.932 0.932 0.924
kdd99 r2l 900 0.812 0.828 0.787 0.798 0.832 0.829 0.792 0.812 0.783
kdd99 u2r 40 0.403 0.532 0.325 0.325 0.333 0.392 0.403 0.403 0.253
kdd99 dos 366458 0.999 0.999 0.992 0.992 1.000 1.000 1.000 1.000 0.974
kdd99 probe 3707 0.992 0.976 0.992 0.992 0.995 0.995 0.992 0.992 0.966
kdd99 normal 92270 0.998 0.998 0.999 0.999 0.999 0.999 0.998 0.998 0.742
mean(kdd99) 464075 0.999 0.999 0.993 0.993 0.999 0.999 0.999 0.999 0.972
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Table 6. Recall
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Table 5. Recall
Dataset and class Size (1) (2) (5) (6) (7) (8) (9) (10) (11)
anneal 1 8 0.500 0.500 0.875 0.875 0.875 0.875 0.500 0.500 1.000
anneal 2 99 1.000 1.000 0.980 0.980 1.000 1.000 1.000 1.000 0.758
anneal 3 684 0.991 0.991 0.985 0.985 0.997 0.997 0.991 0.991 0.637
anneal 5 67 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
anneal U 40 0.900 0.800 0.900 0.900 0.975 0.975 0.900 0.900 0.425
mean(anneal) 898 0.984 0.980 0.981 0.981 0.996 0.996 0.984 0.984 0.670
balance-scale L 288 0.889 0.608 0.892 0.892 0.913 0.903 0.889 0.889 0.990
balance-scale B 49 0.000 0.156 0.020 0.000 0.000 0.000 0.000 0.000 0.000
balance-scale R 288 0.865 0.624 0.872 0.872 0.872 0.892 0.865 0.865 0.389
mean(balance-scale) 625 0.808 0.580 0.814 0.813 0.822 0.827 0.808 0.808 0.635
breast-cancer no-rec. 201 0.900 0.900 0.846 0.846 0.881 0.866 0.905 0.905 0.990
breast-cancer rec 85 0.329 0.271 0.329 0.329 0.341 0.354 0.294 0.294 0.224
mean(breast-cancer) 286 0.731 0.713 0.692 0.692 0.720 0.714 0.724 0.724 0.762
horse-colic yes 232 0.905 0.922 0.862 0.862 0.866 0.866 0.879 0.879 0.978
horse-colic no 136 0.735 0.721 0.743 0.743 0.743 0.743 0.713 0.713 0.632
mean(horse-colic) 368 0.842 0.848 0.818 0.818 0.821 0.821 0.818 0.818 0.851
credit-rating + 307 0.860 0.840 0.668 0.668 0.795 0.795 0.840 0.840 0.915
credit-rating - 383 0.856 0.864 0.890 0.890 0.833 0.833 0.893 0.893 0.802
mean(credit-rating) 690 0.858 0.854 0.791 0.791 0.816 0.816 0.870 0.870 0.852
german credit good 700 0.873 0.801 0.853 0.853 0.793 0.793 0.867 0.867 0.996
german credit bad 300 0.353 0.470 0.513 0.513 0.473 0.473 0.463 0.463 0.003
mean(german credit) 1000 0.717 0.702 0.751 0.751 0.697 0.697 0.746 0.746 0.698
diabetes negative 500 0.856 0.844 0.824 0.824 0.784 0.784 0.852 0.852 0.988
diabetes positive 268 0.582 0.582 0.556 0.556 0.534 0.534 0.597 0.597 0.000
mean(pima diabetes) 768 0.760 0.753 0.730 0.730 0.697 0.697 0.763 0.763 0.643
Glass build wind float 70 0.671 0.743 0.757 0.771 0.700 0.700 0.671 0.671 0.943
Glass build wind non-float 76 0.763 0.632 0.395 0.395 0.711 0.711 0.776 0.776 0.408
Glass vehic wind float 17 0.118 0.353 0.176 0.176 0.235 0.235 0.118 0.118 0.118
Glass containers 13 0.769 0.692 0.769 0.769 0.769 0.692 0.769 0.769 0.923
Glass tableware 9 0.778 0.889 0.778 0.778 0.778 0.778 0.778 0.778 0.778
Glass headlamps 29 0.793 0.793 0.793 0.793 0.759 0.759 0.759 0.793 0.897
mean(Glass) 214 0.687 0.682 0.589 0.593 0.682 0.678 0.687 0.692 0.673
cleveland-heart <50 165 0.824 0.806 0.818 0.818 0.806 0.806 0.848 0.848 0.915
cleveland-heart >50 1 138 0.804 0.833 0.855 0.855 0.761 0.761 0.804 0.804 0.891
mean(cleveland-heart 303 0.815 0.818 0.835 0.835 0.785 0.785 0.828 0.828 0.904
hungarian-heart <50 188 0.872 0.894 0.867 0.867 0.819 0.819 0.899 0.899 0.931
hungarian-heart >50 1 106 0.632 0.651 0.755 0.755 0.670 0.670 0.736 0.736 0.745
mean(hungarian-heart 294 0.786 0.806 0.827 0.827 0.765 0.765 0.840 0.840 0.864
heart-statlog absent 150 0.847 0.767 0.800 0.800 0.760 0.760 0.853 0.853 0.940
heart-statlog present 120 0.717 0.692 0.758 0.758 0.725 0.725 0.717 0.717 0.825
mean(heart-statlog) 270 0.789 0.733 0.781 0.781 0.744 0.744 0.793 0.793 0.889
hepatitis DIE 32 0.344 0.656 0.344 0.344 0.500 0.500 0.563 0.563 1.000
hepatitis LIVE 123 0.894 0.894 0.894 0.894 0.886 0.886 0.870 0.870 0.756
mean(hepatitis) 155 0.781 0.845 0.781 0.781 0.806 0.806 0.806 0.806 0.806
ionosphere b 126 0.825 0.841 0.833 0.833 0.762 0.762 0.817 0.817 1.000
ionosphere g 225 0.920 0.960 0.853 0.853 0.978 0.978 0.924 0.924 0.613
mean(ionosphere) 351 0.886 0.917 0.846 0.846 0.900 0.900 0.886 0.886 0.752
labor bad 20 0.650 0.700 0.650 0.650 0.650 0.650 0.650 0.650 1.000
labor good 37 0.838 0.838 0.838 0.838 0.838 0.838 0.865 0.865 1.000
mean(labor) 57 0.772 0.789 0.772 0.772 0.772 0.772 0.789 0.789 1.000
lymphography normal 2 0.000 0.000 0.000 0.000 0.000 0.000 0.500 0.500 0.000
lymphography metastases 81 0.827 0.852 0.815 0.815 0.827 0.827 0.827 0.827 0.901
lymphography malign 61 0.738 0.672 0.754 0.754 0.754 0.754 0.738 0.738 0.885
lymphography fibrosis 4 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 1.000
mean(lymphography) 148 0.777 0.764 0.777 0.777 0.784 0.784 0.784 0.784 0.897
sick negative 3541 0.990 0.993 0.991 0.991 0.994 0.994 0.993 0.993 0.999
sick sick 231 0.870 0.887 0.844 0.844 0.857 0.857 0.861 0.861 0.632
mean(sick) 3772 0.983 0.986 0.982 0.982 0.985 0.985 0.985 0.985 0.976
sonar Rock 97 0.680 0.814 0.773 0.773 0.722 0.722 0.660 0.660 1.000
sonar Mine 111 0.775 0.793 0.703 0.703 0.838 0.838 0.802 0.802 0.937
mean(sonar) 208 0.731 0.803 0.736 0.736 0.784 0.784 0.736 0.736 0.966
fraud 0 22109 0.983 0.975 0.886 0.886 0.985 0.985 0.988 0.988 0.985
fraud 1 11667 0.904 0.898 0.850 0.850 0.880 0.880 0.899 0.899 0.885
fraud 2 8167 0.838 0.860 0.829 0.829 0.834 0.834 0.843 0.843 0.839
fraud 3 3499 0.924 0.879 0.828 0.828 0.870 0.870 0.911 0.912 0.873
mean(fraud) 45442 0.932 0.927 0.869 0.869 0.922 0.922 0.933 0.933 0.925
kdd99 r2l 900 0.941 0.936 0.946 0.946 0.950 0.951 0.941 0.941 0.944
kdd99 u2r 40 0.625 0.625 0.625 0.625 0.625 0.500 0.625 0.625 0.600
kdd99 dos 366458 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000 0.920
kdd99 probe 3707 0.982 0.979 0.978 0.982 0.980 0.980 0.981 0.982 0.980
kdd99 normal 92270 0.997 0.997 0.964 0.964 0.997 0.997 0.997 0.997 0.899
mean(kdd99) 464075 0.999 0.999 0.992 0.992 0.999 0.999 0.999 0.999 0.918
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Table 6. F-Measure
Dataset and class Size (1) (2) (5) (6) (7) (8) (9) (10) (11)
anneal 1 8 0.667 0.615 0.824 0.824 0.933 0.933 0.667 0.667 0.026
anneal 2 99 0.980 0.985 0.970 0.970 0.990 0.990 0.980 0.980 0.862
anneal 3 684 0.990 0.987 0.988 0.988 0.997 0.997 0.990 0.990 0.779
anneal 5 67 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
anneal U 40 0.923 0.865 0.900 0.900 0.987 0.987 0.923 0.923 0.596
mean(anneal) 898 0.984 0.979 0.981 0.981 0.996 0.996 0.984 0.984 0.793
balance-scale L 288 0.849 0.606 0.861 0.858 0.886 0.883 0.848 0.849 0.721
balance-scale B 49 0.000 0.159 0.033 0.000 0.000 0.000 0.000 0.000 0.000
balance-scale R 288 0.833 0.624 0.848 0.848 0.875 0.871 0.834 0.833 0.546
mean(balance-scale) 625 0.775 0.579 0.790 0.786 0.811 0.808 0.775 0.775 0.584
breast-cancer no-rec. 201 0.825 0.815 0.794 0.794 0.816 0.810 0.822 0.822 0.854
breast-cancer rec 85 0.421 0.359 0.389 0.389 0.420 0.423 0.388 0.388 0.358
mean(breast-cancer) 286 0.705 0.680 0.674 0.674 0.698 0.695 0.693 0.693 0.707
horse-colic yes 232 0.879 0.884 0.857 0.857 0.859 0.859 0.859 0.859 0.892
horse-colic no 136 0.775 0.778 0.751 0.751 0.754 0.754 0.743 0.743 0.758
mean(horse-colic) 368 0.840 0.845 0.818 0.818 0.820 0.820 0.816 0.816 0.842
credit-rating + 307 0.843 0.836 0.740 0.740 0.793 0.793 0.851 0.851 0.846
credit-rating - 383 0.870 0.868 0.826 0.826 0.834 0.834 0.884 0.884 0.858
mean(credit-rating) 690 0.858 0.854 0.788 0.788 0.816 0.816 0.869 0.869 0.853
german credit good 700 0.812 0.790 0.827 0.827 0.786 0.786 0.827 0.827 0.822
german credit bad 300 0.428 0.486 0.553 0.553 0.484 0.484 0.523 0.523 0.007
mean(german credit) 1000 0.697 0.699 0.745 0.745 0.695 0.695 0.736 0.736 0.577
diabetes negative 500 0.823 0.816 0.799 0.799 0.771 0.771 0.824 0.824 0.783
diabetes positive 268 0.629 0.622 0.590 0.590 0.551 0.551 0.637 0.637 0.000
mean(pima diabetes) 768 0.755 0.748 0.726 0.726 0.694 0.694 0.759 0.759 0.510
Glass build wind float 70 0.696 0.703 0.624 0.632 0.710 0.710 0.696 0.696 0.667
Glass build wind non-float 76 0.703 0.636 0.484 0.484 0.697 0.692 0.711 0.711 0.569
Glass vehic wind float 17 0.160 0.429 0.182 0.188 0.250 0.250 0.160 0.160 0.211
Glass containers 13 0.714 0.720 0.769 0.769 0.714 0.667 0.714 0.741 0.960
Glass tableware 9 0.737 0.800 0.737 0.737 0.737 0.737 0.737 0.737 0.875
Glass headlamps 29 0.821 0.821 0.821 0.821 0.786 0.786 0.800 0.821 0.852
mean(Glass) 214 0.676 0.678 0.579 0.582 0.680 0.676 0.676 0.680 0.647
cleveland-heart <50 165 0.829 0.829 0.844 0.844 0.804 0.804 0.843 0.843 0.912
cleveland-heart >50 1 138 0.799 0.807 0.825 0.825 0.764 0.764 0.810 0.810 0.895
mean(cleveland-heart 303 0.815 0.819 0.835 0.835 0.785 0.785 0.828 0.828 0.904
hungarian-heart <50 188 0.839 0.855 0.865 0.865 0.817 0.817 0.878 0.878 0.897
hungarian-heart >50 1 106 0.680 0.708 0.758 0.758 0.673 0.673 0.768 0.768 0.798
mean(hungarian-heart 294 0.782 0.802 0.826 0.826 0.765 0.765 0.838 0.838 0.862
heart-statlog absent 150 0.817 0.762 0.803 0.803 0.768 0.768 0.821 0.821 0.904
heart-statlog present 120 0.751 0.697 0.755 0.755 0.716 0.716 0.754 0.754 0.868
mean(heart-statlog) 270 0.788 0.733 0.782 0.782 0.745 0.745 0.791 0.791 0.888
hepatitis DIE 32 0.393 0.636 0.393 0.393 0.516 0.516 0.545 0.545 0.681
hepatitis LIVE 123 0.866 0.902 0.866 0.866 0.879 0.879 0.877 0.877 0.861
mean(hepatitis) 155 0.768 0.847 0.768 0.768 0.804 0.804 0.809 0.809 0.824
ionosphere b 126 0.839 0.880 0.795 0.795 0.846 0.846 0.837 0.837 0.743
ionosphere g 225 0.912 0.937 0.877 0.877 0.926 0.926 0.912 0.912 0.760
mean(ionosphere) 351 0.886 0.916 0.848 0.848 0.897 0.897 0.885 0.885 0.754
labor bad 20 0.667 0.700 0.667 0.667 0.667 0.667 0.684 0.684 1.000
labor good 37 0.827 0.838 0.827 0.827 0.827 0.827 0.842 0.842 1.000
mean(labor) 57 0.771 0.789 0.771 0.771 0.771 0.771 0.787 0.787 1.000
lymphography normal 2 0.000 0.000 0.000 0.000 0.000 0.000 0.667 0.667 0.000
lymphography metastases 81 0.812 0.812 0.820 0.820 0.817 0.817 0.817 0.817 0.948
lymphography malign 61 0.744 0.726 0.736 0.736 0.748 0.748 0.738 0.744 0.939
lymphography fibrosis 4 0.750 0.667 0.750 0.750 0.857 0.857 0.857 0.750 1.000
mean(lymphography) 148 0.771 0.761 0.772 0.772 0.779 0.779 0.783 0.783 0.946
sick negative 3541 0.991 0.993 0.990 0.990 0.992 0.992 0.992 0.992 0.988
sick sick 231 0.861 0.887 0.852 0.852 0.876 0.876 0.875 0.875 0.766
mean(sick) 3772 0.983 0.986 0.982 0.982 0.985 0.985 0.985 0.985 0.974
sonar Rock 97 0.702 0.794 0.732 0.732 0.757 0.757 0.699 0.699 0.965
sonar Mine 111 0.754 0.811 0.739 0.739 0.805 0.805 0.764 0.764 0.967
mean(sonar) 208 0.730 0.803 0.736 0.736 0.783 0.783 0.734 0.734 0.966
fraud 0 22109 0.981 0.976 0.928 0.928 0.977 0.977 0.982 0.982 0.979
fraud 1 11667 0.900 0.893 0.545 0.545 0.885 0.885 0.899 0.899 0.886
fraud 2 8167 0.858 0.865 0.661 0.661 0.841 0.841 0.859 0.859 0.847
fraud 3 3499 0.900 0.877 0.796 0.796 0.873 0.873 0.903 0.903 0.885
mean(fraud) 45442 0.932 0.927 0.796 0.796 0.921 0.921 0.932 0.933 0.928
kdd99 r2l 900 0.872 0.878 0.859 0.865 0.887 0.886 0.860 0.872 0.856
kdd99 u2r 40 0.490 0.575 0.427 0.427 0.435 0.440 0.490 0.490 0.356
kdd99 dos 366458 0.999 0.999 0.996 0.996 1.000 1.000 1.000 1.000 0.946
kdd99 probe 3707 0.987 0.978 0.985 0.987 0.988 0.988 0.986 0.987 0.973
kdd99 normal 92270 0.997 0.997 0.981 0.981 0.998 0.998 0.997 0.997 0.813
mean(kdd99) 464075 0.999 0.999 0.992 0.992 0.999 0.999 0.999 0.999 0.944
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Uses of Associative Rule Learning for Classification in Imprecise Environments 27

Table 7. AUC per Class
Dataset and class Size (1) (2) (5) (6) (7) (8) (9) (10) (11)

anneal 1 8 0.823 0.866 0.933 0.933 0.938 0.938 0.909 0.909 0.979
anneal 2 99 0.999 0.999 0.998 0.998 0.999 0.999 0.999 0.999 0.959
anneal 3 684 0.981 0.988 0.984 0.984 0.997 0.997 0.989 0.989 0.959
anneal 5 67 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
anneal U 40 0.968 0.984 0.965 0.965 0.999 0.999 0.977 0.977 0.909

mean(anneal) 898 0.983 0.989 0.986 0.986 0.997 0.997 0.990 0.990 0.960
balance-scale L 288 0.887 0.631 0.920 0.917 0.943 0.943 0.902 0.902 0.673
balance-scale B 49 0.578 0.482 0.664 0.648 0.495 0.493 0.641 0.621 0.528
balance-scale R 288 0.877 0.656 0.913 0.906 0.935 0.934 0.886 0.886 0.682

mean(balance-scale) 625 0.858 0.631 0.897 0.891 0.904 0.903 0.874 0.873 0.666
breast-cancer no-rec. 201 0.598 0.586 0.694 0.694 0.633 0.624 0.712 0.712 0.749

breast-cancer rec 85 0.598 0.586 0.694 0.694 0.633 0.625 0.712 0.712 0.749
mean(breast-cancer) 286 0.598 0.586 0.694 0.694 0.633 0.625 0.712 0.712 0.749

horse-colic yes 232 0.823 0.863 0.821 0.821 0.803 0.803 0.871 0.871 0.952
horse-colic no 136 0.823 0.863 0.821 0.821 0.803 0.803 0.871 0.871 0.952

mean(horse-colic) 368 0.823 0.863 0.821 0.821 0.803 0.803 0.871 0.871 0.952
credit-rating + 307 0.874 0.892 0.878 0.878 0.828 0.828 0.921 0.921 0.937
credit-rating - 383 0.874 0.892 0.877 0.877 0.828 0.828 0.921 0.921 0.938

mean(credit-rating) 690 0.874 0.892 0.878 0.878 0.828 0.828 0.921 0.921 0.938
german credit good 700 0.593 0.658 0.773 0.773 0.656 0.656 0.774 0.774 0.715

german credit bad 300 0.593 0.658 0.773 0.773 0.656 0.656 0.774 0.774 0.719
mean(german credit) 1000 0.593 0.658 0.773 0.773 0.656 0.656 0.774 0.774 0.716

diabetes negative 500 0.739 0.794 0.777 0.777 0.671 0.671 0.807 0.807 0.754
diabetes positive 268 0.739 0.794 0.777 0.777 0.671 0.671 0.807 0.807 0.755

mean(pima diabetes) 768 0.739 0.794 0.777 0.777 0.671 0.671 0.807 0.807 0.754
Glass build wind float 70 0.814 0.777 0.796 0.795 0.760 0.737 0.816 0.798 0.761

Glass build wind non-float 76 0.765 0.724 0.767 0.767 0.756 0.755 0.792 0.800 0.802
Glass vehic wind float 17 0.748 0.706 0.736 0.736 0.554 0.561 0.699 0.705 0.747

Glass containers 13 0.853 0.910 0.874 0.874 0.881 0.826 0.870 0.873 1.000
Glass tableware 9 0.883 0.937 0.882 0.882 0.931 0.935 0.930 0.933 0.907

Glass headlamps 29 0.859 0.892 0.875 0.875 0.876 0.880 0.865 0.867 0.960
mean(Glass) 214 0.803 0.783 0.800 0.800 0.772 0.763 0.813 0.811 0.822

cleveland-heart <50 165 0.831 0.829 0.870 0.870 0.806 0.806 0.898 0.898 0.971
cleveland-heart >50 1 138 0.831 0.829 0.870 0.870 0.806 0.806 0.898 0.898 0.973

mean(cleveland-heart 303 0.831 0.829 0.870 0.870 0.806 0.806 0.898 0.898 0.972
hungarian-heart <50 188 0.730 0.859 0.891 0.891 0.794 0.794 0.898 0.898 0.920

hungarian-heart >50 1 106 0.730 0.859 0.891 0.891 0.794 0.794 0.898 0.898 0.922
mean(hungarian-heart 294 0.730 0.859 0.891 0.891 0.794 0.794 0.898 0.898 0.920

heart-statlog absent 150 0.781 0.736 0.803 0.803 0.752 0.752 0.796 0.796 0.961
heart-statlog present 120 0.781 0.736 0.755 0.755 0.752 0.752 0.796 0.796 0.961
mean(heart-statlog) 270 0.781 0.736 0.782 0.782 0.752 0.752 0.796 0.796 0.961

hepatitis DIE 32 0.664 0.828 0.667 0.667 0.715 0.715 0.838 0.838 0.992
hepatitis LIVE 123 0.664 0.828 0.667 0.667 0.715 0.715 0.838 0.838 0.992
mean(hepatitis) 155 0.664 0.828 0.667 0.667 0.715 0.715 0.838 0.838 0.992

ionosphere b 126 0.896 0.916 0.893 0.893 0.908 0.908 0.900 0.900 0.966
ionosphere g 225 0.896 0.916 0.896 0.896 0.908 0.908 0.900 0.900 0.966

mean(ionosphere) 351 0.896 0.916 0.895 0.895 0.908 0.908 0.900 0.900 0.966
labor bad 20 0.779 0.726 0.763 0.763 0.743 0.743 0.892 0.892 1.000

labor good 37 0.779 0.726 0.779 0.779 0.743 0.743 0.892 0.892 1.000
mean(labor) 57 0.779 0.726 0.773 0.773 0.743 0.743 0.892 0.892 1.000

lymphography normal 2 0.687 0.476 0.651 0.651 0.546 0.553 0.997 1.000 0.949
lymphography metastases 81 0.805 0.808 0.886 0.886 0.779 0.770 0.884 0.885 0.995

lymphography malign 61 0.780 0.805 0.846 0.846 0.774 0.776 0.878 0.869 0.995
lymphography fibrosis 4 0.872 0.866 0.939 0.939 0.799 0.796 0.993 0.750 1.000
mean(lymphography) 148 0.795 0.804 0.868 0.868 0.774 0.770 0.886 0.876 0.995

sick negative 3541 0.959 0.956 0.982 0.982 0.933 0.933 0.976 0.976 0.897
sick sick 231 0.959 0.956 0.982 0.982 0.933 0.933 0.976 0.976 0.897

mean(sick) 3772 0.959 0.956 0.982 0.982 0.933 0.933 0.976 0.976 0.897
sonar Rock 97 0.759 0.797 0.806 0.806 0.772 0.772 0.801 0.801 0.996
sonar Mine 111 0.759 0.797 0.805 0.805 0.772 0.772 0.801 0.801 0.996

mean(sonar) 208 0.759 0.797 0.806 0.806 0.772 0.772 0.801 0.801 0.996
fraud 0 22109 0.989 0.986 0.981 0.981 0.985 0.985 0.997 0.997 0.988
fraud 1 11667 0.950 0.944 0.743 0.743 0.949 0.949 0.968 0.968 0.955
fraud 2 8167 0.960 0.942 0.891 0.891 0.955 0.955 0.969 0.969 0.960
fraud 3 3499 0.968 0.966 0.961 0.961 0.977 0.977 0.976 0.976 0.976

mean(fraud) 45442 0.972 0.966 0.902 0.902 0.970 0.970 0.983 0.983 0.975
kdd99 r2l 900 0.963 0.985 0.979 0.979 0.998 0.998 0.998 0.997 0.948
kdd99 u2r 40 0.822 0.812 0.873 0.873 0.983 0.976 0.976 0.976 0.923
kdd99 dos 366458 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000

kdd99 probe 3707 0.992 0.990 0.994 0.994 0.999 0.999 0.999 0.999 0.949
kdd99 normal 92270 0.999 0.999 0.999 0.999 1.000 0.999 1.000 1.000 1.000
mean(kdd99) 464075 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000 0.999
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Hämäläinen W (2010) StatApriori: an efficient algorithm for searching statistically significant association

rules. Knowledge and Information Systems, 23(3):373-399
Han J and Yin Y (2000) Mining Frequent Patterns without Candidate Generation. In: Proceedings of ACM

SIGMOD International Conference on Management of data, 2000, pp 1–12
Holte RC, Acker L, Porter B (1989) Concept Learning and the Problem of Small Disjuncts. In: Proceedings

of International Conference on Artificial Intelligence, 1989, pp 813–818
Japkowicz N (2000) The Class Imbalance Problem: Significance and Strategies. In: Proceedings of Interna-

tional Conference on Artificial Intelligence, 2000, pp 111–117
Japkowicz N, Stephen S (2002) The class imbalance problem: A systematic study. Intell Data Anal, 6(5):429–

449
Joshi MV, Agarwal RC and Kumar V (2002) Predicting Rare Classes: Can Boosting Make Any Weak Learner

Strong? In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2002, pp 297–306

Joshi MV, Kumar V and Agarwal RC (2001) Evaluating Boosting Algorithms to Classify Rare Classes: Com-
parison and Improvements. In: Proceedings of IEEE International Conference on Data Mining, 2001,
pp 257–264

Kubat M, Holte RC, Matwin S, Kohavi R, Provost F (1998) Machine Learning for the Detection of Oil Spills
in Satellite Radar Images. Mach Learn 30(2):192–215

Kubat M and Matwin S (1997) Addressing the Curse of Imbalanced Training Sets: One-Sided Selection. In:
Proceedings of International Conference on Machine Learning, 1997, pp 179–186



Uses of Associative Rule Learning for Classification in Imprecise Environments 29

Li W, Han J and Pei J (2001) CMAR: Accurate and Efficient Classification Based on Multiple Class-
Association Rules. In: Proceedings of IEEE International Conference on Data Mining, 2001, pp 369–376

Liu B, Hsu W and Ma Y (1998) Integrating Classification and Association Rule Mining. In: Proceedings of
ACM SIGKDD International Conference on Kwnoledge Discovery and Data Mining, 1998, pp 80–86

Liu B, Ma Y, Wong CK (2000) Improving an Association Rule Based Classifier. In: Proceedings of Principles
of Data Mining and Knowledge Discovery, 2000, pp 504–509

McLachlan G and Peel D (2000). Finite Mixture Models. Wiley, 2000
Mitchell TM (1997). Machine Learning. McGraw-Hill, 1997
Pazzani M, Merz C, Murphy P, Hume T, Brunk C (1994) Reducing Misclassification Costs. In: Proceedings

of International Conference on Machine Learning, 1994, pp 217–225
Phua C, Alahakoon D, Lee V (2004) Minority Report in Fraud Detection: Classification of Skewed Data.

ACM SIGKDD Explorations Newsletter. Special issue on learning from imbalanced datasets:50–59
Provost F and Fawcett T (2001) Robust Classification for Imprecise Environments. Mach Learn. 42(3):203–

231
Quinlan JR and Cameron-Jones RM (1993) FOIL: A Midterm Report. In: Proceedings of European Confer-

ence on Machine Learning, 1993, pp 3–20
Riddle P, Segal R, Etzioni O (1994) Representation Design and Brute-force Induction in a Boeing Manufac-

turing Domain. Appl Artif Intell, 8(1):125–147
Tang J, Chen Z, Fu A and Cheung D (2007) Capabilities of outlier detection schemes in large datasets,

framework and methodologies. Knowl Inf Sys, 11(1):45-84
Tatti N (2008) Maximum entropy based significance of itemsets. Knowl Inf Sys, 17(1):57-77
Thabtah F (2007) A Review of Associative Classification Mining. J Knowl Eng Rev, 22(1):37–65
Ting KM (2000) A Comparative Study of Cost-Sensitive Boosting Algorithms. In: Proceedings of Interna-

tional Conference on Machine Learning, 2000, pp 983–990
Wang J and Karypis G (2005) HARMONY: Efficiently Mining the Best Rules for Classification. In: Proceed-

ings of SIAM International Conference on Data Mining, 2005, pp 205–216
Webb G, Boughton J and Wang Z (2005) Not so naive Bayes: Aggregating one-dependence estimators. Mach

Learn, 58(1): 5–24
Weiss GM (2000) Learning with Rare Cases and Small Disjuncts. In: Proceedings of International Conference

on Machine Learning, 2000, pp 558–565
Weiss GM (2004) Mining with Rarity: A Unifying Framework. ACM SIGKDD Explorations Newsletter,

6(1):7–19
Weiss GM, Hirsh H (2000) A Quantitative Study of Small Disjuncts. In: Proceedings of National Conference

on Artificial Intelligence, 2000, pp 665–670
Weiss GM and Provost F (2003) Learning when Training Data are Costly: the Effect of Class Distribution on

Tree Induction. J Artif Intell Res, 19:315–354
Xin X and Han J (2003) CPAR: Classification based on Predictive Association Rules. In: Proceedings of

SIAM International Conference on Data Mining, 2003, pp 331–335

Author Biographies

Gianni Costa is currently researcher at the Institute of High Performance Com-
puting and Networks (ICAR-CNR) of the National Research Council of Italy. He
graduated summa cum laude in computer science engineering in 2003 and re-
cieved Ph.D. in systems and computer engineering in 2007 from the University
of Calabria, Italy. From 2003 to 2006 he was a Ph.D. student at University of
Calabria. His current research interests include the following fields: data mining
and knowledge discovery, semistructured data, entity resolution.

Giuseppe Manco graduated summa cum laude in computer science in 1994 and
received the PhD degree in computer science from the University of Pisa. He is
currently a senior researcher at the Institute of High Performance Computing and
Networks (ICAR-CNR) of the National Research Council of Italy and a con- tract
professor at University of Calabria, Italy. He has been contract researcher at the
CNUCE Institute in Pisa, Italy, and a visiting fellow at the CWI Institute in Am-
sterdam, Nederlands. His current research interests include deductive databases,
knowledge discovery and data mining, Web databases, and semistructured data.



30 G. Costa et al

Riccardo Ortale is researcher at the Institute of High Performance Comput-
ing and Networks (ICAR-CNR) of the National Research Council of Italy.is re-
searcher at the Institute of High Performance Computing and Networks (ICAR-
CNR) of the National Research Council of Italy is researcher at the Institute of
High Performance Computing and Networks (ICAR-CNR) of the National Re-
search Council of Italy is researcher at the Institute of High Performance Com-
puting and Networks (ICAR-CNR) of the National Research Council of Italy ....

Ettore Ritacco received the M.S. and Ph.D degree in computer science in 2006
and 2010, respectively, from the University of Calabria (UNICAL). Currently he
is a research fellow at the Institute of High Performance Computing and Networks
(ICAR-CNR) of the National Research Council of Italy. His research interests
include data mining and machine learning.

Correspondence and offprint requests to: Riccardo Ortale, ICAR-CNR, Via P. Bucci 41c - 87036 Rende (CS),
Italy. Email: ortale@icar.cnr.it


