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Abstract—Because of the widespread diffusion of semistructured data in XML format, much research effort is currently devoted to

support the storage and retrieval of large collections of such documents. XML documents can be compared as to their structural

similarity, in order to group them into clusters so that different storage, retrieval, and processing techniques can be effectively

exploited. In this scenario, an efficient and effective similarity function is the key of a successful data management process. We

present an approach for detecting structural similarity between XML documents which significantly differs from standard methods

based on graph-matching algorithms, and allows a significant reduction of the required computation costs. Our proposal roughly

consists of linearizing the structure of each XML document, by representing it as a numerical sequence and, then, comparing such

sequences through the analysis of their frequencies. First, some basic strategies for encoding a document are proposed, which can

focus on diverse structural facets. Moreover, the theory of Discrete Fourier Transform is exploited to effectively and efficiently compare

the encoded documents (i.e., signals) in the domain of frequencies. Experimental results reveal the effectiveness of the approach, also

in comparison with standard methods.

Index Terms—Web mining, mining methods and algorithms, XML/XSL/RDF, text mining, similarity measures.
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1 INTRODUCTION

THE increasing relevance of the Web as a mean for
sharing information around the world has posed

several new interesting issues to the computer science
research community. The traditional approaches to infor-
mation handling are ineffective in this new context: They
are mainly devoted to the management of highly structured
information, like relational databases, whereas Web data
are semistructured and encoded using different textual
formats (HTML, XML, email messages, etc.).

In this work, we address the problem of evaluating
structural similarity among Web documents and, in
particular, among XML documents. As a matter of fact,
XML is rapidly becoming the standard in the management
of Web data [1], thus calling for suitable data management
techniques and tools. Actually, most commercial databases
provide tools for delivering and storing XML data, whereas
several research prototypes have been developed which use
XML as a logical data model [2], [3]. The definition of
efficient indexing techniques based on structural similarity
[4], [5], [6] can be an effective support for document storage
and retrieval.

More interestingly, the computation of structural simi-
larity is crucial to some clustering applications which can be
of great value to the management of Web data:

. Many techniques for the extraction of relevant
information from semistructured data sources [7],
[8], [9] require a preprocessing phase in which Web
sources are grouped according to their structural

similarity. In such a context, the efficiency and
effectiveness of the extraction techniques are strictly
related to the structural homogeneity of the dis-
covered clusters.

. A relevant problem in the research on integrating
heterogenous sources is to detect groups of sources
which provide the same kind of information. Again,
effective clustering schemes based on structural
similarity are quite helpful in this setting.

. In the context of personalized content delivery,
clustering the pages of a Web site according to both
structure and content can help to better understand
and present the information provided by the site.

The problem of comparing semistructured documents
has recently gained increasing attention, even though from
different perspectives: for example, in the context of change
detection [10], [11], [12], or with the purpose of characteriz-
ing a document with regard to a given DTD [13]. Apart
from their effectiveness in the application domains con-
sidered here, most of these methods are based on the
concept of edit distance [14] and use graph-matching
algorithms to calculate a (minimum cost) edit script that
contains the updates necessary to transform a document
into another. These techniques are generally computation-
ally expensive, i.e., at least OðN2Þ, where N is the number of
elements in the two documents.

Our aim and strategy are completely different. The basic
intuition exploited in this work is that an XML document
has a “natural” interpretation as a time series (namely, a
discrete-time signal), in which numeric values summarize
some relevant features of the elements enclosed within the
document. We can get an example evidence of this
observation by simply indenting all the tags in a given
document according to their nesting level. Indeed, the
sequence of indentation marks (as they appear within the
document rotated by 90 degrees) can be looked at as a time
series whose shape roughly describes the document’s
structure.

Hence, a key tool in the analysis of time-series data is the
use of the Discrete Fourier Transform (DFT): Some useful
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properties of the Fourier transform, such as energy
concentration or invariance under shifts, enable us to
analyze and manipulate signals in a very powerful way.
As a matter of fact, the exploitation of the Fourier transform
to check similarities among time series is not new (see, e.g.,
[15], [16], [17]). The main contribution of our approach is the
systematic development of effective encoding schemes for
XML documents, in a way that makes the use of the Fourier
Transform extremely profitable.

The choice of comparing the frequency spectra follows
both effectiveness and efficiency issues. Indeed, the
exploitation of DFT leads to abstract from structural details
which, in most application contexts, should not affect the
similarity estimation (such as, e.g., different numbers of
occurrences of a shared element or small shifts in the actual
positions where it appears). This eventually makes the
comparison less sensitive to minor mismatches. Moreover, a
frequency-based approach allows us to estimate the
similarity through simple measures (e.g., vector distances)
which are computationally less expensive than techniques
based on the direct comparison of the original document
structures.

To summarize, we propose representing the structure of
an XML document as a time series, in which each occurrence
of a tag in a given context corresponds to an impulse. By
analyzing the frequency spectra of the signals, we can hence
state the degree of (structural) similarity between docu-
ments. It is worth noticing that the overall cost of the
proposed approach is only OðN logNÞ, where N is the
maximum number of tags in the documents to be compared.
Moreover, it exhibits a satisfactory effectiveness even when
compared with more complex tree-edit approaches.

The rest of the paper is organized as follows: In Section 2,
we introduce some basic notations, discuss the problem of
comparing the structure of XML documents, and give a
sketch of our approach. Section 3 illustrates how the
structure of an XML document can be encoded into a time
series, and presents some methods for accomplishing such a
task. Our strategy for comparing two encoded documents is
then defined and analyzed in Section 4. Section 5 describes
several experiments we performed, on both real and
synthesized data, to validate our approach. Finally, in
Section 6, we sketch some issues which could be faced in
future work on this topic.

2 PROBLEM STATEMENT AND OVERVIEW OF THE

PROPOSAL

We begin by presenting the basic notation for XML
documents that will be used hereafter. An XML document
is characterized by tags, i.e., terms enclosed between angled
brackets. Tags define the structure of an XML document
and provide the semantics of the information enclosed. A

tag is associated with a tag name (representing the term
enclosed between angled brackets), and can appear in two
forms: either as a start-tag (e.g., <author>), or as an end-tag
(characterized by the / symbol, like, e.g., in </author>).
Finally, a tag instance denotes the occurrence of a tag within
a certain document. In the book XML document of Fig. 1, the
tag name author is associated with the start-tag <author>

and the end-tag </author>. In the same document, two
distinct instances of the <author> tag occur.

It is required that, in a well-formed XML document, tags
are properly nested, i.e., each start-tag has a corresponding
end-tag at the same level. Therefore, an XML document can
be considered as an ordered tree, where each node (an
element) represents a portion of the document, delimited by
a pair of start-tag and end-tag instances, and denoted by the
tag name associated with the instances. Fig. 1 contains
example trees for the book and article documents. The
structure of an XML document corresponds to the shape of
the associated tree.

In a tree, several types of structural information can be
detected, which correspond to different refinement levels:
for example, attribute/element labels, edges, paths, sub-
trees, etc. Defining the similarity among two documents
essentially means choosing an appropriate refinement
level and comparing the documents according to the
features they exhibit at the chosen level [18]. Different
choices may result in rather dissimilar behaviors: In
particular, comparing simple structural components (such
as, e.g., labels or edges) allows for an efficient computa-
tion of the similarity, but typically produces loose-grain
similarity values. On the other hand, complex structural
components would make the computation of similarity
inefficient, and hence unpractical.

Consider, for example, the documents represented in
Fig. 2. If a comparison of nodes or edges is exploited,
documents book1 and book2 appear to be similar, even
though the subtrees rooted at the book element appear with
different frequencies. Accounting for frequencies does not
always help: for example, if the order of appearance of the
subtrees of the xml element in book3 were changed, the
resulting tree still should have the same number of nodes,
edges and even paths.

In principle, approaches based on tree-edit distance [14],
[19] can better quantify the difference between XML trees;
however, they turn out to be too expensive in many
applications contexts, as they are generally quadratic with
regard to document sizes. Finally, notice that solutions
based on detecting local substructures [20], [21], [22] to be
used as features may be even hard to handle, for they show
two main disadvantages: first, they may imply ineffective
representations of the trees in high-dimensional spaces,
and, second, costly feature extraction algorithms are
required.
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Fig. 1. Example book and article XML documents and corresponding trees.



In our opinion, an effective notion of structural similarity
should take into account a number of issues. First of all, it is
important to notice that each document may induce a
definition of the elements involved. Thus, an appropriate
comparison between two documents should rely on the
comparison of such definitions: the more different they are,
the more dissimilar are the documents. With reference to
documents in Fig. 2, book1 and book3 provide a different
definition of the author element: Indeed, book1 induces the
following definition:

< !ELEMENT author EMPTY >;

whereas book3 induces

< !ELEMENT author ðEMPTYj
ðname; emailÞÞ >

< !ELEMENT name EMPTY >

< !ELEMENT email EMPTY >:

Furthermore, even though a similar definition can be
devised for an element, the occurrence of a repetition
marker in such a definition (such as * or +) can be useful to
characterize the differences. For example, the comparison
between book1 and book2 can be accomplished by observing
that both documents comply with

< !ELEMENT xml ðbookÞ� >;

but differ in the number of occurrences of the book element
(which is indeed marked by a * symbol).

Clearly, the above features should be considered with a
different degree of importance. In particular, a mismatch in
the definition of an element should have higher importance
than a mismatch in the number of occurrences of an
element. In this perspective, book1 is more similar to book2
than to book3.

Finally, in most application domains, it is mandatory to
take into account the hierarchical levels where two
documents differ. As a matter of fact, from a semantic
viewpoint, an element can be considered as a semantic
mark of the whole subtree it encloses. In such a case,
differences at higher hierarchical levels should be consid-
ered of greater weight than differences at lower levels.

By way of example, consider the documents in Fig. 3:
The difference between doc1 and doc2 stems from the
definition of a:

doc1 : < !ELEMENT a ðb; c; eÞ >
doc2 : < !ELEMENT a ðb; c; fÞ >:

By contrast, document doc3 exhibits a different definition of
the element xml with regard to the other two documents:

doc1 : < !ELEMENT xml ðaÞ >
doc3 : < !ELEMENT xml ðdÞ >:

Even though in both cases a single mismatch is detected,
these mismatches have different weights: In particular, the
difference in the definition of xml appears at a higher
hierarchical level, and hence doc1 is more dissimilar to doc3
than to doc2.

It is worth noticing that schemes based on tree-edit
distance, equipped with simple cost models,1 do not seem
adequate in capturing such differences. Indeed, the tree-edit
distance between doc1 and doc2 is the same as that between
doc1 and doc3, since a simple relabeling operation is
required in both cases.

Our main objective is the development of an efficient
method which is able to approximate the above features at
best. Thus, we can state the problem of finding the
structural similarity in a set of XML documents as follows:
Given a set D ¼ fd1; . . . ; dng of XML documents, we aim at
building a similarity matrix S, i.e., a matrix representing, for
each pair (di; dj) of documents in D, an optimal measure of
similarity sij. Here, optimality refers to the capability of
reflecting the above described differences. Observe that we
do not address here the problem of finding which parts of
two documents are similar or not, as, e.g., tree-edit-based
techniques do. However, we believe this is not a strong
limitation since in many situations, like those mentioned in
the Introduction, a scalar similarity value computed in a
quick way can be of greater value than more detailed results
requiring expensive computations.

In the following, we propose a technique which is
essentially based on the idea of associating each document
with a time series representing, in a suitable way, both its
basic elements and their relationships within the document.
More precisely, we can assume a preorder visit of the tree-
structure of an XML document. As soon as we visit a node
of the tree, we emit an impulse encoding the information
corresponding to the tag. The resulting signal shall
represent the original document as a time series, from
which relevant features characterizing a document can be
efficiently extracted. As a consequence, the comparison of
two documents can be accomplished by looking at their
corresponding signals.

The main features of the approach can be summarized as
follows:

. Each element is encoded as a real value. Hence, the
differences in the values of the sequence provide for
an evaluation of the differences in the elements
contained by the documents.
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1. Schemes which use more complex cost models for update operations
exhibit even higher computational complexities [12].

Fig. 2. (a) book1 and (b) book2 have the same elements, but with different cardinality. By contrast, (c) book3 induces a different structure for the

author element.



. The substructures in the documents are encoded
using different signal shapes. As a consequence, the
analysis of the shapes in the sequences realizes the
comparison of the definitions of the elements.

. Context information can be used to encode both
basic elements and substructures, so that the
analysis can be tuned to handle in a different way
mismatches which occur at different hierarchical
levels.

In a sense, the analysis of the way the signal shapes differ
can be interpreted as the detection of different definitions
for the elements involved in the documents. Moreover, the
analysis of the frequencies of common signal shapes can be
seen as the detection of the differences between the
occurrences associated with a repetition marker. In this
context, the proposed approach can be seen as an efficient
technique, which can satisfactorily evaluate how much two
documents are similar with regard to the structural features
previously discussed. Notably, the use of time-series for
representing complex XML structures, combined with an
efficient frequency-based distance function, is the key for
quickly evaluating structural similarities: If N is the
maximum number of tags in two documents, they can be
compared in only OðN logNÞ time. In particular, the use of
DFT supports the above described notion of similarity: If
two documents share many elements having a similar
definition, they will be recognized as similar, even when
there are repeated and/or optional subelements. Indeed,
working on frequency spectra makes the comparison less
sensitive to the differences in the number of occurrences of
a given element and to small shifts in the actual positions
where it occurs in the documents.

Clearly, the effectiveness of the approach relies on the
capability of faithfully representing an XML document as a
signal. The following section is devoted to investigate such
an issue.

3 DOCUMENT STRUCTURE CODING

The structure of an XML document is characterized by
elements, which are denoted by start-tags and end-tags. In
the following, given an element el of an XML document d,
we denote by els the start-tag instance of el and with ele the
end-tag instance of el. Since we are only interested in the
structure of an XML document, we limit our attention to
start-tags and end-tags associated with each element in the
document. Furthermore, we deal with element attributes by
regarding them as additional (empty) elements: An attri-
bute with name X is treated as a subelement named
ATTRIB@X. Hence, the structural properties of a docu-
ment d can be identified by the following sets:

. tagsðdÞ ¼ ftjt is a tag instance in dg;

. tnamesðdÞ ¼ ftnj9t 2 tagsðdÞ ^ tn is the name of tg;

.

stagsðdÞ ¼ ftjt 2 tagsðdÞ ^ t is an instance

of a start-tagg;

.

etagsðdÞ ¼ ftjt 2 tagsðdÞ ^ t is an instance

of an end-tagg:

For example, the book document in Fig. 1 is characterized by
the following sets:

tagsðbookÞ ð�1;<xml>Þ;ð�2;<book>Þ;ð�3;<ATTRIB@year>Þ;
ð�4;<=ATTRIB@year>00Þ;ð�5;<title>Þ;ð�6;<=title>Þ;
ð�7;<author>Þ;ð�8;<=author>Þ;ð�9;<author>Þ;ð�10 ;<=author>Þ;
ð�11;<publisher>Þ;ð�12;<=publisher>Þ;
ð�13;<=book>Þ;ð�14;<=xml>Þ

tnamesðbookÞ xml;book;ATTRIB@year;title;author;publisher

stagsðbookÞ ð�1;<xml>Þ;ð�2;<book>Þ;ð�3;<ATTRIB@year>Þ;ð�5;<title>Þ;
ð�7;<author>Þ;ð�9;<author>Þ;ð�11;<publisher>Þ

etagsðbookÞ ð�4;<=ATTRIB@year>Þ;ð�6;<=title>Þ;
ð�8;<=author>Þ;ð�10;<=author>Þ;ð�12;<=publisher>Þ;
ð�14;<=xml>Þ;ð�13;<=book>Þ:

Each tag instance in tagsðbookÞ is denoted by a pair
composed by its unique identifier and its textual represen-
tation. Observe also that the definitions of tags, names,
stags, and etags can be straightforwardly extended to deal
with sets of XML documents.

Since XML documents are ordered, it is also necessary to
consider the order of appearance of tags within a document.
To this end, given an XML document d, we define its
skeleton (skðdÞ) as the sequence of all the tag instances
appearing within d. The order of skðdÞ is defined according
to the document order.

Notice that the skeleton is the basic information we need
to consider in order to analyze the structural similarity
among documents. To this purpose, our technique relies on
the effective encoding of the skeleton skðdÞ of a document d
into a time series properly summarizing its relevant
features. We shall analyze several different ways of
encoding an XML document according to its skeleton. The
resulting encoding schemes are obtained by combining two
kinds of encoding functions: A tag encoding function, which
assigns a real value to each tag instance, and a document
encoding function, which associates a sequence of reals with
the skeleton of a document. In a sense, a tag encoding
function corresponds to a local analysis of the tags: It
considers the general properties of a tag, almost indepen-
dently of where it appears in the skeleton. On the other side,
a document encoding function analyzes the tags from an
overall perspective, by taking account of the way they are
combined within the document at hand.

3.1 Tag Encoding

A tag encoding function is a function that associates a
number with each tag instance appearing in the document.

Definition 1. Given a set D of XML documents, a function
� : tagsðDÞ ! IR� f0g is a tag encoding function for D. �
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is said to be symmetric iff for each document d 2 D and for
each element el 2 d, �ðeleÞ ¼ ��ðelsÞ. Moreover, � is
invariant if for each document d 2 D and for each element
el 2 d, �ðeleÞ ¼ �ðelsÞ. Finally, it is plain if �ðeleÞ 6¼ �ðel0sÞ,
for each el0; el.

We can assign a number n to each tag instance in several
different ways: for instance, by generating it randomly, or
using a hash function. However, a suitable tag encoding
function should at least ensure injectivity with regard to tag
names (i.e., tag instances which do not share the same tag
name are associated with different numbers): For obvious
reasons, collisions may correspond to loss of information. A
further desirable property is the capability to contextualize a
given tag, i.e., to capture information about its possible
neighbors.

In the following, we explore three basic types of
encoding functions which correspond to different ways of
taking account of the information carried by a tag.

Direct Encoding. The simplest tag encoding function we
consider is named direct tag encoding (denoted by �d) and
can be obtained as specified below. Given a set D of XML
documents, we build a sequence of distinct tag names
½tn1; tn2; � � � ; tnk� by considering a (randomly chosen) linear
order on tnamesðDÞ. Given an element el, the direct
encoding simply assigns to each start tag instance els the
position j of the tag name tnj of els in the sequence
(�dðelsÞ ¼ j). We complete the above definition by distin-
guishing among the possible encoding strategies for end-
tags: symmetric, invariant, and plain. As an example,
consider the book document shown in Fig. 1. A sample
direct symmetric encoding is shown in Fig. 4, with reference
to the tags in the document book.

It is worth noticing that, in general, in the proposed
encoding, the code associated with a given tag is
independent of its neighborhood. Thus, two different
instances of the same element are encoded in the same
way. In this setting, the value associated with each tag has
no semantic meaning, and every linear order on tnamesðDÞ
is a suitable direct encoding. However, it is possible to
define more effective approaches that, instead, exploit

context information. For example, two instances of an
author element should be considered different if the first
appeared within a book element and the second within an
article element. Hence, it is interesting to consider a tag
also with regard to the possible contexts where it can
appear.

Pairwise Encoding. A simple extension of the direct
encoding strategy consists of assigning a value to each tag
by relating such value to the subsequent tag in the
document. In order to define such an encoding, referred
to as Pairwise encoding, we need some further notation. We
denote by cpairsðDÞ the pairs of tag instances hti; tiþ1i
appearing consecutively in a document d 2 D. Again, we
associate an integer number with each pair in cpairsðDÞ, by
considering a randomly chosen linear order. Hence, given a
pair of tag instances ti; tiþ1 appearing consecutively in a
document d, the Pairwise tag encoding function �pwðtiÞ
associates with ti the number nhti;tiþ1i representing the
position of hti; tiþ1i in the sequence. An example encoding
is shown in Fig. 4.

Observe that, in the pairwise encoding, the associated
numbers are still randomly chosen. Differently from the
previous encoding scheme, however, the contextualization
of each tag allows to differentiate tag instances having the
same tag name, according to their context of appearance.

Nested Encoding. The last strategy we propose stresses this
peculiarity, by encoding a tag on the basis of its path name
(i.e., the sequence of the tag names denoting the path from
the root to the tag itself). Consider a set of documentsD, and
let us denote by pnamesðDÞ the set of path names associated
with the elements appearing in any document d 2 D. Again,
we use a sequence of path names ½pn1; pn2; � � � ; pnk� obtained
by considering a randomly generated linear order on
pnamesðDÞ, and associate each path name pni with its
position i in the sequence.

Given a start-tag els appearing in a document d with
corresponding path name pni, the Nested tag encoding
function �ptðelsÞ is defined by associating els with i. Again,
we distinguish between symmetric, invariant, and plain
versions of this encoding. An example for such an encoding
is shown in Fig. 4.
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3.2 Document Encoding

A document encoding is a function that associates an XML
document with a time series. Practically, we are interested
in representing the structure of the document itself as a
sequence of signal samples. The overall signal’s shape
corresponds to the structure of the document.

Definition 2. Let D be the set of all the possible XML
documents. A document encoding enc is a function that
associates each d 2 D with a sequence of real numbers, i.e.,
encðdÞ ¼ h0; h1; � � � ; hn. enc is said to be without structural
loss (WSL) iff for each pair of documents d1; d2, encðd1Þ ¼
encðd2Þ implies that skðd1Þ ¼ skðd2Þ.

Of course, WSL is a desirable property since this implies
that we do not lose information about the document
structure by considering its encoding. Indeed, if an
encoding satisfies this property, given any document d,
we can reconstruct its structure from its encoding encðdÞ. In
the following, we propose three main document encoding
functions that can be used to represent the document
structure. As we shall see, these functions exploit a tag
encoding function to identify suitable sequences. All these
encodings are WSL under certain assumptions on the tag
encoding function adopted.

The simplest encoding function applies a tag encoding
function to each tag appearing in the skeleton of the
document.

Definition 3. Let d be an XML document with skðdÞ ¼
½t0; � � � ; tn� and � a tag encoding function. A trivial encoding
of d (denoted by tencðdÞ) is a sequence ½S0; S1; � � � ; Sn�, where
Si ¼ �ðtiÞ.

Example 1. The trivial encoding of the book document
shown in Fig. 1 using the symmetric version of the direct
tag encoding function previously introduced is shown in
Fig 4. Observe that, by looking at a single impulse, the
above encoding does not provide any information about
the position of the corresponding tag in the XML tree.

A problemwith the above encoding is that each element e
of the time series associated with a document d encodes the
sole information corresponding to a single tag instance t.
However, more informative schemes can be defined, for
instance, by looking at the tag instances that occur before t
in the document. In practice, we can define the element e in
the time series as the linear combination of all the encodings
of the tags that appear before t in the document.

Definition 4. Let d be an XML document with skðdÞ ¼
½t0; � � � ; tn� and � a tag encoding function. A linear encoding
of d (lencðdÞ) is a sequence ½S0; S1; � � � ; Sn�, where S0 ¼ �ðt0Þ
and Si ¼

P
k�i �ðtkÞ.

Example 2. The linear encoding of the document shown in
Fig. 1 using the symmetric version of the direct tag
encoding is shown in Fig. 4. Notice that the linear
encoding constructs the encoding signal d in an incre-
mental way, by adding the contribution of each impulse
to the overall signal.

In the previously discussed document encoding strate-
gies, the contribution of a tag instance t to the document
encoding does not depend on the nesting level of the
instance. As discussed in Section 2, the containment
relationship between elements of an XML document can

be considered relevant as well. Hence, an alternate strategy
can be defined, which weights the encoding of each tag t
with a factor related to its nesting level lt. The following
encoding is defined to give more relevance to the differ-
ences at higher levels in the trees.

Definition 5. LetD be a set of XML documents, d a document in
D with skðdÞ ¼ ½t0; � � � ; tn�, and � a tag encoding function for
D. Moreover, let maxdepthðDÞ represent the maximum depth
of any document in D, B a fixed value and nestdðtÞ the set of
tag instances associated with the ancestors of the element with
tag instance t. A multilevel encoding of d ðmlencðdÞÞ is a
sequence ½S0; S1; � � � ; Sn�, where

Si ¼ �ðtiÞ �BmaxdepthðDÞ�lti þ
X

tj2nestdðtiÞ
�ðtjÞ �BmaxdepthðDÞ�ltj :

We usually set B as the number of distinct symbols
encoded by � (e.g., B ¼ jtnamesðDÞj þ 1 in the case of
invariant �d). In this way, we avoid “mixing” the contribu-
tions of different nesting levels and can reconstruct the path
from the root to any tag by only considering the
corresponding value in the encoded sequence. In fact, the
summation on the right-hand side of the above formula can
be interpreted as the integer whose B-base representation is
the sequence of the tag codes in f�ðtjÞ j tj 2 nestdðtiÞg,
ordered by increasing nesting levels of the corresponding
tags. Notice that such a property is stronger than WSL, and
is not mandatory for guaranteeing injectivity in the
encoding function.

Example 3. The multilevel encoding of the book document,
obtained using the symmetric version of the direct tag
encoding and setting B ¼ 7, is shown in Fig. 4.

3.3 Encoding Schemes

In the following, we shall analyze the encoding functions
proposed above, with the main objective of measuring their
impact in detecting dissimilarities among documents. We
shall concentrate on the following combinations of tag and
document encoding functions (referred to as encoding
schemes):

. Trivial encoding, consisting of the adoption of the
Direct Plain Tag encoding and the Trivial Document
encoding,

. Nested encoding, in which we adopt the Nested
Invariant Tag encoding combined with Trivial
Document encoding,

. Linear encoding, in which we combine Direct Sym-
metric Tag encoding and Linear Document encoding,

. Multilevel encoding, in which we use Direct Invariant
Tag encoding and Multilevel Document encoding,
and

. Pairwise Multilevel encoding, in which we adopt the
Pairwise Tag encoding combined with the Multilevel
Document encoding.

The idea underlying the above combinations is the
following. Trivial and Nested encoding schemes allow for
evaluating the effectiveness of a tag encoding function in
linearizing the document structure. Notice that linearization
is mainly accomplished by a preorder visit of the tree, so
that differences in precision of such encodings allow us to
evaluate the differences between different tag encoding
functions. Linear and Multilevel encodings, on the other
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hand, allow the evaluation of the effectiveness of a
document encoding function according to the amount of
context information taken into account. Essentially, a Linear
encoding takes into account the order of the document,
while a Multilevel encoding considers the nesting level of
the tag instances within the document. Such encodings can
be expected to behave differently on documents exhibiting
different features: In particular, a Linear encoding can be
effective in large documents exhibiting a low degree of
nesting, while Multilevel encodings are expected to work
fine with documents exhibiting a higher degree.

Finally, the Pairwise encoding summarizes all the above
features, but in addition, performs a look-ahead of the tag
instances in a document. Hence, it is expected to resume the
peculiarities of an XML document with high precision.
Experiments reported in Section 5 are aimed at validating
the above considerations.

It turns out that all the proposed encoding schemes
preserve the document structure, as the following result
states.

Theorem 1. The proposed encoding schemes are WSL.

Proof. We prove the statement for the multilevel
encoding scheme only (the other cases are straightfor-
ward adaptations). Given two documents d1 and d2,
consider the skeletons skðd1Þ ¼ ½t1; t2; . . . ; tn� and
skðd2Þ ¼ ½p1; p2; . . . ; pn�, and the associated se-
quences mlencðd1Þ ¼ ½x1; x2; . . . ; xn� and mlencðd2Þ ¼
½y1; y2; . . . ; yn�. We show that if skðd1Þ 6¼ skðd2Þ, then
mlencðd1Þ 6¼ mlencðd2Þ. Let k be the minimum index
s.t. tk 6¼ pk. Two cases can occur: either both tk and pk
are start-tags, or one of them (say pk) is an end-tag.
In the former case, we have:

xk ¼ �dðtkÞ �BM�ltk þ
X

ti2nestd1 ðtkÞ
xi;

yk ¼ �kðpkÞ �BM�lpk þ
X

pj2nestd2 ðpkÞ
yj;

where M ¼ maxdepthðfd1; d2gÞ. Observe that ltk ¼ lpk
and, since ti ¼ pi for each i < k, it holds thatX

ti2nestd1 ðtkÞ
xi ¼

X
pj2nestd2 ðpkÞ

yj:

As a consequence, since by definition �dðtkÞ 6¼ �dðpkÞ, we
obtain that xk 6¼ yk for every B > 0.

For the latter case, observe that, by definition of direct
invariant tag encoding,

yk ¼ �dðpkÞ �BM�lpk þ
X

pj2nestd2 ðpkÞ
yj ¼

X
ti2nestd1 ðtkÞ

xi:

The latter equality follows from lpk ¼ ltk � 1 and ti ¼ pi
for each i < k. Since �dðtkÞ > 0, we obtain xk 6¼ yk. tu

4 COMPARING DOCUMENTS USING DFT

Faced with the above definitions, we can now detail the
similarity measures for XML documents, sketched in the
Introduction. As already mentioned, we can assume that we
are visiting the tree-structure of an XML document d (using
a preorder visit) starting from an initial time t0. We also
assume that each tag instance occurs after a fixed time

interval�. The total time spent to visit the document is N�,
where N is the size of tagsðdÞ. During the visit, as we find a
tag, we produce an impulse which depends on a particular
tag encoding function e and on the overall structure of the
document (i.e., the document encoding function enc).

As a result of the above physical simulation, the visit of
the document produces a signal hdðtÞ, which usually
changes its intensity in the time interval ½t0; t0 þN�Þ. The
intensity variations are directly related to the opening/
closure of tags:

hdðtÞ ¼
½encðdÞ�ðkÞ if t0 þ k� � t < t0 þ ðkþ 1Þ�
0 if t < t0 or t � t0 þN�:

�

Fig. 5a, for example, shows the signals related to the
skeletons of the documents reported in Fig. 2, encoded
using the multilevel encoding scheme, and assuming that for
these signals � ¼ 1.

Comparing such signals, however, might be as difficult
as comparing the original documents. Indeed, comparing
documents having different lengths, requires the combina-
tion of both resizing and alignment operations. Moreover,
the intensity of a signal strongly depends on the encoding
scheme adopted, which can in turn depend from the context
(as in the case, e.g., of the multilevel encoding scheme).

A traditional approach for comparing sequences is
known in literature as Time Warping [23], which mainly
consists of considering every possible stretching and
narrowing of the two signals, and choosing the best
matching. Essentially, time-warping corresponds to a tree-
edit over sequences. Hence, it is quite expensive (quadratic
in complexity) and, in most cases, the resulting structural
similarity of two documents does not necessarily corre-
spond to a similar shape of the associated signals. Consider
again Fig. 5a, representing the documents of Fig. 2. Observe
that all the signals have different shapes. Notwithstanding,
the difference among the signals can be summarized as
follows:

. Each book element is associated with a unique
subsequence within the signals associated with book1
and book2. Nevertheless, the number of occurrences
of the subsequences are different.

. book3 has two different subsequences associated
with the book elements. Moreover, the first sub-
sequence is different from the ones in book1 and
book2.

A comparison in the time domain (accomplished using the
time-warping distance) will result in a higher similarity
between book1 and book3 than between book1 and book2.
Nevertheless, each different subsequence triggers a differ-
ent contribution in the frequency domain, thus allowing for
detecting the above described dissimilarities.

To better understand how the differences between two
documents reflect on the frequency spectra of their
associated encodings, we can always consider these differ-
ences separately and exploit the linearity property of the
Fourier transform. Consider, e.g., the trees reported in
Figs. 6a and 6b, and their encodings obtained using linear or
multilevel schemes. The difference between the two trees
consists of the name of the root node of subtree 2. This
results in different magnitudes of the portions of the signals
corresponding to subtree 2; more precisely, the difference
signal has a rectangular shape and k nonzero values (where
k is the cardinality of the subtree). As the Fourier transform
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of the difference signal has significant frequency compo-
nents for low frequencies only (in a range whose size is
inversely proportional to k) [24], [25], this difference mainly
affects low frequencies. Consider now the trees reported in
Figs. 6a and 6c. The different number of subtree repetitions
produces two signals having almost the same frequency
components, but the second one has a higher associated
energy. Finally, the trees shown in Figs. 6a and 6d have a

nodes containing completely different subtrees (2 and 3).
Thus, in the resulting signals, the portions associated with
these subtrees have different lengths and values, and their
associated transforms will be completely different.

All differences discussed above are reflected in the
frequency spectra, and can hence be detected without the
need of resorting to edit distance-based algorithms. Thus, to
compare the structural properties of two signals associated
with two different XML documents, it is particularly
convenient to examine their DFT transforms, since they
reveal much about the distribution and relevance of signal
frequencies. Indeed, some useful properties of such a
transform [25], namely, the concentration of the energy
into few frequency coefficients, its invariance of the
amplitude under shifts, and especially its efficient compu-
tation, make it particularly attractive for the problem at
hand. Given a document d, we denote as DFTðencðdÞÞ the
Discrete Fourier Transform of the time series resulting from
the encoding. In particular, such a transform is represented
as a vector whose components corresponding to frequencies
in the interval ½�:5; :5� (obtained choosing the sampling
period � ¼ 1). By looking at the DFTs of the signals in
Fig. 5a, we can understand how the difference in the
structure of these documents are reflected in their trans-
forms. Indeed, the available frequency components sum-
marize the relevant features of the documents and,
consequently, the amplitudes associated with them allow
to compare such features. In particular, consider Fig. 5b.
Here, the zero-frequency components (representing the
mean intensity of the signal) as well as the (redundant)
negative ones, are omitted. Observe that the DFT transforms
of book1 and book2 are quite similar. We claim that the
similarities in the structure of the two documents are
reflected by the nonzero components of the spectra.

In order to compare two documents di and dj, hence, we
can exploit the properties of the corresponding transforms.
In particular [15], [16], a possibility is to exploit that, by
Parseval’s theorem, energy (total power) is an invariant in
the transformation (and, hence, the information provided

by the encoding remains unchanged in the transform).
However, a more effective discrimination can exploit the
difference in the magnitude of frequency components: In a
sense, we are interested 1) in abstracting from the length of
the document and 2) in knowing whether a given
subsequence (representing a subtree in the XML document)
exhibits a certain regularity, no matter where the subse-
quence is located within the signal. In particular, we aim at
considering as (almost) similar documents exhibiting the
same subtrees, even if they appear at different positions.
Now, as the encoding guarantees that each relevant
subsequence is associated with a group of frequency
components, the comparison of their magnitudes allows
the detection of similarities and differences between
documents. Observe that measuring the energy of the
difference signal would result in a low similarity value. On
the other side, if the phases of the documents’ transforms
are disregarded, documents are more likely to be consid-
ered as similar.

A problem with such an approach can be seen in the fact
that, with variable-length sequences, the frequency coeffi-
cients may not correspond and thus become incomparable.
However, this problem can be tracked by forcing the
computation of the DFT on M fixed frequencies, where M is
a large number (typically, M � maxðNi;NjÞ, where Ni ¼
jtagsðdiÞj and Nj ¼ jtagsðdjÞj). The choice of M has strong
implications on the interpretation of the corresponding
signal in the time domain: In particular, it corresponds to a
zero-padding [25]. As a matter of fact, a zero-padding
preserving the frequency components of the original signals
can be obtained by choosing M as the least common
multiple of Ni and Nj. This clearly increases the complexity
of the overall approach, as the size of the sequences is
notably increased.
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A viable approximation can be the interpolation of the
missing coefficients starting from the available ones. It is
worth noticing that the approximation error due to
interpolation is inversely proportional to minðNdi ;NdjÞ:
The more elements that are available in a document d, the
better the DFT approximates the (continuous) Fourier
Transform of the signal hdðtÞ and, consequently, the higher
is the degree of reliability of interpolation. As a practical
consequence, the approach is expected to exhibit good
results with large documents, providing poorer perfor-
mances with small documents.

As a final remark, we observe that, for real-valued
sequences, the property jHðfÞj ¼ jHð�fÞj holds, and that if
hðtÞ is normalized [17] (that is, it has 0-mean), then
Hð0Þ ¼ 0. This allows us to concentrate only on a subset
of the frequency components. To summarize, the overall
computation of the dissimilarity between documents can be
defined as follows.

Definition 6. Let d1, d2 be two XML documents, and enc a
document encoding function, such that h1 ¼ encðd1Þ and
h2 ¼ encðd2Þ. Let DFT be the Discrete Fourier Transform of
the (normalized) signals. We define the Discrete Fourier
Transform distance of the documents as the approximation of
the difference of the magnitudes of the DFT of the two encoded
documents:

distðd1; d2Þ ¼
XM=2

k¼1

½ ~DFTDFTðh1Þ�ðkÞ
�� ��� ½ ~DFTDFTðh2Þ�ðkÞ

�� ��� �2 !1
2

;

where ~DFTDFT is an interpolation of DFT to the frequencies
appearing in both d1 and d2, and M is the total number of
points appearing in the interpolation, i.e.,M ¼ Ndi þNdj � 1.

Example 4. Let us consider again the documents of Fig. 2.
Notice that the three documents are very similar, although
a difference can be detected for each pair under considera-
tion. Adopting themultilevel encoding scheme, we obtain
distðbook1; book2Þ ¼ :057 and distðbook1; book3Þ ¼ :05772.
As discussed above, these values correspond to the
expected values of document structural similarity, as
book1 and book2onlydiffer in thenumber of bookelements,
whereas book1 and book3 have differently structured book
elements.

An interesting property is that the above defined
distance function is a metric, as proven by the following
statement.

Theorem 2. distðd1; d2Þ is a metric distance.

Proof. It suffices to show that triangular inequality holds,
since the other properties directly follow from the
definition. But, this is trivial, by observing that for any
function f : IRN 7!IR and for any distance d defined as
dðx;yÞ ¼ kfðxÞ � fðyÞk, every vectors x;y; z are such that

dðx;yÞ ¼ kfðxÞ � fðyÞk � kfðxÞ � fðzÞk

þ kfðyÞ � fðzÞk ¼ dðx; zÞ þ dðy; zÞ:
tu

Alternative ways of comparing documents can be
defined. For example, we can choose to compare only a
given number of points of the transforms, in the style of

[15], [16]. However, it is important to stress here that we
aim at comparing to graph-based approaches. To this
purpose, it is important to remark that the complexity of
the computation of the above distance is mainly influenced
by the computation of the DFT.

In the Introduction, we claim that our approach is more
efficient than traditional approaches used in literature.
Indeed, we can measure the cost of computing a similarity
matrix of a set D of documents, by looking at the overall
encoding time and transformation time. In particular, the
general complexity result can be stated as follows.

Proposition 1. The encoding schemes defined in Section 3.3,
equipped with the distance measure of Definition 6, require
OðN logNÞ to compare two documents of length N .

Proof. The proposed encoding schemes require at most two
visits of the XML tree. Now, each visit is OðNÞ, since
each node within the XML tree represents a tag instance.
Moreover, the computation of the Fast Fourier Transform
can be done in OðN logNÞ [26]. For a given pair of
documents, we perform the encoding step and compute
the FFT twice. Finally, the computation of the distance
function requires M operations, where M is OðNÞ. tu

As a consequence, in order to build a similarity matrix for
a set of documents D, we require at most OðjDj2N logNÞ,
whereN is themaximum length of a document inD. Observe
that classical techniques based on tree-matching [19] work in
at least OðjDj2N2Þ.

5 EVALUATION

In this section, we evaluate the proposed approach by
performing a set of meaningful experiments on both real
and synthesized data. Experiments are mainly devoted to
assess the validity of the proposed approach with regard to
some prior knowledge about the similarity of selected
documents. Here, prior knowledge is modeled as the
conformity of a document to its generating DTD: Essen-
tially, documents are grouped in subsets conforming to
some previously chosen DTDs, so that each group can be
seen as structurally homogenous. Thus, the experiments
aim at evaluating the effectiveness of the proposed
encoding schemes in recognizing such groups. The evalua-
tion is also accomplished through a comparison with
related work on structural similarity detection in XML
documents. In particular, we consider a technique recently
proposed in [19] and specifically designed to measure
structural similarities between XML documents.

To this purpose, a collection of tests is performed, and in
each test, some relevant groups of homogeneous documents
(document classes) are considered. The direct result of each
test is a similarity matrix representing the degree of
structural similarity for each pair of XML documents in
the data set. In order to give an immediate and overall
perception of the similarity relationships in the data set, we
draw the similarity matrix as an image, where the gray level
of each pixel is proportional to the value stored in the
corresponding cell of the matrix (i.e., darker pixels
correspond to higher similarity values).

A similarity matrix enables simple quantitative analyses,
aimed at evaluating the resulting intraclass similarities (i.e.,
the average of the values computed inside each class), and
to compare them with the interclass similarities (i.e., the
similarity computed by considering only documents be-
longing to different classes). To this purpose, values inside
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the matrix can be aggregated according to the classes of
membership of the related elements: Given a set of
documents belonging to n prior classes, a similarity matrix
S about these documents can be summarized by an n� n
matrix CS, where the generic element CSði; jÞ represents
the average similarity between class i and class j:

CSði; jÞ ¼

P
x;y2Ci;x6¼y

Sðx;yÞ
jCij�ðjCij�1Þ iff i ¼ jP
x2Ci;y2Cj

Sðx;yÞ
jCij�jCjj otherwise:

8><
>:

The higher the values on the diagonal of the corresponding

CS matrix with regard to those outside the diagonal, the

higher the ability of the similarity measure to separate

different classes.
A further relevant measure is the error rate of a k-Nearest

Neighbor classifier defined on the basis of the similarity
measure. For a given document, we can check whether the
dominant class of the k most similar elements allows to
correctly predict the actual class of membership. Thus, the
total number of documents correctly predicted can be
considered as a measure for evaluating the effectiveness of
the similarity at hand. Formally, the error ekðSÞ of a kNN
classifier exploiting a similarity matrix S can be defined as

ekðSÞ ¼
1

N

XN
i¼1

�kðiÞ;

where N is the total number of documents, and �kðiÞ is 0 if

the predicted class of the ith document coincides with its

actual class, and 1 otherwise. Low values of the ekðSÞ index
correspond to good results.

The above measure can be refined by evaluating the
average number of elements, in a range of k elements,
having the same class of the document under consideration.
Practically, we define qk as the average percentage of
documents in the k-neighborhood of a generic document
belonging to the same class of that document. Formally:

qkðSÞ ¼
1

N

XN
i¼1

jN kðiÞ \ ClðiÞj
minðk; niÞ

;

where ClðiÞ represents the actual class associated with the
ith document in the collection, ni ¼ jClðiÞj, and N kðiÞ is the
set of k documents having the lowest distances from di,
according to the similarity measure at hand. In principle, a
Nearest Neighbor classifier exhibits a good performance
when qk is high. Furthermore, qk provides a measure of the
stability of a Nearest-Neighbor: High values of qk make a
kNN classifier less sensitive to increasing values k of
neighbors considered.

The sensitivity of the similarity measure can also been
measured by considering, for a given group of documents
x; y; z, the probability that x and y belong to the same class
and z belongs to a different class, but z is more similar to x
than y is. We denote this probability by "ðSÞ, which is
estimated as

"ðSÞ¼ 1
N�
PN

i¼1
1

ðni�1Þ�ðN�niÞ
�
P

ClðjÞ¼ClðiÞ;j 6¼i

P
ClðkÞ6¼ClðiÞ �Sði;j;kÞ

� �
;

where �S is 1 if Sði; jÞ < Sði; kÞ, and 0 otherwise. Once

again, low values of �ðSÞ denote a good performance of the

similarity measure under consideration.

In the following experiments, the similarity is computed
by exploiting the FFT algorithm described in [27], and
whose execution time depends on the length of the
transform. In particular, the algorithm is fastest for powers
of two. It is almost as fast for lengths that have only small
prime factors. It is typically several times slower for lengths
that are prime or which have large prime factors. In the
latter cases, a modification of the algorithm (in which zero
padding to the closest power of two is exploited [26]), can
be implemented, thus preserving the quasilinear complex-
ity of the approach.

5.1 Experiments on Synthesized Data
In this section, we illustrate a number of experiments we
performed on synthesized data sets by using both our
methods and the one proposed in [19]. The experiments are
organized in two parts. The first set of tests is meant to
analyze the behavior of the methods, by evaluating their
effectiveness in recognizing a number of homogeneous, yet
rather different, document classes. In the second set of
experiments, the methods are examined in a more difficult
situation because of the presence of some classes which are
very similar to each other. The aim is to evaluate the
capability of the methods to separate such groups and still
discover high levels of intraclass similarity.

Synthetic data sets were generated with an XML
document generator. The generator takes as input a DTD
and randomly produces a set of conforming documents, on
the basis of suitable statistical models which rule the
occurrences of elements marked by operators *, ?, |, and +.
In particular, the * operator (and its homologous +) is
associated with a stochastic variable representing the length
of the sequence it may produce, whereas the operators |

and ? are both viewed as a Bernoulli experiment which can
produce one of two possible outcomes with a given
probability. In the experiments described here, the prob-
abilities of all Bernoulli variables are randomly chosen from
a uniform distribution, whereas every stochastic variable is
modeled by a log-normal function.

The data sets used in this section were generated using
the five DTDs shown in Fig. 7. We chose the DTDs according
to the requirement that each pair of DTDs must be
substantially different, but at the same time it must exhibit
some common features. This requirement is useful to
evaluate the behavior of the various methods in the absence
of completely distinct groups, and to affect in some way the
interclass affinities. In Fig. 7, DTD1 and DTD2 are compar-
able in their overall shape, but they have no common tag
name. DTD3 has the same elements of DTD1, but with
different definitions. Finally, DTD5 shares tag names with
DTD1 and DTD3, and some definitions with DTD4.

The quality values obtained by the various encoding
schemes are reported in Table 1. For measures ek and qk, we
considered neighborhoods of size 50, i.e., the size of each
class in the data set.

Linear and Trivial encoding schemes provide the worst
performances. The images reported in Figs. 8a and 8b show
that the proposed schemes are able to clearly distinguish
the sole classes 2 and 4. Nevertheless, a closer look at the
corresponding CS matrices (Tables 2a and 2b), reveals the
effectiveness of the encodings. Indeed, average intraclass
similarity is generally higher than interclass similarity, thus
enabling a hypothetic agglomerative hierarchical clustering
to build a dendrogram as follows:
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. First, classes C4 and C2, exhibiting the highest
intraclass similarities, are recognized.

. After the removal of these classes, the average
similarities lower of an order of magnitude, thus
allowing for detecting classes C1, C3 and, finally, C5.

The performance of Nested encoding is shown in Fig. 8c.
As we can see, the differences among the various classes are
now marked with higher precision. This is mainly due to
the fact that, in this scheme, each tag contains information
about its ancestor tags in the XML tree and, hence, its code
resumes, in some way, the structure of the document.
Notwithstanding, because of the adoption of a simple
document encoding function, this scheme is unable to
neatly separate some regions: In particular, class 1 does not
exhibit substantial differences from class 2.

Things get significantly better with encoding schemes
based on the multilevel technique, which produce the best
results. For example, the multilevel scheme exhibits a neat
distinction between elements belonging to a class and
elements outside that class. Fig. 8d clearly puts in evidence
such a behavior. It is interesting to take a closer look at the
average values within the similarity matrix in Table 2d, as it
shows that both average intrasimilarities and average
intersimilarities are particularly high. Such an effect is
mainly due to the fact that, in the proposed encoding, the
values in the sequence are dominated by the encoding of
the path. As a consequence, sequences associated to
documents having common ancestors exhibit low variances.
The Pairwise Multilevel encoding (shown in Fig. 8e) avoids

this drawback and clearly separates the contours around
each class. This is clearly shown by the average values of
Table 2e. In such a case, the benefits of considering the path
of each element are strengthened by the contextualization of
each tag, which causes a higher irregularity in the
corresponding signals.

Interestingly, similarities based on multilevel encoding
outperform the measure based on Tree-Edit script (shown
in Fig. 8f). The latter, indeed, exhibits good performances
compared to the schemes based on trivial and linear
encoding, but does not recognize class 3 (as, instead,
schemes based on contextualization do).

It is useful to examine in more detail the capability of
distinguishing different degrees of interclass similarity. To
this purpose, the similarity measures corresponding to the
various schemes are tested in a more stressing situation,
where document classes very similar to each other, i.e.,
generated from similar DTDs, appear in the data set. In
particular, we considered two further DTDs, namely, DTD6
and DTD7 (displayed in Fig. 9), both having a structure very
similar to that of DTD5. Notice that DTD5 and DTD6 share
similar definitions (in particular, for elements close to the
root): Hence, we expect a higher degree of interclass
similarity between them. The results of the experiments
are summarized in Table 3.

In general, the introduction of the new DTDs causes a

global reduction of the quality values for all the encoding

schemes. Notwithstanding, the Multilevel and the Pairwise

Multilevel encoding schemes are still able to distinguish the

classes. Notably, Figs. 10a and 10b show that both the

techniques separate each class, and detect a higher inter-

class similarity among documents in classes DTD5, DTD6,

and DTD7, as expected. Tables 4a and 4b also show a higher

interclass similarity between DTD5 and DTD6.
By contrast, Tree-Edit distance (Fig. 10c) exhibits a

different behavior on the three classes. In general, the
average interclass similarity is low, compared to the
average interclass similarity with the remaining classes (as
shown in Table 4c). Moreover, class DTD6 exhibits a low
interclass similarity with regard to DTD5, and, surprisingly,
a higher interclass similarity with regard to DTD7 (actually,
higher than intraclass similarity).
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TABLE 1
Quality Indices on Synthesized Data



5.2 Experiments on Real Data
This section describes the results of experiments we

performed on real XML documents extracted from different

collections available on the Internet. The documents used

belong to five main classes:

. Astronomy: a data set containing 217 documents

extracted from an XML-based metadata repository,

that describes an archive of publications owned by

the Astronomical Data Center at NASA/GSFC

(http://adc.gsfc.nasa.gov/).
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TABLE 2
Average Similarity Values
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. Forum: a data set composed of 264 documents
containing messages sent by users of a Web forum
(http://static.userland.com/).

. News: a data set composed of 64 XML documents
containing press news from all over the world,
daily collected by PR Web, a company that
provides free online press release distribution
(http://www.prweb.com/rss.php).

. Sigmod: a data set composed of 51 XML docu-
ments containing issues of SIGMOD Record. Such
documents were obtained from the XML version of
the ACM SIGMOD Web site (http://www.dia.
uniroma3.it/Araneus/Sigmod/).

. Wrapper: a data set composed of 53 XML docu-
ments representing wrapper programs for Web sites,
obtained by means of the LIXTO system [8].

Like in the case of synthesized data sets, we expect to
obtain a first, loose-grained separation of the documents
according to their classes. Neverthless, the distributions of
the tags within the documents are quite heterogeneous, due
to the complexity of the DTDs associated with the classes,
and to the semantic heterogeneity of the documents. In
particular, wrapper programs may have substantially
different forms, as a natural consequence of the structural
differences existing among the various Web sites they have
been built on. Hence, we expect a finer-grain analysis to be
able of detecting such differences.

Table 5 summarizes the quality values obtained using
the various encoding schemes. For measures ek and qk, we
considered neighborhoods of size 51, i.e., the size of the
smallest class in the data set. As we can see, the error rate is
extremely low in all the encoding schemes, even though
schemes exploiting context information exhibit better
performances. In general, the results reflect the behavior
analyzed in the previous section.

Fig. 11 shows the similarity matrices of three main
encoding schemes, corresponding to three different strate-
gies for taking into account the context where a tag appears.
Once again, trivial encoding (Fig. 11a) exhibits the worst
performance, although classes can be still separated.

The relevance of context information for estimating
structural similarity is highlighted by the performances
exhibited by other encoding schemes, which are based on
the multilevel document encoding. Figs. 11b and 11c show
the corresponding similarity matrices. In general, both the
encodings exhibit low interclass similarity values, and quite
high intraclass similarity values.

The only problematic class appears to be the wrapper

one, which exhibits little homogeneity. This result is not so
surprising, if the skewed nature of this set of documents is
taken into account. Notwithstanding, the similarity matrices
exhibit a neat separation from the other classes, and show
homogeneos subgroups inside the class. This gives evidence
of the effectiveness of the approach in detecting both
interclass and intraclass dissimilarity. A further confirma-
tion of the above hypothesis is given by a visual analysis of
the DFT transforms of the signals produced by the Multi-
level and Pairwise Multilevel schemes, plotted, respec-
tively, in Figs. 12a and 12b. By looking at the Fourier
transforms of the documents in the wrapper class, it is
possible to recognize several clearly distinguishable groups
of similar shapes.
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Fig. 9. DTD5 and two similar DTDs sharing some definitions with it.

TABLE 3
Quality Indices on Synthesized Data

in Presence of DTD6 and DTD7

Fig. 10. Similarity matrices in presence of DTD6 and DTD7. (a) Multilevel encoding. (b) Pairwise encoding. (c) Tree-edit distance.



5.3 Final Remarks on the Encoding Schemes
We can summarize the differences exhibited by the various
encoding schemes as follows: The Trivial scheme does not
contextualize the current information and, hence, it has the
poorest results. Linear, Nested, and Multilevel schemes
introduce context information for each element. However,
the contextualization introduced by the Linear encoding
scheme is still little effective. Indeed, both trivial and linear
encoding do not take into account context information
provided by the nesting levels and, hence, are insensitive to
such features. On the other hand, the contextualization
introduced by the nested scheme seems to be more
appropriate to enhance structural differences. This is also
proven by the multilevel scheme, which provides the same
information as the nested scheme, but in the document
encoding instead of the tag encoding.

Linear, Nested, and Multilevel schemes provide mainly
“backward” information: They consider, at each point of the
XML tree, the path from the node to the root. In a sense,
they assume a depth-first visit of the tree. The pairwise
encoding scheme, on the contrary, provides also “forward”
information: At each node, we look at the node that follows
the current one. In principle, such a node can be a sibling of
the current node: In such a situation, this corresponds to
performing a more accurate analysis of the neighborhood of
a tag. Combining the resulting information with the
information provided by the multilevel encoding yields
high quality similarity values.

Compared to the technique which makes use of a tree-
edit distance, the above techniques are generally effective in
measuring the structural similarity. Indeed, the perfor-
mances achieved by the Trivial, Nested, and Linear
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TABLE 4
Average Similarity Values for DTD5, DTD6, and DTD7

(a) Multilevel encoding. (b) Pairwise encoding. (c) Tree-edit distance.

TABLE 5
Quality Indices on Real Data

Fig. 11. Similarity matrices on real data. (a) Trivial encoding. (b) Multilevel encoding. (c) Pairwise encoding. (d) Tree-edit distance.



encoding schemes are comparable, while schemes based on
the the Multilevel document encoding function provide
better results.

As a final remark, notice that all the proposed encoding

schemes are scalable: The addition of a new document in

the collection does not entail a reencoding of the entire

collection. The claim is straightforward for the trivial, linear,

and nested encoding schemes. Concerning the schemes

based on the multilevel document encoding, observe that,

by Theorem 1, these schemes are WSL no matter which

value of B is adopted. That is, a new document can still be

encoded by exploiting the B-base representation initially

adopted. Notice that, since in principle the addition of new

documents may introduce new tag names, the requirement

B ¼ jtnamesðDÞj þ 1 may no longer be met, thus triggering

a progressive worsening of the quality of results. Detailed

studies show that performance worsening is only signifi-

cant when jtnamesðDÞj is far greater than B. In particular,

when B
jtnamesðDÞj ! 0, the multilevel encoding scheme is

expected to behave almost like the linear encoding scheme,

whereas the pairwise multilevel scheme is expected to

behave like a linear document encoding function combined

with a modified (symmetric) version of the pairwise tag

encoding.

6 CONCLUSIONS AND FUTURE WORKS

In this paper, we addressed the problem of detecting the
structural similarity between XML documents. The techni-
que we have proposed is mainly based on the idea of
representing an XMLdocument as a time series. Thereby, the
structural similarity between two documents can be com-
puted by exploiting the Discrete Fourier Transform of the
associated signals. Experimental results showed the effec-
tiveness of our approach, with particular regard to some of
the encoding schemes defined in the paper, even when
compared with different techniques based on tree-edit.

The current work is subject to further extensions, that we
plan to address in future works:

. The structural similarity between documents can be
refined exploiting information retrieval techniques.
In particular, the combination of the distance
measure we propose with traditional techniques,
such as Jaccard or Cosine similarity, can be

extremely profitable. Also, it is interesting to study
the combination with document-content similarity.
Documents’ contents may contain significant seman-
tic information and, hence, a combined measure can
be defined by combining both structural and content
similarity.

. In our current implementation, the tag encoding
function does not take into account semantic
similarities between tags. However, precision could
be improved by exploiting tag similarity techniques,
through, e.g., suitable ontologies.

. The encoding schemes can be further improved by
analyzing different visiting strategies for the trees.
An example alternative encoding can be defined by
analyzing a tag according to its siblings (instead of
its ancestors). In principle, a higher information
content associated to a tag should guarantee a more
refined translation of a document into a time series.
Thus, we expect that the analysis of the correspond-
ing signals allows us to detect finer differences.

. From an application viewpoint, a suitable applica-
tion domain can be the extraction of information
from the Web and its storage into an enterprise
information system. Here, crawling and wrapping
can be integrated by means of a document categor-
ization technique based on structural similarity, and
suitable for both classifying a set of pages with
regard to a set of available wrappers and identifying
new sets of similarly structured pages for which new
wrappers can be defined.

ACKNOWLEDGMENTS

This work is a revised, extended version of the paper that
appeared in [28]. The authors are very grateful to Andy
Nierman for providing them with the executables of the
algorithm proposed in [19]. This work was partially
supported by the National Research Council project SP2:
“Strumenti, ambienti e applicazioni innovative per la
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