
Hierarchical Clustering of XML Documents
Focused on Structural Components

Abstract

Clustering XML documents by structure is the task of grouping them by com-
mon structural components. Hitherto, this has been accomplished by looking
at the occurrence of one preestablished type of structural components in the
structures of the XML documents. However, the a-priori chosen structural
components may not be the most appropriate for effective clustering. More-
over, it is likely the resulting clusters exhibit a certain extent of inner structural
inhomogeneity, because of uncaught differences in the structures of the XML
documents, due to further neglected forms of structural components.

To overcome these limitations, a new hierarchical approach is proposed, that
allows to consider (if necessary) multiple forms of structural components to iso-
late structurally-homogeneous clusters of XML documents. At each level of the
resulting hierarchy, clusters are divided by considering some type of structural
components (unaddressed at the preceding levels), that still differentiate the
structures of the XML documents.

In addition, each cluster in the hierarchy is summarized through a novel
technique, that provides a clear and differentiated understanding of its structural
properties.

A comparative evaluation over both real and synthetic XML data proves
that the devised approach outperforms established competitors in effectiveness
and scalability. Cluster summarization is also shown to be very representative.

Keywords: Data mining; Semi-structured Data and XML; XML clustering;
XML transactional representation; XML cluster representative.

1. Introduction

XML is a popular model for data representation, in which two main types
of information coexist, i.e., pure content and logical structure. The latter is
a valuable support for better information discovery and management, being
helpful to explain the nested content.

Conventional approaches to information handling are not meant for exploit-
ing the structural information of XML data [20, 45], being either devoted to
the management of highly structured data, such as relational databases, or too
focused on the textual nature of the data, such as in the case of information

Preprint submitted to Data & Knowledge Engineering January 25, 2011

retrieval techniques. From this perspective, XML data is a challenging research
domain [16], that calls for suitable methods for information handling [3, 14].

The analysis of the structural information enables more effective processing
of XML data [13, 14, 18, 34], since it allows both to understand the spectrum
of queries answerable by the available XML documents (i.e. the type of infor-
mation as well as its organization) and to identify XML documents with similar
structures as sources of somehow related contents.

In particular, clustering XML documents by their structural features is use-
ful in several applicative contexts. For example, the detection of structural
similarities among documents can help to recognize different sources providing
the same kind of information [5]. Also, it can support the extraction of (schema
or DTD) structures from a collection of XML documents [22, 35], by enabling
the identification of more accurate structures from structurally-homogeneous
subsets of the original collection. Yet, the structural analysis of Web sites ben-
efits from the identification of similar documents, conforming to a particular
structure, which can serve as the input for wrappers working on structurally
similar Web pages [4, 21]. Additionally, the re-organization of the XML doc-
uments on the basis of their structure is crucial for efficient storage as well as
XML query formulation and optimization. Indeed, if the XML documents are
stored using the relational database technology [15, 19, 42], their structural clus-
tering attenuates the resulting fragmentation and, thus, reduces the number of
join operations required to retrieve information from the fragmented data [26].
If instead the XML documents are natively stored as semi-structured docu-
ments [27, 30, 32, 38], their separation into structurally-homogeneous clusters
helps in devising indexing techniques for such documents, thus improving the
construction of query plans [17].

Grouping structurally similar XML documents is problematic for the follow-
ing reasons.

Foremost, XML documents can share various forms of common structural
components (ranging from simple nodes and edges, to paths [17], subtrees [25],
s-graphs [26] and summaries [26]) and, generally, there is no prior knowledge
about the most appropriate one to be considered for effective clustering. This
highlights the need for setting the task of clustering XML documents by struc-
ture in a more general framework, that allows both to accommodate disparate
types of structural components and to assess the impact of their discriminative
power on clustering effectiveness.

The choice of one type of structural components should fit the structural
peculiarities of the available XML documents, since it influences both the effec-
tiveness and efficiency of clustering. This latter aspect is unexplored in previous
works, such as [16, 17, 25, 26], that instead exploit various preestablished forms
of structural components. We believe that this is a major limitation, since the
chosen structural components do not necessarily accord with the structures of
the XML data across the various applicative domains. In such cases, valuable
relationships of structural similarity among the XML documents can be missed
or underestimated, with a consequent degrade of clustering effectiveness.

In addition, focusing only on one form of structural components may not

2

suffice to properly separate the available XML documents. Therein, a careful
investigation of the resulting clusters is likely to reveal an extent of intra-cluster
inhomogeneity, that may be due to some uncaught differences in the structures
of the XML documents in the same clusters, ascribable to further unconsid-
ered forms of structural components. This is highly undesirable in the foresaid
applicative settings.

To address the highlighted issues, our contribution is threefold.
We explore the potential of hierarchical clustering as a framework that allows

to consider, if necessary, various forms of structural components, with which
to form a hierarchy of nested and progressively-purer clusters. Precisely, a
hierarchical clustering approach is designed, in which clusters explain, at each
level of the hierarchy, how the XML documents can be divided with respect
to certain structural components (of the type considered at that level), that
differentiate their structures. The explanation is refined at the next level, where
another type of structural components is used to further divide the individual
clusters from the above level into child clusters, that reveal meaningful and
previously uncaught structural differences.

The devised clustering scheme accommodates all types of tree-like forms of
structural components, and allows the user to specify the most appropriate one
for the separation of the XML documents at each level of the cluster hierarchy.

Also, in order to gain an understanding into the structural properties of the
XML documents within the individual clusters in the hierarchy, a new summa-
rization method is developed that associates each cluster with a set of highly
representative substructures. These provide a clear and differentiated under-
standing of the structural information within a cluster, in terms of the structural
components addressed at the level of that cluster in the hierarchy.

A comparative evaluation over both real and artificial XML data reveals that
the proposed approach outperforms established competitors in effectiveness and
scalability. Cluster summarization is also shown to be very representative.

The paper proceeds as follows. Section 2 introduces notation and prelim-
inaries. Section 3 covers the clustering approach. Section 4 discusses cluster
summarization. Section 5 presents an intensive experimental evaluation. Sec-
tion 6 overviews some related works from the literature. Finally, section 7
concludes and highlights major directions of future research.

2. Preliminaries

The notation used throughout the paper as well as some basic concepts are
introduced below. The structure of XML documents without references can be
modeled in terms of rooted ordered labeled trees, that represent the hierarchical
relationships among the document elements (i.e., nodes).

Definition 2.1. XML Tree. An XML tree is a rooted, labeled, ordered tree,
represented as a tuple t = (rt,Vt,Et, λt), whose individual components have
the following meaning:

3

• Vt is a set of nodes;

• Et ⊆ Vt × Vt is a set of edges, catching the parent-child relationships
between nodes of t;

• rt ∈ Vt is the root node of t, i.e. the only node with no entering edges;

• Σ is an alphabet of node tags (i.e., labels);

• λt : Vt 7→ Σ is a node labeling function.

In the above definition, the elements of XML documents and their attributes
are not distinguished: both are mapped to nodes in the corresponding XML-tree
representation.

Let ni and nj be two nodes from Vt. ni is the parent of nj (and, dually,
nj is a child of ni), if (ni, nj) ∈ Et. This type of parent-child hierarchical
relationship is represented as ni → nj . Instead, if there is a path from ni to
nj of any positive length p (representing intermediate edges), ni is an ancestor
of nj , whereas nj is a descendant of ni. The ancestor-descendant hierarchical
relationship is indicated as ni

p→ nj : clearly, if p = 1, the ancestor-descendant
relationship reduces to the parent-child relationship ni → nj . The set of all
paths from rt to any node n in Vt is denoted as paths(t), i.e., paths(t) = {rt

p→
n|rt, n ∈ Vt, p ≥ 1}.

Nodes in Vt divide into two disjoint subsets: the set Lt of leaves and the
set Vt − Lt of inner nodes. An inner node has at least one child. There is a
(predefined) left-to-right ordering among the siblings of each inner node [1]. A
leaf is instead a node with no children. The height of t, denoted as height(t), is
the maximum number of intermediate edges between rt and any leaf from Lt,
i.e., height(t) = maxp{rt

p→ l|l ∈ Lt}.
All nodes from Vt can be numbered according to their position in the pre-

order depth-first traversal of t. Assume that function numt : Vt 7→ N maps
nodes to their numbering and that mi and mj are two sibling nodes from Vt.
Notation numt(mi) < numt(mj) indicates that mi precedes mj in the (prede-
fined) sibling ordering.

Tree-like structures are also used to represent generic structural patterns
occurring across a collection of XML trees (such as individual nodes, edges as
well as paths).

Definition 2.2. Substructure. Let t and s be two XML trees. s is a sub-
structure of t, if there exists a total function ϕ : Vs → Vt, that satisfies the
following conditions for each n, ni, nj ∈ Vs:

• (ni, nj) ∈ Es iff ϕ(ni)
p→ ϕ(nj) in t with p ≥ 1;

• nums(ni) < nums(nj) iff numt(ϕ(ni)) < numt(ϕ(nj));

4

• λs(n) = λt [ϕ(n)].

The mapping ϕ preserves node labels and hierarchical relationships. In this
latter regard, depending on the value of p, two definitions of substructures can
be distinguished. In the simplest case p = 1 and a substructure s is simply
an induced tree pattern that matches a contiguous portion of t, since ϕ maps
the parent-child edges of s onto parent-child edges of t. This is indicated as
s v t. A more general definition follows when p ≥ 1 [48]. In such a case, s
matches not necessarily contiguous portions of t, since ϕ summarizes hierar-
chical relationships by mapping parent-child edges of s into either parent-child
or ancestor-descendant edges of t. This is denoted as s � t and s is also said
to be an embedded tree pattern of t. The summarization method in sec. 4.1
subsumes a cluster of XML trees with a set of frequent (and representative)
embedded substructures. Many of these substructures would not be found as
induced substructures, since the embedded substructures are intermixed with
unfrequent (and unrepresentative) substructures in the XML trees.

Hereafter, the notions of substructure, (structural) component and tree pat-
tern are used as synonyms.

Clustering by structure aims to divide a collection D = {t1, . . . , tN} of N
XML trees to form a partition P = {C1, . . . , CK} of nonempty clusters such that
Ci ⊆ D and Ci ∩ Cj = ∅ for all i, j = 1, . . . ,K with i 6= j. The clustering process
generally attempts to maximize the degree of structural homogeneity exhibited
by the XML trees in the same cluster and to minimize the extent of structural
homogeneity between XML trees within distinct clusters.

In this paper, we develop a clustering approach that produces a hierarchy of
nested clusters. The approach differs from conventional hierarchical methods in
two respects.

First, it allows to account for various forms of structural components that
differentiate the available XML trees. Such structural patterns may be suggested
by domain analysts, fixed classification criteria, or in-depth customized analysis.

Second, it is a multi-stage divisive method. At stage i, the clusters sited
at level i of the resulting hierarchy are formed by separating the individual
clusters from level i − 1 (i.e., obtained at stage i − 1) with respect to some
form of structural components, that has not yet been considered up to stage
i− 1. This enforces a progressively increasing degree of intra-cluster structural-
homogeneity along the paths from root to the leaves of the cluster hierarchy.

All types of tree-like components can be handled for clustering at each stage.
Notation T (i) denotes the collection of components addressed at stage i. Ex-
ample definitions of T (i) include:

• The selection of one-node substructures modeling the individual nodes in
the XML trees, i.e.,

T (i) = {s : Vs = {rs},∃t ∈ D, s v t}

5

In such a case, the generic substructure s consists only of its root rs, that
matches some corresponding node of an XML tree t in D.

• The selection of one-edge substructures modeling the parent-child rela-
tionships in the XML trees, i.e.,

T (i) = {s : Vs = {rs, n},Es = {(rs, n)},∃t ∈ D, s v t}

Here, the individual substructure s consists only of one edge (rs, n), that
matches some corresponding parent-child edge of an XML tree t in D.

• The selection of one-path substructures modeling the distinct root-to-node
paths in the XML trees, i.e.,

T (i) = {s : |paths(s)| = 1,∃t ∈ D, s v t}

Each s in the above set T (i) is hence linear, i.e., consists of only one path
matching some (root-to-node or root-to-leaf) path of an XML tree t in D.

Interestingly, more sophisticated definitions of T (i) may involve induced or
embedded subtrees.

The components chosen at any clustering stage i enable the projection of
the XML trees into a high-dimensional space, wherein the occurrence of the
individual substructures within each XML tree is explicitly represented. More
precisely, the XML trees can be modeled as transactions over a feature space
S(i) = {Fs|s ∈ T (i)}. Here, the generic feature Fs is a boolean attribute,
that indicates the presence/absence of the related component s of T (i) in the
individual XML trees.

Let x(t) be the high-dimensional transactional representation over S(i) of an
XML tree t. The value of each attribute Fs in the context of x(t) is true if s
is a substructure of t, otherwise it is false. Hence, x(t) can be modeled as a
proper subset of S(i), namely x(t) = {Fs ∈ S(i)|s v t}, with the meaning that
the features explicitly present in x(t) take value true, whereas the others assume
value false.

At each stage i, the set D(i) = {x(t)|t ∈ D} comprises all transactions over
S(i), that correspond to XML trees of D. For convenience, we introduce a
mapping t(·) : 2D(i) → 2D, that projects a set C of transactions over S(i) to
their corresponding XML trees in D, i.e., t(C) = {t|x(t) ∈ C}.

The devised hierarchical approach to clustering XML documents by struc-
ture benefits from the transactional representation. Indeed, the cost for testing
the presence of the selected components within the transactions related to the
XML trees is, at each stage, independent of the structural complexity of the
same components. Nonetheless, at each stage, the transactional representation
involves the non-trivial discovery of meaningful clusters in large-scale databases
of high-dimensional transactions.

6

From this perspective, our approach reformulates the original problem of
grouping D by structure as that of progressively finding structurally-purer clus-
ters in the transactional representations of D over various types of structural
components across multiple stages.

This is accomplished through a hierarchical clustering process described in
the next section.

3. Hierarchical Clustering of XML Trees

The scheme of the hierarchical clustering process is sketched in fig. 1. The
Generate-Hierarchy procedure preliminarily requires that the end user in-
corporates (at line 1) valuable domain knowledge and application semantics
into the hierarchical clustering process. This is accomplished by establishing
the most appropriate set of structural components T (i) to address at each stage
i of clustering (i.e. at each level of the cluster hierarchy) as well as the overall
number m of clustering stages (i.e., levels in the cluster hierarchy).

At each clustering stage i, P represents the partition containing all clusters
of XML trees sited at level i− 1 of the cluster hierarchy. Initially, when i = 1,
P includes a single cluster, which coincides with the whole data set D of XML
trees (line 4). Instead, P(i) is the partition produced by Generate-Clusters
at stage i (line 14). Notice that P includes clusters of XML trees, whereas P(i)

contain clusters of transactions over the feature space S(i). At the end of stage
i, P(i) is mapped to P(at line 18), which thus become the last level of the cluster
hierarchy to be partitioned in the subsequent stage i+ 1.

For the sake of clarity, the above distinction between clusters of XML trees
and clusters of transactions corresponding to XML trees is reflected in the
pseudo code of fig. 1 by an appropriate notation: C and C indicate clusters,
respectively, of the former and the latter type.

The body of each clustering stage i (lines 6-19) consists of two phases: sep-
aration (lines 6-14) and summarization (lines 15-17).

At the generic stage i, each cluster C within P is divided by means of the
Generate-Clusters procedure, which is covered in sec. 3.1. Here, it suffices to
anticipate that Generate-Clusters partitions (at line 9) a cluster C of XML
trees into an appropriate number of child clusters, which contain transactions
over the feature space S(i). Together, these child clusters form the partition R
of the foresaid cluster C. At this point, each child cluster C in R is associated
(lines 10-12) with its siblings C = R − C (for the purpose of cluster summa-
rization) and R is then added (at line 13) to the partition P(i) that is being
constructed. The separation of clusters in P is reiterated (between lines 6-14)
until each cluster in P is individually partitioned.

Summarization takes place after cluster separation. Each cluster C within
P(i) is summarized (lines 15-17) trough MineRep. The latter is a procedure,
covered in sec. 4, that associates C with a set Rep(C) of representative sub-
structures, subsuming the structural information within C.

To this point, the partition P (at line 18) includes all clusters of XML trees
sited at level i of the cluster hierarchy and Generate-Hierarchy proceeds

7

Generate-Hierarchy(D)
Input: a set D = {t1, . . . , tN} of XML trees;

Output: a set ∪iP(i) of multiple cluster partitions;

1: let T (i) be the set of structural components at stage i =
1, . . . ,m;

2: let S(i) ← {Fs|s ∈ T (i)} be the feature space at stage i =
1, . . . ,m;

3: let i← 1;
4: let P ← {D };
5: while i ≤ m do
6: while P 6= ∅ do
7: let C be a cluster in P;
8: P ← P − C;
9: R ← Generate-Clusters(C,S(i));
10: for each C ∈ R do
11: let C← R− {C} be the set of siblings of C;
12: end for
13: P(i) ← P(i) ∪R;
14: end while
15: for each C ∈ P(i) do
16: Rep(C)← MineRep(C,C, α);
17: end for
18: P ← ∪

C∈P(i) t(C);

19: i← i+ 1;
20: end while
21: RETURN ∪iP(i);

Figure 1: The hierarchical clustering process

to partition them at the subsequent level i + 1 with respect to the structural
components T (i+1).

The choice of a distinct set of structural components at each stage guarantees
a progressively increasing degree of structural homogeneity. This is due to the
fact the XML trees corresponding to the transactions within the generic cluster
of P(i) (that are already homogeneous according to the previously considered
sets of structural components T (j) with j = 1, . . . i) can still be separated by iso-
lating groups of such XML trees, which are strongly discriminated by meaningful
co-occurrences of the (previously unconsidered) structural patterns in T (i+1).
Obviously, this also implies a significant differentiation in the representatives
of clusters at different stages. Indeed, at each distinct stage, representatives
provide a summarization of the tree structures within the corresponding clus-
ters in terms of (a combination of) the structural components considered a that
particular stage. Hence, the representative of a child cluster highlights local
patterns of structural homogeneity, that are not caught by the representative of
the parent cluster.

3.1. Cluster generation
The basic idea behind cluster separation at each stage consists in project-

ing an input set D of XML trees into a high-dimensional feature space S, in
which to isolate homogeneous groups of transactions sharing discriminatory co-
occurrences of structural features.

8

Finding clusters in the high-dimensional feature space S is problematic for
various reasons [8]. Primarily, transactions tend to form different clusters on
distinct subsets of features, which penalizes the effectiveness of clustering and
exacerbates its time requirements. Secondarily, poor scalability with both the
size and the dimensionality of transactions is usually a major limitation. Yet, an
underestimation (resp. overestimation) of the number of child clusters to isolate
in the input set D misses (resp. uncovers) actual (resp. artificial) groups.

To fit the peculiarities of the transactional setting, the XML trees within
the input set D are separated through the Generate-Clusters algorithm
proposed in [8]. The latter is an effective and parameter-free technique for
transactional clustering, that automatically partitions D into an appropriate
number of child clusters.

The fundamentals of Generate-Clusters are reviewed below. Instead,
a discussion on the convergence of Generate-Clusters along with a com-
parative analysis of its empirical behavior against a wide variety of established
competitors can be found in [8].

The general scheme of the Generate-Clusters algorithm is reported in
fig. 2. Generate-Clusters initially maps (lines L1- L2) the input set D of
XML trees to a space of clustering features in S. This yields the transactional
representation D. The algorithm starts with a partition P containing a single
cluster corresponding to the whole transactional dataset D (line L3). The core
of the algorithm is the body of the loop between lines L4-L17. Within the
loop, an attempt to generate a new cluster is performed by (i) choosing a
candidate node (corresponding to a cluster with low quality) to split (line L6);
(ii) splitting the candidate cluster into two child clusters (line L7); and (iii)
evaluating whether the splitting allows a new partition exhibit better quality
than the original partition (lines L8-L15). If this is the case, the loop can be
stopped (line L12) and the partition is updated, by replacing the candidate
cluster with the new child clusters (line L10). Viceversa, child clusters are
discarded and a new candidate cluster is considered for splitting.

The Partition-Cluster procedure at line L7 iteratively evaluates, for each
transaction x(t) ∈ Ci ∪ C, whether a membership reassignment improves the
degree of structural homogeneity of the two clusters. The contribution of x(t)

to structural homogeneity is evaluated in two cases: both in the case that x(t)

is maintained in its original cluster of membership and in the case that x(t)

is moved to the other cluster. If moving x(t) causes an improvement in the
structural homogeneity, then the swap is accepted.

The local quality Quality(C) of a cluster C is a key component of Generate-
Clusters and measures the degree of structural homogeneity within C. More
precisely, Quality(C) is defined as the gain in feature strength with respect to
the whole transactional dataset D, i.e.,

Quality(C) = Pr(C)
∑
F∈SC

[
Pr(F|C)2 − Pr(F|D)2

]
where Pr(F|C)2 corresponds to the relative strength of F within C, whereas

9

Pr(C) represents the relative strength of C. These two factors work in contra-
position: singleton clusters exhibit strong features in a sparse region, whereas
highly populated clusters exhibit weaker features in a dense region. The above
formula finds an interpretation in terms of subspace clustering. Features ex-
hibiting a high occurrence frequency with respect to the occurrence frequency
in the whole dataset D, define a subset of relevant features, as opposed to
low-occurrence features which are indeed irrelevant for the purpose of cluster-
ing. Thus, clusters exhibit high quality whenever a subset of relevant features
occurs, whose frequency is significantly higher than in the whole dataset D.

Differently from the Partition-Cluster procedure, where the improve-
ment in quality is attempted locally to a cluster, the Stabilize-Clusters
procedure tries to increase the global partition quality Quality(P). This is ac-
complished by finding, for each transaction, the most suitable cluster among the
ones available in the partition. The quality Quality(P) of a partition P is meant
to measure both the homogeneity of clusters and their compactness. Viewed in
this respect, partition quality is defined as follows

Quality(P) =
∑
C∈P

Pr(C)Quality(C)

Notice that the component Quality(C) is already proportional to the con-
tribution Pr(C). As a result, in the overall partition quality, the contribution
of each cluster is weighted by Pr(C)2. This weighting has a major effect in the
Generate-Clusters procedure: splitting in very small clusters is penalized.
Indeed, the generated clusters are added to the partition only if their contribu-
tion is really worth.

Generate-Clusters(D,S)
Input: A set D = {t1, . . . , tN} of XML trees;

a set of clustering features S;
Output: A partition P = {C1, . . . , Ck} of clusters of transactions

corresponding to XML trees;

L1: let x(ti) ← {Fs ∈ S|s v ti} for each i = 1, . . . , N ;

L2: let D← {x(ti) ⊆ S|ti ∈ D};
L3: let P ← {D};
L4: repeat
L5: Generate a new cluster C of transactions, initially empty;
L6: for each cluster Ci ∈ P do
L7: Partition-Cluster(Ci, C);
L8: P′ ← P ∪ {C};
L9: if Quality(P) < Quality(P′) then
L10: P ← P′;
L11: Stabilize-Clusters(P);
L12: break
L13: else
L14: Restore all x(tj) ∈ C into Ci;
L15: end if
L16: end for
L17: until no further cluster C can be generated
L18: RETURN P;

Figure 2: The Generate-Clusters scheme

10

4. Cluster Summarization

The representative of a cluster of XML trees is a set of highly representative
XML tree patterns, that satisfy the following two conditions. Foremost, each
XML tree pattern s must appear as a substructure of the XML trees in C with
an occurrence frequency Pr(s|C), that is higher than the frequency Pr(s|C ∪ C)
with which s occurs throughout C ∪ C, where C is the set of siblings of C in
the cluster hierarchy formed by Generate-Clusters. Also, there must be a
strong degree of correlation between s and C, which guarantees that the XML
tree pattern is representative of certain structural properties from the cluster.

Cluster summarization relies on an Apriori-based, pattern-growth strategy.
At any stage i, the latter initially considers the elementary features within S(i) as
the most basic XML tree patterns for a cluster. Such patterns are progressively
combined into composite tree patterns. To avoid combinatory explosion, only
two types of combined tree pattern are admitted, i.e., parent-child and sibling
tree patterns.

Definition 4.1. Parent-child tree pattern. A parent-child tree pattern is an
arrangement of two basic tree patterns, in which one of the two tree patterns is
rooted at some leaf node of the other tree pattern. Let si and sj be two generic
tree patterns. Also, assume that l is some leaf node of si. The operator si /l sj
defines a new parent-child tree pattern s, such that |Vs| = |Vsi | + |Vsj | and
|Es| = |Esi | + |Esj | + 1, wherein the root rsj of sj is a child of l. Formally,
if l ∈ Vsi , si /l sj defines a tree pattern s such that there exist two mappings
ϕi : Vsi 7→ Vs and ϕj : Vsj 7→ Vs satisfying the following conditions for each
h ∈ {i, j} (wherever subscript h figures):

• ϕi(rsi) = rs (i.e. rsi matches rs)

• ∀n ∈ Vsi and ∀n′ ∈ Vsj , ϕi(n) 6= ϕj(n′);

• ∀n ∈ Vsh , λsh(n) = λs(ϕh(n));

• ∀n, n′ ∈ Vsh , (n, n′) ∈ Esh iff (ϕh(n), ϕh(n′)) ∈ Es;

• ∀(n, n′), (n, n′′) ∈ Esh , numsh(n′) < numsh(n′′) iff nums(ϕ(n′)) < nums(ϕ(n′′));

• (ϕi(l), ϕj(rsj)) ∈ Es.

Given any two tree patterns si and sj, the set of all possible parent-child tree
patterns in which the root of sj is a child of the individual leaves of si is denoted
as

si / sj =
⋃
l∈Lsi

{si /l sj}

where Lsi represents the set of leaves of si.

11

A parent-child tree pattern is a vertical arrangement of two component tree
patterns. Instead, a sibling tree pattern follows from an horizontal arrangement
of its components.

Definition 4.2. Sibling tree pattern. Given two tree patterns with a same
label at their roots, a sibling tree pattern is a composite structure, in which
the two tree patterns are merged under the same root label. Let si and sj be
two tree patterns such that λsi(rsi) = λsj (rsj). The operator si ∧ sj defines a
sibling tree pattern s, such that there exist two mappings ϕi : Vsi 7→ Vs and
ϕj : Vsj 7→ Vs satisfying the following conditions for each h ∈ {i, j} (wherever
subscript h figures):

• ϕi(rsi) = ϕj(rsj) = rs;

• ∀n ∈ Vsh , λsh(n) = λs(ϕh(n));

• ∀n, n′ ∈ Vsh , (n, n′) ∈ Esh iff (ϕh(n), ϕh(n′)) ∈ Es;

• ∀(n, n′), (n, n′′) ∈ Esh , numsh(n′) < numsh(n′′) iff nums(ϕ(n′)) < nums(ϕ(n′′))
for each h ∈ {i, j}.

4.1. Mining Representative XML Tree Patterns
MineRep, in fig. 3, is an Apriori-based pattern-growth technique to mine

a set of representative substructures for a cluster C. Such substructures are
obtained via progressive combinations of the elementary structures in C.

MineRep receives three input parameters, namely the cluster C to be sum-
marized, the set C of all siblings of C (as defined at line 11 of fig. 1) and a
significance threshold α. The procedure starts (at line M3) by considering a
space SC of features, whose occurrence frequency in cluster C is higher than
in the whole partition C ∪ C. These features are inherently characteristic of C
and, according to the definition of cluster quality in sec. 3, are directly pro-
vided by Generate-Clusters, without having to be re-computed. Notably,
focusing only on such features from the beginning strongly prunes the space of
candidates.

The elementary structures from the feature space SC are considered (at
line M4) as candidate tree patterns. Each such a candidate s is associated
(lines M5-M7) with a bit list B(s), that keeps trace of the transactions in C ∪C,
that exhibit the corresponding feature Fs. Bit lists are a fundamental tool
in vertical mining methods [41, 47, 49], that expedites frequency counting for
candidate patterns. Here, this mechanism enables the fast estimation of the
bit list related to any candidate (combined) tree pattern, which is henceforth
obtained through the intersection (at line N4 of the Candidate-Generation
sub-procedure in fig. 4) of the bit lists associated with its constituents, without
costly re-scans of all the available transactions.

12

The generic bit list B(s), in fig. 3, is represented as a set of transactions
for convenience: the transactions in B(s) exhibit Fs, whereas the others do not
include Fs.

At the heart of MineRep is a loop (lines M8-M20), that distils represen-
tative tree patterns from C(k) and generates more-complex (parent-child and
sibling) candidates via combinations of representative tree patterns. The loop
halts when no more candidates can be generated.

At any generic iteration k, MineRep computes the occurrence frequencies
Pr(s|C) and Pr(s|C) of each candidate s from C(k) within, respectively, C and
C. This is accomplished by looking at the transactions in the associated bit list
B(s). The latter, by construction (at line N4 of the Candidate-Generation
scheme in fig. 4), includes all those transactions in C∪C that exhibit all and only
the features in s. However, at any iteration k ≥ 2 (tested at line M10), such
transactions cannot be directly exploited to compute the occurrence frequencies.
This is due to the fact that s is not necessarily an embedded substructure of
all the XML trees associated to the transactions in s, because of the possibility
that, in some of these trees, the features of s originate distinct structural com-
binations. Therefore, B(s) is inspected to identify (at line M11) the subset D(s)
of transactions corresponding to XML trees, that do not actually include s as
an embedded substructure. Therein, the test on the height of the XML trees
within B(s) strongly reduces the overall number of such trees, that is actually
necessary to inspect in order to check the embedded inclusion of candidate s.
D(s) is then used to rectify B(s) (at line M12), which enables the computation
of Pr(s|C) and Pr(s|C ∪ C) (at lines M14 and M15) from the bit list.

Actually, the identification of D(s) is optimized, since checking the embed-
ded inclusion of a candidate s in an XML tree t requires time O(|Vs||Vt|).
Precisely, a preprocessing phase of Generate-Hierarchy in fig. 1 (which is
not formalized to avoid cluttering discussion) also associates the available XML
trees with revised s-graphs [26]. These are explicit representations of the parent-
child and ancestor-descendant hierarchical relationships within the XML trees.
Such representations are used to avoid the expensive test (at line M11) on the
embedding of a substructure s in an XML tree t, whenever all edges of s are
not included in the revised s-graph associated to t.

The representative tree patterns are distilled in L(k) (at line M17) from
the set C(k) of candidates, by choosing the ones that satisfy the following two
conditions. First, the occurrence frequency of each representative tree pattern
s must be higher in C than in C ∪C, i.e., it must hold that Pr(s|C) > Pr(s|C ∪C).
Both Pr(s|C) and Pr(s|C ∪C) are computed (respectively at lines M14 and M15)
after the pruning phase. Second, there must be a strong degree of correlation
between s and C. This is useful to establish whether the occurrence of s in
C is statistically relevant and, hence, structurally representative. Statistical
hypothesis testing is used for this purpose, as it is discussed in sec. 4.3. The
resulting set L(k) of representative tree patterns provides the basic structures
for the generation of candidate tree patterns at the subsequent iteration k + 1.

MineRep halts when C(k) is empty and, hence, no more representative tree
patterns can be discovered. In such a case MineRep returns (line M22) all of

13

MineRep(C, C, α)
Input: a set C = {x(t1), . . . ,x(th)} of XML trees in transactional

form;

the set C of siblings of C as defined at line 11 of fig. 1;
a significance threshold α;

Output: a set R of representative XML structures;
M1: R ← ∅;
M2: k ← 1;

M3: let SC ← {Fs|∃x(t) ∈ C,Fs ∈ x(t),Pr(Fs|C) > Pr(Fs|C ∪ C)};
M4: let C(k) ← {s|Fs ∈ SC};
M5: for each s ∈ C(k) do
M6: let B(s)← {x(t) ∈ C ∪ C|Fs ∈ x(t)};
M7: end for
M8: while (C(k) 6= ∅) do

M9: for each s ∈ C(k) do
M10: if (k > 1) then

M11: D(s) ← {x(t) ∈ B(s)|height(t) < height(s)} ∪ {x(t) ∈
B(s)|height(t) ≥ height(s), s 6� t};

M12: B(s)← B(s)−D(s);
M13: end if

M14: Pr(s|C)← |{x(t)∈B(s)∩C}|
|C| ;

M15: Pr(s|C ∪ C)← |{x(t)∈B(s)}|
|C∪C|

;

M16: end for
M17: L(k) ← {s ∈ C(k)|Pr(s|C) > Pr(s|C ∪ C), χ2(s, C) > τα};
M18: k ← k + 1;

M19: C(k) ← Candidate-Generation(L(k−1), C);
M20: end while
M21: R ← ∪kL(k);
M22: return R;

Figure 3: The cluster summarization procedure

the XML tree patterns, that were found in the previous steps to be strongly
discriminatory of the structural properties of cluster C. The candidate gen-
eration phase as well as the exploitation of statistical hypothesis testing for
the identification of representative substructures are analyzed in the following
sections.

4.2. Candidate generation
The Candidate-Generation sub-procedure, reported in fig. 4, initially

identifies (at line N2) the maximum height HC of the XML trees within clus-
ter C. HC is used to prune (at lines N7-N11) combined candidates with an
unnecessarily large height.

Candidate-Generation then combines (lines N3-N21) each pair of dis-
tinct tree patterns si and sj from L into further candidate (parent-child or
sibling) tree patterns.

The bit list E (at line N4) is a common estimation of the actual bit lists
associated with all candidates obtainable through any admissible combination
of si and sj . B shall be refined into the actual bit lists of such candidates by
the MineRep procedure of fig. 3 (at lines M11 and M12).

The set T (at line N5) contains all parent-child tree patterns obtainable from
si and sj . The candidate generation strategy soon prunes T (lines N6-N12): the

14

Candidate-Generation(L, C)
Input: a set L of discriminative tree patterns;

a set C of XML trees;
Output: a set C of candidate combined tree patterns;
N1: C ← ∅;
N2: HC ← max{height(t)|x(t) ∈ C};
N3: for each si, sj ∈ L do
N4: E ← B(si) ∩ B(sj);
N5: T ← si / sj ∪ sj / si;
N6: for each s ∈ T do
N7: if (height(s) ≤ HC) then
N8: B(s)← E;
N9: else
N10: T ← T − {s};
N11: end if
N12: end for
N13: C ← C ∪ T ;
N14: if (|Vsi

| > 1) and (|Vsj
| > 1) then

N15: if (λsi
(rsi) = λsj

(rsj)) then

N16: s← si ∧ sj ;
N17: B(s)← E;
N18: C ← C ∪ {s};
N19: end if
N20: end if
N21: end for
N22: return C;

Figure 4: The candidate generation sub-procedure

height of each candidate s in T is tested (lines N7-N11) against the maximum
height HC of the XML trees in cluster C. If height(s) does not exceed HC , s is
left in T and E is set as the estimated bit list of s. By the contrary, if height(s)
exceeds HC , s is removed from T (at line N10). The resulting T is added to the
ongoing set C of candidates (at line N13).

At this point, Candidate-Generation considers the sibling pattern ob-
tainable from si and sj , if both are not tree-like representations of individual
nodes (tested at line N14) and share a common root label (tested at line N15).
The candidate is associated (at line N17) with the estimation E of its actual bit
list and, then, is added to C (at line N18).

Once all pairs of representative tree patterns are considered for combination,
Candidate-Generation returns (at line N22) the set C of new candidate tree
patterns.

4.3. Representativeness of Candidate Tree Patterns
As to the use of statistical hypothesis testing in MineRep (at line M17),

the non-parametric chi-square test is used to establish whether the representa-
tiveness of a candidate tree pattern s is statistically grounded. This involves
a decision between two alternative hypotheses: a null hypothesis according to
which the occurrence of s in C is a consequence of chance (and, thus, the repre-
sentativeness of s must necessarily be considered as statistically groundless) and
an alternative hypothesis, according to which the occurrence of s in C is sta-
tistically relevant (and, hence, s must be representative of some corresponding

15

structural properties). To make a proper decision between the two alternative
hypotheses, the following four statistics are considered:

• nsC , the number of (transactions corresponding to) XML trees in C that
contain s as an embedded substructure, i.e., nsC = |{x(t) ∈ B(s) ∩ C}|.

• ns¬C , the number of (transactions corresponding to) XML trees in any
cluster other than C, that contain s, i.e., ns¬C = |{x(t) ∈ B(s)∩C}| (recall
that C is the set of siblings of C).

• n¬sC , the number of (transactions corresponding to) XML trees in C,
that do not contain s. The value of n¬sC is computed through two al-
ternative definitions, according to the nature of s. Precisely, n¬sC =
|{x(t) ∈ D(s) ∩ C}| if s is a combined tree pattern resulting at any it-
eration k ≥ 2. Otherwise, n¬sC follows from complementing nsC , i.e.,
n¬sC = |{x(t) ∈ [C − (B(s) ∩ C)]}|, since D(s) = ∅ for elementary compo-
nents at iteration k = 1.

• n¬s¬C , the number of (transactions corresponding to) XML trees within all
clusters but C, that do not contain s. Again, n¬s¬C = |{x(t) ∈ D(s) ∩ C}|
if s is a combined tree pattern (at any iteration k ≥ 2). Otherwise, n¬s¬C
follows from complementing nsC , i.e., n¬s¬C = |{x(t) ∈ [C − (B(s) ∩ C)]}|
(at iteration k = 1).

The above statistics enable the computation of two marginal totals, namely,
the overall numbers ns and n¬s of XML trees in C ∪C that contain, respectively,
do not contain s as an embedded substructure. Marginal totals, in turn, allow
to compute the expected values of the foregoing statistics, respectively denoted
as nsC , ns¬C , n¬sC , n¬s¬C , that represent those values that would be expected
if there was no meaningful correlation between s and C, i.e., if s occurred in C
by chance. Precisely, nsC = ns|C|

|C∪C|
, n¬sC = n¬s|C|

|C∪C|
, ns¬C = ns|C|

|C∪C|
, n¬s¬C = n¬s|C|

|C∪C|
.

Given both the observed and expected values of the statistics, it is possible to
compute the value of the following test-statistic:

χ2(s, C) =
∑

s′∈{s,¬s},C′∈{C,¬C}

(ns′C′ − ns′C′)
2

ns′C′

The null hypothesis is rejected in favor of a statistically relevant occurrence
of s in C if the difference between observed and expected statistics is high,
i.e. if χ2(s, C) > τα, where τα is the threshold for the chi-square distribution
with one degree of freedom at a significance level α. In statistical terms, α is
the probability of a so-called type I error, i.e., the probability of rejecting the
null hypothesis, when it is instead true. Setting α to low values is useful for a
twofold purpose: it increases the significance level (i.e. the probabilistic robust-
ness) of the test and, also, it accordingly limits the number of representative
substructures that can be distilled (at line M17 of fig. 3) from the current set of
candidates (which, in turn, reduces the number of candidates attainable from
such representative).

16

5. Evaluation

In this section, the behavior of the devised clustering approach is investigated
through an empirical evaluation with three main objectives.

1. The assessment of clustering quality. This involves measuring the effec-
tiveness of clustering, i.e., verifying whether the clusters, at any level of
the hierarchy produced by the algorithm, correspond to groups of XML
documents that are structurally-homogeneous with respect to the type of
structural patterns considered at that level in the hierarchy.

2. The assessment of cluster-summarization. This encompasses evaluating
the extent with which a set of substructures actually subsumes the struc-
tural properties of the XML documents of a cluster.

3. Performance comparison. Multi-stage clustering is compared against state-
of-the art competitors [16] to verify whether it retains similar or even
better levels of effectiveness and scalability.

All experiments were conducted on a Windows machine, with an Intel Ita-
nium processor, 2Gb of memory and 2Ghz of clock speed.

5.1. Data Sets
Standard benchmark data sets were employed for a direct comparison against

the competitors. These data sets are described below.

5.1.1. Real data
We choose three real-world data sets, characterized by imbalanced distribu-

tions of the classes of XML documents.
DBLP is a bibliographic archive of scientific publications on computer sci-

ence (http://dblp.unitrier.de/xml/). The archive is available as one very
large XML file with a diversified structure. The whole file is decomposed
into 479, 426 XML documents corresponding to as many scientific publications.
These individually belong to one of 8 classes: article (173, 630 documents),
proceedings (4, 764 documents), mastersThesis (5 documents), incollection
(1, 379 documents), inproceedings (298, 413 documents), book (1, 125 docu-
ments), www (38 documents), phdthesis (72 documents). The individual classes
of XML documents exhibit differentiated structures, despite some overlap among
certain document tags (such as title, author, year and pages), that occur in
(nearly) all of the XML documents.

The Sigmod collection groups 988 documents complying to three different
class DTDs: IndexTermsPage, OrdinaryIssue and Proceedings. These classes
contain, respectively, 920, 51 and 17 XML documents. Such classes have diversi-
fied structures, despite the occurrence of some overlapping tags, such as volume,
number, authors, title and year.

Real is a collection of 649 XML documents assembled and used in [17], that
encompasses the following 5 classes:

17

• Astronomy, 217 documents extracted from an XML-based metadata repos-
itory, that describes an archive of publications owned by the Astronomical
Data Center at NASA/GSFC.

• Forum, 264 documents concerning messages sent by users of a Web forum.

• News, 64 documents concerning press news from all over the world, daily
collected by PR Web, a company providing free online press release dis-
tribution.

• Wrapper, 53 documents representing wrapper programs for Web sites, ob-
tained through the Lixto system [4].

• Sigmod, a selection of 51 documents (from the whole Sigmod collection),
concerning issues of SIGMOD Record. These documents were obtained
from the XML version of the ACM SIGMOD Web site produced within
the Araneus project [12].

The distribution of tags in Real is heterogeneous, due to the complexity of the
class DTDs and to the semantic differences among the documents. Real allows
to evaluate the behavior of classification models on XML data assembled from
multiple real-world sources. This is especially interesting, since in such cases it
is hard to assemble training sets representative of all structural characteristics
with which to isolate the individual document classes (i.e. sources).

5.1.2. Synthetic Data Sets
Four synthetic data sets were generated from as many collections of DTSs.
The first synthesized data set, referred to as Synth1, comprises 1000 XML

documents produced from a collection of 10 heterogeneous DTDs (illustrated
in fig. 6 of [16]), that were individually used to generate 100 XML documents.
These DTDs exhibit strong structural differences and, thus, can be neatly sep-
arated by most clustering algorithms.

A finer evaluation can be obtained by investigating the behavior of the com-
pared algorithms on a collection of XML documents, that are very similar to one
another from a structural point of view. To perform such a test, a second syn-
thesized data set, referred to as Synth2 and consisting of 3000 XML documents,
was assembled from 3 homogeneous DTDs (illustrated in fig. 7 of [16]), individ-
ually used to generate 1000 XML documents. Experiments over Synth2 clearly
highlight the ability of the competitors at operating in extremely-challenging
applicative-settings, wherein the XML documents share multiple forms of struc-
tural patterns.

Synth3 consists of 1400 synthesized documents individually belonging to
one of 7 distinct class DTDs. These classes represent a challenging domain for
the approaches to structural classification, since they were suitably designed
in [17] to overlap in at most 30% of their element definitions. This implies a
commonality of nodes, edges and even paths in the documents conforming to
the different classes.

18

Figure 5: DTDs for the Synth4 data set

Additionally, Synth4 comprises 800 documents complying to the DTDs of
fig. 5. There are 8 separate classes. Each class groups 100 XML documents. In
particular, DTD1 and DTD2 share nodes A1, . . . , A5, whereas DTD3 and DTD4 share
nodes A6, . . . , A10. Instead DTD5 and DTD6 share nodes A11, . . . , A15, whereas
DTD7 and DTD8 share nodes A17, . . . , A20 (node A16 is specific of DTD7). These
DTDs capture substantial similarities and differences: they exhibit different
paths, despite sharing some common edges. Furthermore, the XML documents
in DTD4 can be further split, since their trees can exhibit paths ending in node
A6. Also, node frequencies in DTD4 can substantially differ, thus differentiating
this DTD from the others even at a node level.

Synthetic XML data was generated by means of the XML data generator
described in [24]. The latter essentially accepts an input DTD and produces
a set of conforming documents, on the basis of suitable statistical models gov-
erning the occurrences of elements marked by operators ∗, ?, |, and +. The
generation process was constrained as in [16]. Precisely, the maximum number
of occurrences of a child node in the context of its parent node was fixed to 6.
The number of repetitions is, hence, randomly chosen in the interval [0, 6]. The
maximum depth of the synthetic XML trees was set to 7.

5.2. Competitors
The behavior of the proposed hierarchical clustering method was compared

over the chosen data sets against a selection of state-of-the-art competitors,
namely SGrace [26], XRep [17], XProj [16], the Chawathe’s algorithm [10] and
the Dalamagas et al.’s approach [25]. In particular, the results of the com-
parisons against SGrace [26] and XRep [17] are obtained by exploiting our
implementations of such competitors. Instead, the comparison against XProj
is indirect, i.e. based on the results reported in [16], since it was unfortu-
nately not possible to obtain an executable version of the algorithm from its au-
thors. Notwithstanding, the adoption of the same data sets used in [16], namely
Sigmod, Synth1 and Synth2, still enables a meaningful comparison against both
XProj as well as the competitors chosen in [16] for the evaluation of XProj, i.e.,
the Chawathe’s algorithm [10] and the Dalamagas et al.’s approach [25], whose
performances are reported from [16] too.

19

5.3. Evaluation of Clustering Effectiveness
Three main methods for assessing clustering effectiveness are described in [28,

31], namely

• external criteria, when clustering results are evaluated according to a pre-
specified structure, that corresponds to a meaningful explanation of the
data at hand;

• internal criteria, when clustering results are evaluated in terms of the
quantities that are computable from the available data;

• relative criteria, when evaluation takes place in comparison with other
clustering schemes.

It is worth recalling here that the adoption of external criteria helps to un-
derstand clustering results and, hence, the adequacy of a clustering algorithm.
Indeed, a predefined structure can be interpreted as the explanation of the avail-
able data by means of some hypotheses. As a consequence, the correspondence
of a cluster to one of such predefined structures implies the interpretation of
the cluster according to the corresponding hypothesis. For these reasons, we
resort to external criteria to evaluate clustering effectiveness. More specifically,
we investigate the behavior of Generate-Hierarchy over collections of XML
documents with known class labels and analyze the correspondence between
the discovered and hypothesized structures. In particular, class labels serve
as ground truth for natural data classes. Therefore, by matching the discov-
ered partitions against the actual data classes, we measure the effectiveness of
both Generate-Hierarchy and the competing state-of-the-art algorithms at
discovering natural clusters.

Let D be a set of XML documents and C1, . . . ,Ct be the true classes of such
documents. The individual classes Cj , with j = 1, . . . , t, are disjoint subsets
of XML documents, that represent a true partition of D (i.e., D = ∪iCi and
Ci ∩Cj = ∅ for each i 6= j).

Assume that P(l) is the set of cluster leaves produced at stage l (i.e., sited at
level l of the cluster hierarchy) by Generate-Hierarchy. P(l) together with
all possible cluster leaves sited at any preceding level l′ < l form a partition
of D. The effectiveness of Generate-Hierarchy is assessed in terms of two
traditional measures from the field of information retrieval, namely, average
precision (i.e. exactness) and recall (i.e. completeness) [2].

We first introduce precision and recall for evaluating effectiveness at the first
level of the cluster hierarchy, i.e., when all cluster leaves are sited at level l = 1.
Then, we refine such definitions of precision and recall in order to evaluate
clustering effectiveness at any level l > 1 (in which case possible cluster leaves
at any preceding level l′ < l of the cluster hierarchy must be accounted for).

The partition P(1) = {C1, . . . , Ck} at the first level of the cluster hierarchy can
be summarized into a contingency table m, where columns represent discovered
clusters and rows represent true classes. Each entry mij indicates the number
of transactions (corresponding to XML documents in D), that are assigned

20

to cluster Cj , with 1 ≤ j ≤ k, and actually belong to class Ci, with 1 ≤
i ≤ t. The table provides an immediate visual description of the degree of
agreement between the results yielded by Generate-Clusters and the actual
class partition. Also, the table permits a quantitative evaluation of such a
degree of correspondence, that can be finely caught through precision and recall.
Intuitively, each cluster Cj corresponds to the class Ci that is best represented
in Cj , i.e., such that mij is maximal. For any cluster Cj , the index h(j) of the
class with maximal mij is defined as h(j) = max i mij . Precision P (Cj) and
recall R(Cj) for cluster Cj are defined as follows:

P (Cj) = |{x(t)∈Cj |t∈Ch(j)}|
|Cj | , R(Cj) = |{x(t)∈Cj |t∈Ch(j)}|

|Ch(j)|

Hence, the average precision P (1) and recall R(1) for partition P(1) can be
defined as

P (1) =
1
|P(1)|

∑
C∈P(1)

P (C), R(1) =
1
|P(1)|

∑
C∈P(1)

R(C)

The definitions of P (l) and R(l) for a partition with cluster leaves at some
level l > 1 of the cluster hierarchy require a slight adaptation. The latter is due
to account for possible cluster leaves (if any) sited at the preceding levels of the
cluster hierarchy. Let L(l) be the set of all cluster leaves sited at any level l′ < l
in the cluster hierarchy. The partition of the original set D of XML documents
is hence P(l) ∪ L(l). Therefore, the definitions of P (l) and R(l) remain as the
ones of P (1) and R(1), with the exception that summation and averaging involve
P(l) ∪ L(l) rather that only P(l).

5.4. Single-Stage Clustering
Generate-Hierarchy effectiveness is evaluated in multiple steps. One in-

teresting aspect is to comparatively investigate the effectiveness of Generate-
Hierarchy when the latter produces one partitioning of the original collection
of XML documents. This allows to understand the effectiveness of Generate-
Clusters at separating the available XML documents with respect to the oc-
currence of one form of structural pattern within their tree structures.

Table 1 shows the comparative evaluation of Generate-Hierarchy, when
it is applied in single-stage modality to consider document nodes as discrim-
inatory substructures. Notably, nodes are the structural components that, in
principle, are expected to originate the worst clustering performance, being the
least discriminatory type of substructures. Notwithstanding, the observed val-
ues of average precision and recall for Generate-Hierarchy are maximum
over each data set but DBLP.

The behavior over DBLP is essentially due to the fact that Generate-
Hierarchy splits the original article, inproceedings and proceedings classes
into subclasses, on the basis of the presence/absence of certain nodes within the
tree structures of their XML documents. As an example, the proceedings
class is divided into two subclasses: the tree structures of the XML documents

21

within one such a subclass exhibit certain nodes (such as, e.g., isbn, volume and
url), that do not belong to tree structures of the XML documents in the other
subclass. Clearly, the division of the foresaid classes into subclasses results in
a number of clusters larger than the actual number of classes and an average
recall lowered to 0.92.

Moreover, the overlap among some nodes of XML documents from differ-
ent classes contributes to a negligible error (actually less than 0.01) in average
precision. As a matter of fact, two clusters group XML documents from dif-
ferent classes. More precisely, one cluster contains XML documents originally
belonging to the inproceedings, incollection and www classes, which overlap
on the title and url nodes. The other cluster instead includes XML documents
from the phdthesis, masterthesis, book and www classes, which mainly share
the author, title and year nodes (actually, the very few documents from the www
class overlap only on the title node). Apart from these two clusters, all other
clusters produced by Generate-Hierarchy exhibit maximum precision.

SGrace and XRep did not successfully complete their respective tests on
DBLP. This is indicated by means of symbol − in the corresponding entries of
table 1.

As far as clustering effectiveness over the Synth2 collection is concerned,
notice that XProj also achieves the same maximum precision and recall as
Generate-Hierarchy. However, it is worth to underline that the performance
of Generate-Hierarchy is measured over 3, 000 XML documents, whereas
the performances of XProj and the Dalamagas et al.’s approach (whose behavior
is suboptimal) were obtained in [16] over a much smaller Synth2 collection, con-
sisting of 300 XML documents. Additionally, the sensitivity analysis of XProj
(fig. 4 and table 4 in [16]) reveals that an improper setting of important input
parameters, such as the sequence length as well as the minimum and maxi-
mum support-thresholds, lowers precision over the reduced Synth2 collection
down to nearly 0.92%. Notice that, in this test, the performance of Generate-
Hierarchy over the Sigmod data set refers to the identification of the tree
clusters at the first level (beneath the root) of the hierarchy in fig. 7.

Table 1 also confirms that Generate-Hierarchy is generally capable to
autonomously discover the actual number of clusters in the XML data, even
when poorly discriminatory substructures are taken into account. Cluster num-
ber is instead a problematic input parameter of the chosen competitors.

Efficiency is another strong point of Generate-Hierarchy.
By looking at table 1, one can notice that the overall running time taken

by Generate-Hierarchy is up to three orders of magnitude less than the
running time of its competitors. We emphasize that all running times related
to Generate-Hierarchy are actually the sum of two contributions: the time
for the prior enumeration of the individual nodes in the underlying collection of
XML documents plus the time required for cluster generation and summariza-
tion.

Unfortunately, the running times concerning XProj, the Chawathe’s algo-
rithm and the Dalamagas et al.’s approach were not reported in [16]. The
unavailability of this information is indicated by means of symbol − in the

22

Collection N. of Docs Classes Method Clusters Avg Precision Avg Recall Time (s)

DBLP 479,426 8
Generate-Hierarchy 11 0.99 0.92 2,301.63
S-Grace - - - -
XRep - - - -

Sigmod 998 3
Generate-Hierarchy 3 1 1 4.91
S-Grace 3 0.67 0.88 69.11
XRep 3 1 1 200.42

Real 649 5
Generate-Hierarchy 5 1 1 20.48
S-Grace 5 1 1 21.98
XRep 5 1 1 479.52

Synth1

1,000 10
Generate-Hierarchy 10 1 1 13.32
S-Grace 10 1 1 53.23
XRep 11 0.91 0.96 331.38
Chawathe’s algorithm [10] 12 0.83 0.96 -
Dalamagas et al.’s algorithm [25] 11 1 0.98 -
XProj [16] 10 1 1 -

Synth2
3,000 3

Generate-Hierarchy 3 1 1 7.53
S-Grace 3 0.99 0.99 1,351.43
XRep 3 0.67 0.93 2,411.72

300 3 Dalamagas et al.’s algorithm 3 0.78 0.78 -
XProj 3 1 1 -

Synth3 1,400 7
Generate-Hierarchy 7 1 1 5.44
S-Grace 7 1 1 137.35
XRep 7 0.85 0.97 228.15

Table 1: Comparative evaluation of separability and homogeneity of Generate-Hierarchy
in single-stage modality

corresponding entries of table 1.

5.5. Multi-Stage Clustering
A second aspect to investigate is the behavior of Generate-Hierarchy,

when multiple forms of structural patterns are considered in some meaningful
sequence to progressively partition the available XML documents. In the fol-
lowing tests, Generate-Hierarchy is exploited to form a cluster hierarchy,
in which nodes are considered for partitioning at the first level of the hierarchy
(below the root), edges are accounted for at the second level and root-to-leaf
paths are addressed at the third level.

Fig. 6 shows the hierarchy produced by Generate-Hierarchy over Synth4.
Notice that DTD4 is separated from DTD3 at the node level (i.e., the first level
beneath the root) of the cluster hierarchy. DTD4 is further split into two child
clusters at the edge level (i.e. the second level of the hierarchy), according to
whether or not edges include (A9, A6). Also, the XML trees with such an edge
can be further split at the path level (i.e., the third level the hierarchy) according
to whether or not they contain the path from A10 to A6. By the contrary, DTD8
does not behave similarly, since there is no such a node like A6 that differentiates
the XML trees in the class.

The behavior of Generate-Hierarchy is confirmed by experimenting over
Sigmod. As it has been anticipated earlier, this data set consists of docu-
ments complying with three different DTDs. In particular, the distribution
of the documents is unbalanced, since one of the DTDs, IndexTermsPage, con-
tains 920 documents. Fig. 7 shows that Generate-Hierarchy separates all
documents complying to different DTDs at the node level (the first level be-
neath the root) in the hierarchy. Also, the documents in the class related to
IndexTermsPage are further split, according to whether or not they contain the
optional elements described in the DTD (mainly category, content, term and
categoryAndSubjectDescriptorsTuple). In particular, the separation of the

23

Figure 6: Cluster hierarchy for the Synth4 data set

Figure 7: Cluster hierarchy for the Sigmod data set

IndexTermsPage class leads to two subclasses C1 and C2, that can be described
by two DTDs, both subsumed by IndexTermsPage. C1 is a subclass of 437 doc-
uments, in which the optional elements of IndexTermsPage are absent. Instead,
the remaining 483 documents (in which the foresaid optional elements occur) are
assembled into subclass C2. The latter finely isolates the stronger relationships
of resemblance induced by the additional pieces of structures, which correspond
to edges at the level of C1 and C2 in the cluster hierarchy of fig. 7.

Collection N. of Docs Classes Clusters Avg Precision Avg Recall Time

Synth4 800 8 10 1 0.81 3.68s
Sigmod 998 3 4 1 0.54 8.31s

Table 2: Evaluation of Generate-Hierarchy in the multi-stage modality

The results of multi-stage clustering over both Synth4 and Sigmod are sum-
marized in table 2. Notably, Generate-Hierarchy must form a number of
clusters that is necessarily larger than the actual number of classes, in order
to better explain (i.e., isolate) the various structural properties of the underly-
ing XML documents. Therefore, a higher degree of intra-cluster homogeneity
from the structural viewpoint comes with optimal precision and a lowered recall.
However, a reduction in recall after multiple stages of clustering is irrelevant in
practice. Indeed, recall is already maximal for the clusters at the first level of

24

the hierarchy (as in the case of Sigmod) and becomes actually uninformative
for the clusters beneath, whose purpose is only to isolate forms of structural
patterns in the underlying XML trees that are uncaught at the preceding levels.
Again, the running times reported in table 2 are the sum of two contributions:
the time for the prior enumeration of the substructures taken into account at
each level of the resulting cluster hierarchy (respectively, the set of all nodes,
the set of all edges as well as the set of all root-to-leaf paths in the underlying
collection of XML documents) plus the time required for cluster generation and
summarization.

5.6. Cluster Summarization
The evaluation of the representativeness of cluster summarization is inspired

to an idea originally proposed in [16] for a different purpose, i.e., measuring the
structural homogeneity of a set of intermediate clusters obtained while parti-
tioning a collection of XML documents. Let t be an XML tree and R a set
of substructures. The representativeness γ(R, t) of R with respect to t is the
fraction of nodes in t matched by the embedded substructures of R:

γ(R, t) =
| ∪s∈R,s�t {n|n ∈ Vs7→t}|

|Vt|
where, Vt is the set of nodes of the XML tree t and Vs 7→t is instead the

subset of nodes in t matched by the nodes of s. Representativeness can be eas-
ily generalized to sets (i.e., clusters) of XML trees. Let C be a generic cluster
of XML trees and Rep(C) some set of substructures from C. The representa-
tiveness Γ [Rep(C)] of Rep(C) with respect to C can be defined as the average
representativeness of Rep(C) with respect to the individual XML trees in C:

Γ [Rep(C)] =
1
|C|
∑
t∈C

γ(Rep(C), t)

A connection between cluster representativeness and structural homogeneity
of XML document collections explains unexpectedly low Γ values.

If C includes structures that do not frequently occur within C∪C, as it instead
happens with very homogeneous collections of documents (e.g., Synth2), cluster
representativeness reflects the degree of intra-cluster structural homogeneity of
C. Therefore, Γ [Rep(C)] is low if cluster C includes structurally heterogeneous
XML trees and, hence, MineRep (fig. 3) is unable to extract representative
substructures. On the contrary, Γ [Rep(C)] is high if C contains structurally
homogeneous XML trees, whose nodes are matched in a high percentage by the
substructures extracted by MineRep.

Γ has instead a different interpretation, whenever several structures fre-
quently occur in both C and C ∪ C with the same frequency (which happens,
e.g., when C and C are a partition of a very structurally homogeneous collection
of documents). In such a case, MineRep does not consider such structures as
elementary substructures for the construction of Rep(C), since their occurrence

25

Real Synth1 Synth2 Synth3 Synth4 Sigmod DBLP

0.96 0.95 0.45 0.8 0.72 0.67 0.91

Figure 8: Average Γ values over the chosen data sets

Figure 9: Scalability (in ms) over synthetic data with increasing size

frequency within C is not greater (at line M3 of fig. 3) then the occurrence fre-
quency within C ∪ C. In these cases, a low value of Γ [Rep(C)] ceases to reflect
the degree of structural homogeneity of C (that still remains high, being C ∪ C
very homogeneous) and becomes indicative of the small percentage of nodes of
the XML trees within C (matched by Rep(C)), that actually discriminate C.

The table in fig. 8 shows the average Γ values over all data sets, computed
by averaging the Γ values associated to the leaves of the cluster hierarchies pro-
duced by Generate-Hierarchy in sec. 5.4 and 5.5. In all tests, the statistical
significance α of fig. 3 for the representative substructures is set to 0.05 and,
hence, the corresponding threshold τα is 3.841.

As it can be noticed, Synth1 exhibits the maximum value of Γ among the syn-
thetic data sets and, by contrast, Synth2 exhibits the lowest. Indeed, documents
in Synth2 share several features and, thus, are very homogeneous. According to
the above interpretation of low Γ values, the representative tree patterns only
cover those small fragments, that really discriminate among clusters.

5.7. Scalability
To evaluate the scalability of Generate-Hierarchy, we used the DTDs for

Synth1 and produced respectively 100, 1, 000, 10, 000 and 100, 000 documents
with 2, 4, and 8 clusters. The results reported in fig. 9 reveal that the algorithm
scales linearly in the number of both documents and clusters to process large-
scale databases of XML trees.

An attempt was made to study the scalability of SGrace and XRep for com-
parison. However, such competitors revealed unable to successfully complete
the heaviest tests involving 10, 000 and 100, 000 XML documents. Nonetheless,
one can still gain an insight into the limited scalability of SGrace and XRep
by considering the running times in table 1 taken to process the largest data
collections (such as Synth2).

26

Another comparison can be made with respect to the scalability of XProj
reported in [16]. The proposed clustering method outperforms XProj, since its
scalability is orders of magnitude higher than the one of XProj. This result
is strengthened by two additional considerations. The scalability of XProj was
tested over replicated XML data sets, which would further expedite Generate-
Hierarchy. Moreover, Generate-Hierarchy requires one input value, i.e.,
the significance threshold, whose typical settings are well known (i.e., 95% or
99%). On the contrary, XProj requires, for each data set, a complex and specific
parameter-tuning.

6. Related works

Clustering XML documents by structure has its root in the problem of infer-
ring structural similarities for the purpose of comparing semi-structured data.

In this section, we overview some seminal works available from the literature,
that are most closely related to ours. Emphasis is on reviewing major results,
concerning the evaluation of structural similarity, clustering and summarization.

6.1. Structural similarity
The evaluation of structural similarity has been investigated from different

perspectives, e.g., in the context of change detection [11, 23, 46], or with the
purpose of characterizing a document with respect to a given DTD [6].

The approach in [36] instead measures structural similarity via an XML-
aware edit distance and applies a standard hierarchical clustering algorithm to
evaluate how closely cluster documents correspond to their respective DTDs.

Apart from their effectiveness in the targeted applicative domains, most of
these methods are based on the concept of tree edit distance [39, 40, 43, 44, 50]
and use graph-matching algorithms to calculate a (minimum cost) edit script
that contains the updates necessary to transform a document into another.
From a computational point of view, computing tree edit distances turns out
to be highly time-expensive, being at least quadratic in the number of elements
between any two XML documents, since the similarity of each pair of tags (or
element names) of two XML documents must be considered. Another disadvan-
tage of the attempts at detecting structural similarity through tree edit distance
is that its computation basically consists of insertion, removal and update op-
erations, that are performed on the individual nodes of the XML trees.

A remedy to this latter issue was introduced in [9, 23], which presents heuris-
tic tree-editing algorithms capable to perform move and copies of whole subtree.
This is especially relevant when the size of the involved subtrees is large. How-
ever, the quadratic complexity of the tree edit distance still remains.

To overcome the issues concerning tree-edit distance, an incremental cluster-
ing technique is proposed in [33] for grouping XML documents on the basis of
their structural similarity. The structure of the generic XML document is rep-
resented according to the so-called level structure, which preserves the names
of the document elements along with their occurrences and levels in the tree

27

structure. Clusters of XML documents are also represented by means of level
structures. Precisely, each level of the structure associated to a cluster contains
a collection of elements at the same level for all documents in the cluster. The
level similarity is then used to measure the structural similarity between the
level structures of two objects (an object can either a single XML documents
or a cluster of XML documents). Level similarity measures the occurrences
of common elements in each corresponding level. Elements at different lev-
els are assigned different weights, due to the assumption that the documents
with structural differences in the higher levels are likelier to belong to distinct
clusters. Hierarchical relationships of elements are also considered by counting
occurrences of common elements sharing common ancestors.

The detection of structural similarities can draw upon tree matching tech-
niques. For instance, the problem of matching two trees is addressed in [37]
by constructing an association graph based on the graph-theoretic concept of
connectivity. The authors show that finding maximal cliques in the association
graph is equivalent to finding maximal subtree isomorphisms.

A rather different approach has been recently proposed in [24]. Here, the
structure of an XML document is represented as a time series, in which each
occurrence of a tag corresponds to an impulse and the degree of similarity
among documents is computed by analyzing the frequencies of the correspond-
ing Fourier transform. The overall cost of this method is O(N logN), where N
here denotes the size of the larger document.

An approximation of structural similarity based on the shingles technique is
proposed in [7] The idea is to reduce the paths in a document to hash values,
which can thus be compared to those of another document using set union and
set intersection operators. Although this approach is more efficient than [24],
in the worst case it is not linear.

The approach in [29] extracts the structural information (either tags, pair-
wise, paths, or family order) from an XML document and then exploits the
entropy between the structural data as a measure of similarity. This approach
has linear complexity O(N), where N is the number of tags in both documents.

Unlike the foregoing works, in the proposed approach, we do not directly
compute pairwise structural similarity between XML trees. Rather, a cluster of
XML documents is projected over a high-dimensional feature space, wherein the
presence/absence of certain structural components within the individual XML
tree is explicitly represented. The transactions corresponding to the XML trees
in the original cluster is then partitioned into child clusters, by isolating groups
of such transactions sharing discriminatory co-occurrences of (combinations of)
structural components.

6.2. Clustering by structure and summarization
Both hierarchical and partitioning clustering technique have been developed

for clustering XML documents by structure.
Hierarchical clustering has been largely adopted [17, 21, 25, 26], because of

the high quality of its results.

28

XRep [17] is an adaptation of the agglomerative hierarchical algorithm. Ini-
tially, each XML tree is placed in its own cluster. The algorithm then walks
into an iterative step, in which the least dissimilar clusters are merged. Cluster
merging halts when an optimal partition (i.e. a partition whose intra-distance
within clusters is minimized and inter-distance between clusters is maximized)
is reached. XRep is parametric to the notions of distance measure and cluster
representative. The distance between two (clusters of) XML trees is measured
as the proportion of non-overlapping root-to-leaf paths in their associated rep-
resentatives. The representative of a cluster of XML trees is an XML tree which
effectively synthesizes the most relevant structural features of the XML trees in
the cluster. A cluster representative is essentially obtained as the outcome of
a proper overlapping among the XML documents in a cluster, which is accom-
plished through suitable tree matching, merging and pruning techniques.

XClust [21] is a schema integration strategy that uses agglomerative clus-
tering to reconcile similar DTDs in the same clusters. The similarity between
two DTDs is computed by evaluating the similarity between the elements of the
corresponding DTD trees. This is accomplished by exploiting a computation-
ally expensive method, that takes into account the semantic similarity of two
elements (i.e., the similarity between the names, constraints and ancestors of
the two elements) as well as their child- and leaf-context similarity. Moreover,
to simplify the computation of similarity in the case of DTD elements with
auxiliary AND-OR nodes, the original DTDs need be suitably simplified, which
causes some loss of structural information.

S-GRACE [26] is a hierarchical clustering algorithm, that groups XML doc-
uments according to the structural information in their associated s-graphs. The
notion of s-graph denotes a minimal summary of edge containment in one or
multiple XML trees. More precisely, given a cluster of XML trees, the associated
s-graph is a directed graph whose nodes and edges correspond, respectively, to
the nodes (as well as attributes) and parent-child edges of the XML trees in the
cluster. The distance between two clusters is defined as the the proportion of
non-overlapping edges in the associated s-graphs.

A methodology devoted to the hierarchical clustering of XML documents by
structure is presented in [25]. The idea is summarize the original XML trees
into suitable summaries, that maintain the original structural relationships of
the XML trees and still reduce their redundancy (i.e., the repetition and nesting
of nodes). The removal of redundancy allows to more accurately evaluate the
similarity between the structural summaries of any two XML trees. A new
metric is proposed for this purpose, that is defined on the tree edit distance
of the structural summaries. The latter is efficiently computed by means of a
suitable dynamic-programming algorithm, that allows node replacements and
restricts node insertion and deletion to leaf nodes. Single-link hierarchical-
clustering is the reference scheme for grouping the (structural summaries of the)
XML trees. The most appropriate clustering level for the single-link hierarchies
is determined by exploiting a C-index.

A major criticism to the proposals in [17, 21, 25, 26] is that the adoption of a
hierarchical clustering scheme makes such approaches impractical when process-

29

ing large-scale databases of XML trees, being basically the time requirement of
hierarchical clustering O(N2), with N representing the size of the available col-
lection D of XML trees to be clustered (e.g., the time complexity of S-GRACE
is O(NV 2 +M3) where V and M are, respectively, the number of distinct nodes
and s-graphs in D).

As far as cluster summarization is concerned, the representative introduced
in [17] actually catches all structural properties in a cluster of XML trees. How-
ever, it is computationally expensive, both in time and space. In particular, its
time complexity is proportional to the product of the number of nodes in the
representatives associated to the two least dissimilar clusters to be merged in
the hierarchy.

A main limitation with the notion of s-graph [26] is the loose-grained similar-
ity which occurs. Indeed, two XML trees can share the same prototype s-graph
and still have significant structural differences, such as in the hierarchical rela-
tionship between nodes. This has an undesirable effect, i.e., that structurally
heterogeneous XML trees might be placed within a same cluster, with a conse-
quent degrade of clustering quality.

No emphasis is paid in [25] on providing an intelligible description of the
discovered single-link clusters. These correspond to the remaining connected
components of an original graph formed through the pairwise connection of the
structural summaries and the comprehension of their properties requires further
in-depth customized investigations.

A similar difficulty at interpreting the outcome of clustering is faced with [21],
that does not provide any summarization of the obtained results.

XProj [16] is a partitioning method that initially divides the available XML
documents into k random clusters. Each such a cluster is equipped with a rep-
resentative, i.e., a collection of substructures with a fixed number n of nodes,
that frequently occur in the cluster. Henceforth, the algorithm reiterates the
relocation of the XML documents. These are individually reassigned to the clus-
ters with the best matching representative substructures. Each single relocation
is followed by the re-computation of the frequent representative substructures
within the individual clusters. Relocation eventually halts when either the av-
erage intra-cluster structural cohesiveness does not significantly increase or a
(pre-specified) maximum number of relocations has been performed.

A main shortcoming of XProj is the presence of many input parameters
that require a careful tuning, namely the number k of clusters, the size n of
the frequent substructures in a cluster representative and the minim frequency
threshold for the substructures themselves.

Also, in XProj, the notion of cluster representative is functional to some
degree of cohesiveness of the intermediate clusters of XML documents. It is
not meant for providing an understanding of their structural properties. This
justifies two strong approximations: the inclusion in the representatives of struc-
tures only with a fixed size n (with a consequent loss of structural information
from the corresponding clusters), that may also be unrepresentative (i.e., such
that their edge sequences are subsequences of the edge representations of the
XML documents in the clusters, although the structures themselves are not

30

substructures of the XML trees).
In contrast to previous work, the devised approach does not rely on fixed

reference structures (such as summaries and s-graphs) to partition XML doc-
uments. Rather, it takes into account any number of tree-like substructures
occurring in the XML documents at hand to guide the clustering process in the
derivation of a hierarchy of nested clusters.

Another advantage of our approach is that it does not require a complex
parameter tuning: testing the statistical representativeness of the substructures
during cluster summarization involves the specification of an input significance
threshold, whose usual settings are well-known values, i.e., 95%, or 99%.

Finally, multi-stage clustering efficiently can be scale to process very large
databases of XML documents and provides an intelligible understanding of the
structural properties of the clusters in the hierarchy.

7. Conclusions and Further Work

Two aspects must be taken into account in the process of clustering XML
documents by structure.

Primarily, looking for the occurrence of pre-specified forms of structural com-
ponents in the structures of the XML documents may be ineffective, when such
forms are not the most appropriate ones or do not accord with the structural
peculiarities of the XML documents themselves.

Secondarily, the XML documents can share multiple types of structural com-
ponents. In such cases, it is likely that focusing on one type of structural com-
ponents may produce clusters of XML documents, whose structures still exhibit
meaningful differences due to further neglected forms of structural components.

To overcome the above limitations, a new approach to clustering XML doc-
uments by structure was proposed. The approach is hierarchical and, thus,
capable (if necessary) to progressively separate a collection of XML documents,
by looking (along the paths from the root to the leaves of the resulting cluster
hierarchy) at the occurrence in their structures of various user-supplied types
of structural components. Essentially, at any level of the hierarchy, each cluster
is divided by considering some specific type of structural components (unad-
dressed at the preceding levels), that still differentiate the structures of the
XML documents in that cluster.

Furthermore, each cluster in the hierarchy is also summarized through a
novel technique, that provides a clear and differentiated understanding of its
structural properties.

A comparative evaluation proved that the devised approach outperforms
established competitors in effectiveness, scalability. Cluster summarization was
also empirically proved to be very representative.

Ongoing research aims to incorporate the analysis of content features for
effective clustering. This is especially useful in those applicative domains in
which the XML documents share an undifferentiated structure.

31

References

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations
to Semistructured Data and XML. Morgan Kaufmann, 2000.

[2] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval.
Addison-Wesley, 1999.

[3] R. A. Baeza-Yates, N. Fuhr, and Y.S. Andamaarek. Special issue on xml
retrieval. ACM Transactions on Information Systems, 24(4), 2006.

[4] R. Baumgartener, S. Flesca, and G. Gottlob. Visual web information ex-
traction with lixto. In Proc. of Int. Conf. on Very Large Databases (VLDB),
pages 119 – 128, 2001.

[5] S. Bergamaschi, S. Castano, and M. Vincini. Semantic integration of
semistructured and structured data sources. SIGMOD Record, 28(1):54–59,
1999.

[6] E. Bertino, G. Guerrini, and M. Mesiti. A matching algorithm for measur-
ing the structural similarity between an xml document and a dtd and its
applications. Information Systems, 29(1):23 – 46, 2004.

[7] D. Buttler. A short survey of document structure similarity algorithms. In
Proc. of Int. Conf. on Internet Computing, 2004.

[8] E. Cesario, G. Manco, and R. Ortale. Top-down parameter-free clustering
of high-dimensional categorical data. IEEE Transanction on Knowledge
and Data Engineering, 19(12):1607 – 1624, 2007.

[9] S. Chawathe and H. Garcia-Molina. Meaningful change detection in struc-
tured data. ACM SIGMOD Record, 26(2):26–37, 1997.

[10] S. S. Chawathe. Comparing hierarchical data in external memory. In Proc.
of Inf. Conf. on Very Large Databases (VLDB), pages 90 – 101, 1999.

[11] G. Cobena, S. Abiteboul, and A. Marian. Detecting changes in xml docu-
ment. In Proc. of Int. Conf. on Data Engeneering (ICDE), pages 41 – 52,
2002.

[12] V. Crescenzi, G. Mecca, and P. Merialdo. Roadrunner: Towards automatic
data extraction from large web sites. In Proc. of Int. Conf. on Very Large
Databases (VLDB), pages 109–118, 2001.

[13] L. Denoyer and P. Gallinari. Report on the xml mining track at inex
2007: Categorization and clustering of xml documents. ACM SIGIR Fo-
rum, 42(1):22–28, 2008.

[14] L. Denoyer and P. Gallinari. Overview of the inex 2008 xml mining track.
In Advances in Focused Retrieval, pages 401–411, 2009.

32

[15] A. Deutsch, M. Fernandez, and D. Suciu. Storing semistructured data
with stored. In Proc. of ACM SIGMOD Int. Conf. on Management of
Data (SIGMOD), pages 431 – 442, 1999.

[16] C. C. Aggarwal et al. Xproj: A framework for projected structural clus-
tering of xml documents. In Proc. of SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining (KDD), pages 46 – 55, 2007.

[17] G. Costa et al. A tree-based approach to clustering xml documents by
structure. In Proc. of Int. Conf. on Principles and Practice of Knowledge
Discovery in Databases (PKDD), pages 137 – 148, 2004.

[18] G. Demartin et al. Report on the xml mining track at inex 2008: Catego-
rization and clustering of xml documents. ACM SIGIR Forum, 43(1):17–36,
2009.

[19] J. Shanmugasundaram et al. Relational databases for querying xml docu-
ments: Limitations and opportunities. In Proc. of Int. Conf. on Very Large
Databases (VLDB), pages 302 – 314, 1999.

[20] K. Abe et al. Efficient substructure discovery from large semi-structured
data. In Proc. of Siam Conf. on Data Mining (SDM), pages 158 – 174,
2002.

[21] M. L. Lee et al. Xclust: Clustering xml schemas for effective integration. In
Procs. ACM Conf. on Information and Knowledge Management (CIKM),
pages 292 – 299, 2002.

[22] M. N. Garofalakis et al. Xtract: A system for extracting document type
descriptors from xml documents. In Proc. of Int. Conf. on Management of
Data (SIGMOD), pages 165 – 176, 2000.

[23] S. Chawathe et al. Change detection in hierarchically structured informa-
tion. In Proc. of Int. Conf. on Management of Data (SIGMOD), pages 493
– 504, 1996.

[24] S. Flesca et al. Fast detection of xml structural similarity. IEEE Transanc-
tion on Knowledge and Data Engineering, 17(2):160 – 175, 2005.

[25] T. Dalamagas et al. A methodology for clustering xml documents by struc-
ture. Information Systems, 31(3):187 – 228, 2006.

[26] W. Lian et al. An efficient and scalable algorithm for clustering xml doc-
uments by structure. IEEE Transanction on Knowledge and Data Engi-
neering, 16(1):82 – 96, 2004.

[27] T. Fiebig, S. Helmer, C. Kanne, G. Moerkotte, J. Neumann, R. Schielle,
and T. Westmann. Anatomy of a native xml base management system.
VLDB Journal, 11(4):292–314, 2002.

33

[28] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. Cluster validity methods.
SIGMOD Record, 31(1-2), 2002.

[29] S. Helmer. Measuring the structural similarity of semistructured documents
using entropy. In Proc. of Int. Conf. on Very Large Databases (VLDB),
pages 1022 – 1032, 2007.

[30] H. Jagadish, S. Al-Khalifa, A. Chapman, L. Lakshmanan, A. Nierman,
S. Paparizos, J. Patel, D. Srivastava, N. Wiwatwattana, Y. Wu, and C. Yu.
Timber: A native xml database. VLDB Journal, 11(4):274–291, 2002.

[31] A.K. Jain and R.C. Dubes. Algorithms for Clustering Data. Prentice-Hall,
1988.

[32] J. Mchugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore:
A database management system for semistructured data. ACM SIGMOD
Record, 26(3):54–66, 1997.

[33] R. Nayak. Fast and effective clustering of xml data using structural infor-
mation. Knowledge and Information Systems, 14:197–215, 2008.

[34] R. Nayak, C. M. De Vries, S. Kutty, S. Geva, L. Denoyer, and P. Gallinari.
Overview of the inex 2009 xml mining track: Clustering and classification
of xml documents. In Focused Retrieval and Evaluation, pages 366–378,
2010.

[35] S. Nestorov, S. Abiteboul, and R. Motwani. Extracting schema from
semistructured data. In Proc. of ACM SIGMOD Int. Conf. on Management
of Data (SIGMOD), pages 295 – 306, 1998.

[36] A. Nierman and H. V. Jagadish. Evaluating structural similarity in xml
documents. In Proc. of Int. Workshop on the Web and Databases (WebDB),
pages 61–66, 2002.

[37] M. Pelillo, K. Siddiqi, and S. W. Zucker. Matching hierarchical structures
using association graphs. IEEE Transactions on Pattern Analisys and Ma-
chine Intelligence, 21(11):1105–1119, 1999.

[38] H. Schoning. Tamino - a dbms designed for xml. In Proc. of Int. Conf. on
Data Engineering (ICDE), pages 149–154, 2001.

[39] S. Selkow. The tree-to-tree editing problem. Information Processing Let-
ters, 6(6):184–186, 1977.

[40] D. Shasha and K. Zhang. Pattern Matching in Strings, Trees, and Arrays.
Oxford University Press, 1995.

[41] P. Shenoy, J.R. Haritsa, S. Sudarshan, G. Bhalotia, M. Bawa, and D. Shah.
Turbo-charging vertical mining of large databases. ACM SIGMOD Record,
29(2):22 – 33, 2000.

34

[42] T. Shimura, M. Yoshikawa, and S. Uemura. Storage and retrieval of xml
documents using object-relational databases. In Proc. of Int. Conf. on
Database and Expert Systems Applications (DEXA), pages 206 – 217, 1999.

[43] K.C. Tai. The tree-to-tree correction problem. Journal of the ACM,
26(3):422–433, 1979.

[44] J. Wang, K. Zhang, K. Jeong, and D. Shasha. A system for approximate
tree matching. IEEE Transanction on Knowledge and Data Engineering,
6(4):559–571, 1994.

[45] K. Wang and H. Liu. Discovering typical structures of documents: A road
map approach. In Proc. of ACM SIGIR Conf. on Research and Develop-
ment in Information Retrieval (SIGIR), pages 146 – 154, 1998.

[46] Y. Wang, D.J. DeWitt, and J. Cai. X-diff: A fast change detection al-
gorithm for xml documents. In Proc. of Int. Conf. on Data Engeneering
(ICDE), pages 519 – 530, 2003.

[47] M. J. Zaki. Scalable algorithms for association mining. IEEE Transanction
on Knowledge and Data Engineering, 12(3):327 – 390, 2000.

[48] M. J. Zaki. Efficiently mining frequent trees in a forest: Algorithms and
applications. IEEE Transanction on Knowledge and Data Engineering,
17(8):1021 – 1035, 2005.

[49] M. J. Zaki and K. Gouda. Fast vertical mining using diffsets. In Proc.
of SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD),
pages 326 – 335, 2003.

[50] K. Zhang and D. Shasha. Simple fast algorithms for the editing distance be-
tween trees and related problems. SIAM Journal on Computing, 18(6):1245
– 1262, 1989.

35

