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Abstract—Today’s workflow management systems represent a key technological infrastructure for advanced applications that is

attracting a growing body of research, mainly focused in developing tools for workflow management, that allow users both to specify

the “static” aspects, like preconditions, precedences among activities, and rules for exception handling, and to control its execution by

scheduling the activities on the available resources. This paper deals with an aspect of workflows which has so far not received much

attention even though it is crucial for the forthcoming scenarios of large scale applications on the Web: Providing facilities for the

human system administrator for identifying the choices performed more frequently in the past that had lead to a desired final

configuration. In this context, we formalize the problem of discovering the most frequent patterns of executions, i.e., the workflow

substructures that have been scheduled more frequently by the system. We attacked the problem by developing two data mining

algorithms on the basis of an intuitive and original graph formalization of a workflow schema and its occurrences. The model is used

both to prove some intractability results that strongly motivate the use of data mining techniques and to derive interesting structural

properties for reducing the search space for frequent patterns. Indeed, the experiments we have carried out show that our algorithms

outperform standard data mining algorithms adapted to discover frequent patterns of workflow executions.

Index Terms—Data mining, workflow management.

�

1 INTRODUCTION

Aworkflow is a partial or total automation of a business
process in which a collection of activities must be

executed by humans or machines according to certain
procedural rules. Modern enterprises increasingly use
workflow technology for designing business processes by
means of management systems that provide mechanisms
for formally specifying the schema of execution, for
simulating its evolution under different conditions, for
validating and testing whether it behaves as expected, and
for evaluating the ability of a service to meet requirements
with respect to throughput times, service levels, and
resource utilization.

This paper dealswith an aspect ofworkflowswhich has so
far not received much attention even though it is crucial for
the forthcoming scenarios of large scale applications on the
Web: Providing facilities for the human system adminis-
trator to monitor the actual behavior of the workflow system
in order to predict the “most probable”workflow executions.
Indeed, in real-world cases, the enterprise must perform
many choices duringworkflow execution; some choices may
lead to a benefit, others should instead be avoided in the
future. Data mining techniques may, obviously, help the
administrator by looking at all of the previous instantiations
(suitably collected into log files in any commercial system) in

order to extract unexpected and useful knowledge about the
process and in order to take the appropriate decisions in the
executions of future instances. The discovered knowledge
can be profitably used for solving problems such as:

. Successful Termination Prediction. Assume that an
execution is at a given point in which the adminis-
trator has to choose an activity to start from a given
set of potential activities. Then, she/he typically
wants to know which is the choice performed in the
past that had more frequently led to a desired final
configuration.

. Identification of Critical Activities. In every work-
flow schema, there are some activities that can be
considered critical in the sense that they are
scheduled by the system in every successful execu-
tion. Sometimes, the system administrator may know
in advance that a given activity is critical, but it often
happens that this knowledge must be inferred by
looking at the actual behavior of the system.

. Failure/Success Characterization. By analyzing the
past experience, a workflow administrator may be
interested in knowing which discriminant factors
characterize thefailureor thesuccess in theexecutions.

. Workflow Optimization. The information collected
into the logs of the system can be profitably used to
reason on the “optimality” of workflow executions.
For instance, the optimality criterion can be fixed
with regard to some real-case interesting parameter,
such as the quality of the service or the average
completion time.

In this paper, we concentrate on the first of the above
problems: Successful Termination Prediction. We show that a
crucial step towards an automatic solution to this problem
consists of identifying the blocks of activities, called patterns,
that have been more frequently scheduled together during
the execution by the workflow system. To this aim, we
propose two distinct algorithms for frequent pattern mining
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implementing sophisticated techniques which benefit from
the peculiarities of the applicative context, thereby extend-
ing previous proposals for mining frequent structures in
complex domains (such as frequent sequences, trees, and
graphs—see, e.g., [1], [2], [3], [4], [5], [6], [7], [8]) to the
mining of workflow executions.

1.1 Related Work

This paper is about applying data mining techniques to the
area of workflows and, as such, it presents quite an intuitive
graph formalization of the main workflow concepts as the
basic data structure on which data mining algorithms work.
Therefore, the first area of related work is workflow
modeling and analysis. Let us preliminarily point out that
this paper is not aimed at developing a comprehensive
workflow specification; so, even though our workflow
model covers basic features required in workflow specifica-
tion, it contains some simplifying assumptions. For instance,
our model does not incorporate compensation or reset
activities and assumes acyclicity, i.e., nonrecursive work-
flows and noniterative executions. Furthermore, our model
does not directly support scheduling or verification tasks
(see, e.g., [9]) and does not handle transactional properties
of processes. The reader interested in the description of
advanced features in workflow modeling is referred to [10],
which proposes a unifying model for concurrency control
and recovery for processes. Other elaborated models are: the
Concurrent Transaction Logic-based model (CT R) [11], which
enables to both describe and reason about workflow by
introducing a rich set of constraints [12]; the state chart model
[13], [14], in which triggers are introduced in order to define
ECA (Event Condition Action) rules for describing transi-
tions among states; the active object oriented model [15], in
which a workflow is modeled by integrating ECA rules with
object-oriented concepts; the Process algebra-based model [16];
and, the Petri Nets-based model [17], which is a formalism
having deep formal foundations and is profitably used for
investigating different interesting properties for the process,
such as liveness and boundness (see, e.g., [18]).

Let us now review some work related to the main topic
of this paper, that is, graph mining techniques specialized to
handle constraints derived by the structures of workflow
schemes and instances. The idea of mining execution traces
has been already addressed in the context of process
discovery (see, e.g., [19]), but the goal there is to use the
information collected at runtime for deriving an “a poster-
iori” schema that can model all logged executions and is
well-suited for adapting the system to changing circum-
stances and removing imperfections in the initial design
(see [20] for a survey on this topic).

Instead, in our approach, the workflow schema is the
starting point, not the result: A number of executions are
analyzed contextually and comparatively on the basis of the
schema and with the goal of finding frequent patterns of
activities, thus discovering useful knowledge for supporting
the decision process in an enterprise. To the best of our
knowledge, our work is the first in handling such a problem,
that is, a problem of mining graphs with constraints
imposed by the structures of workflow schemes and
instances. Under this perspective, the techniques we
propose must be compared with other efforts paid by the
database community for developing algorithms for mining
frequent patterns, both in relational databases and in
complex domains. Most of these approaches are based on
the antimonotone property, first exploited in the seminal
paper of Agrawal and Srikant [21] that introduces theApriori

algorithm: The idea is to generate the set of candidates of
length kþ 1 by combining in a suitable way the set of
frequent patterns of size k and then checking their
frequencies. Quite a simple generalization of this method
is presented in [1] in order to mine sequential patterns.

A completely different approach has been proposed in [3]
and goes by the name of the FP-growth method. Essentially,
the idea is to mine frequent instances with a top-down
approach, i.e., by recursively projecting the database
according to the frequent patterns already found and then
combining the results of mining the projected databases.
The extension to a sequential pattern is the PrefixSpan
algorithm [4]. A recent attempt for combining such a
method with the Apriori approach has been done in [22].

As for the problem of mining patterns in complex
domains, the discovery of frequent trees in a forest has been
tackled in [2], while a first Apriori-based algorithm, called
AGM, for identifying frequent substructures in a given
graph data set has been presented in [5]. We stress that this
latter task nowadays constitutes a very active and still
promising area of research for its interesting applications in
web analysis and bioinformatics.

For instance, the level-wise search performed by AGM
has been adopted and further improved in the FSG
algorithm [7], in which a smart strategy for labeling the
generated subgraphs avoids many computational expensive
subgraph isomorphism computations. Moreover, some
algorithms based on the projection method have quite
recently been proposed as well: gSpan [6] discovers all the
frequent subgraphs without candidate generation and false
positive pruning, whereas CloseGraph [8] dramatically
reduces the number of unnecessary frequent subgraphs
generated by exploiting the notion of closed patterns, i.e.,
patterns which are no proper subgraphs of any other pattern
with the same support.

It is clear that such approaches could, in principle, be
used to deal with the problem of mining frequent workflow
instances after a suitable adaptation for fitting the peculia-
rities of the specific applicative domain of workflow
systems. In fact, one can think of modeling the workflow
schema as a graph and the executions of the workflow as a
set of subgraphs complying with the graph representing the
workflow schema.

However, the adaptation of the above mentioned
methods to workflow mining is a challenging task and its
results are impractical from both the expressiveness and
efficiency viewpoints. Indeed, generation of patterns with
such traditional approaches does not benefit from the
exploitation of the executions’ constraints imposed by the
workflow schema, such as precedences among activities,
synchronization, and parallel executions of activities (see,
e.g., [23], [24], [25]). In contrast, the algorithms proposed in
this paper are novel mining techniques specialized to handle
constraints derived by the structures of workflow schemes.
And, in fact, several experiments, reported in Section 5,
confirmed that they outperform traditional data mining
algorithms, even though they are suitably reengineered (in
our implementations) to work with workflow instances.

We conclude the overview on related work by observing
that, in order to model all the details of a workflow system,
one viable way is to consider more expressive approaches,
such as the multirelational data mining approaches [26].
Nonetheless, in Section 5, we also show that as a conse-
quence of their generality in modeling different domains,
they poorly perform if compared with our algorithms
specifically designed for the workflow domain.
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1.2 Contribution of the Paper

In this paper, we investigate the possibility of exploiting
data mining techniques within workflow management
contexts by proposing two algorithms for mining frequent
workflow patterns of execution. Specifically, our contribu-
tion is as follows:

. We model the Successful Termination Problem and we
provide some intractability results that shed light
into the intrinsic difficulty on reasoning over work-
flows. The in-depth theoretical analysis we provide
strongly motivates the use of Data Mining techni-
ques, thus confirming the validity of the approach.

. We define the notion of workflow pattern and weak
pattern of a workflow graph, where the latter is a
syntactic restriction of the former. In particular, we
prove that weak patterns are well-suited for mining
tasks as they can be recognized in a highly
parallelizable way and can be easily composed to
discovery frequent patterns because of their inter-
esting structural properties. Indeed, we show that
the space of all connected weak patterns constitutes
a lower semilattice with regard to a particular
relation precedence (� ).

. By exploiting properties of weak patterns, we design
two algorithms for mining frequent patterns that
conform to the workflow specifications:

- w-find, which performs a smart (level-wise)
exploration of the lower semilattice, and

- c-find, which mines frequent instances by
composing connected components.

. We test w-find and c-find by evaluating their
performance and their scalability. We show that
none of the algorithms is the best in absolute terms
by also evidencing the discriminant factors. More-
over, we compare these algorithms with existing
techniques adapted to our particular domain. Sev-
eral experiments confirmed the validity and the
usefulness of these approaches.

We stress that our approach does not consider cyclic
graphs (i.e., recursive workflow schemas and iterated
executions) and other aspects of workflows, such as
compensation or reset activities. These assumptions have
been required by the necessity of starting from a simplified
model, yet covering important and typical features required
in workflow specification, to take up an interesting and
relevant topic that has not been given much attention in the
literature so far. In fact, a significant number of technical
challengeshad tobe faced fordealingwithevenbasic features
only. However, since there is no conceptual limitation in
extending our algorithms for mining frequent instances with
regard to more involved workflow models, we believe that
this work might stimulate the data mining community in
continuing our investigation and in facing some of the
challenges we posed here.

1.3 Organization

The paper is organized as follows: Section 2 provides a
formal model of workflows and many complexity consid-
erations on such a proposed model. A formalization of the
problems of Successful Termination Prediction and of mining
frequent patterns from workflow schemas is devised in
Section 3. The levelwise theory of workflow patterns is
presented in Section 4, together with the algorithms w-find

and c-find. Finally, Section 5 provides an experimental
validation of the approach.

2 THE WORKFLOW ABSTRACT MODEL

A significant amount of research has been already done in
the specification of mechanisms for process modeling (see,
e.g., [27] for an overview of different proposals). The most
widely adopted formalism is the control flow graph, in which
aworkflow is represented by a labeled directed graphwhose
nodes correspond to the tasks to be performed, and whose
arcs describe the precedences among them. Moreover, the
Workflow Management Coalition1 has also identified addi-
tional controls, such as loops and subworkflows.

In this paper, we do not refer to any particular model
proposed in the literature. Rather, we next provide a simple
(state based) model that covers most of the important and
typical features required in workflow specification. The
model will be used for providing, in a rigorous way, both
the syntax and the execution semantics. Hence, it will trace
the formal framework (whose limitations have been already
described in the Introduction) for developing our mining
algorithms.

Definition 1. A workflow schema WS is a tuple
hA;E; a0; F ; IN; OUTmin; OUTmaxi, where A is a finite set of
activities, E � ðA� F Þ � ðA� fa0gÞ is an acyclic relation
of precedences among activities, a0 2 A is the starting activity,
F � A is the set of final activities, and IN, OUTmin, and OUTmax

are three functions assigning to each node a natural number
(A 7! IN) as follows:

. 8a 2 A� fa0g, 0 < INðaÞ � InDegreeðaÞ;

. 8a 2 A� F ,
0 < OUTminðaÞ � OUTmaxðaÞ � OutDegreeðaÞ;

. INða0Þ ¼ 0 and 8a 2 F , OUTminðaÞ ¼ OUTmaxðaÞ ¼ 0,

where InDegreeðaÞ is jfe ¼ ðb; aÞ j e 2 Egj and OutDeg-
reeðaÞ is jfe ¼ ða; bÞ j e 2 Egj.

Roughly speaking, an activity a can start as soon as at
least INðaÞ of its predecessor activities have been completed.
Two typical cases are: 1) if INðaÞ ¼ InDegreeðaÞ, then a is an
and-join activity, for it can be executed only after all its
predecessors are completed and 2) if INðaÞ ¼ 1, it is called an
or-join activity, for it can be executed as soon as one
predecessor is completed. As is commonly assumed in the
literature, we will limit ourselves to consider only and-join
and or-join activities, besides a0: Indeed, by means of these
two elementary types of nodes, it is also possible to simulate
the behavior of any activity a such that

1 � INðaÞ � InDegreeðaÞ:

Once finished, an activity a activates some (nondetermi-
nistically chosen) subset of its outgoing arcs with cardin-
ality between OUTminðaÞ and OUTmaxðaÞ. If OUTmaxðaÞ ¼
OutDegreeðaÞ, then a is a full fork and if OUTminðaÞ ¼
OUTmaxðaÞ also, then a is a deterministic fork, for it activates all
of its successor activities. Finally, if OUTmaxðaÞ ¼ 1, then a is
an exclusive fork (also called XOR-fork in the literature), for it
activates exactly one of their outgoing arcs.

For the sake of presentation, whenever it will be clear
from the context, a workflow schema
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WS ¼ hA;E; a0; F ; IN; OUTmin; OUTmaxi

will also be denoted by hA;E; a0; F i or, even simpler, by
hA;Ei.

Aworkflow schema can be represented in a graphicalway
by means of a directed acyclic graph, where the nodes
correspond to the activities inA and the edges correspond to
the relation of precedence E (see Fig. 1). Moreover, in order
to represent the functions IN, OUTmin, and OUTmax, if an
activity is an and-join (respectively, or-join), we draw the
corresponding node with bold (respectively, regular) circles;
finally, the nodes corresponding to exclusive fork (respec-
tively, deterministic fork) activities are such that their outgoing
edges are marked with dotted (respectively, bold) lines,
while all the other edges are represented by dashed lines.

Example 1. Fig. 1 shows a sketch of a workflow schema
representing a sales ordering process. The process is as
follows: A customer issues a request to purchase a given
product; the enterprise checks both the availability of the
required stock and the reliability of the client. Moreover,
if the client is reliable but the products are partially
stocked, a production will be planned. The final states
can be the acceptance or the rejection of the order.
Specifically, the initial task S corresponds to the “receive
order” activity, the final tasks R1 and R2 are the rejecting
of the order, and A is the acceptance. The activity e is the
production that sends the request to some storehouse
(either e1 or e2), which, in turn, forwards it to the
respective repository (1; 2; 3 or 4; 5).

When at least one repository (no matter which one)
has accepted the request, the task j1 or j2 proceeds to
notify j. If there is no availability, the task h may send a
request to the sales department (activity k) which
forwards it to all wholesalers k1; k2; k3; on the contrary,
the user request will be rejected (task R2).

Finally, the financial department (activity g) must
assess if the reference is acceptable and if it is not, the
order is rejected immediately (R2); otherwise, the
activation of the task l will lead to a success.

It is worth noting that, in this application, it could be
crucial to characterize (with the help of the data mining
techniques that we shall develop in the paper) the
discriminant factors that will lead to an acceptance of the
order requiring a planning of the production, in order to
preventively accommodate the requests.

The formal semantics is specified by mapping the
workflow schema into a transition system, where each
execution consists of a sequence of states.

Definition 2. Let WS ¼ hA;E; a0; F i be a workflow schema.
Then, the state S of an execution is identified by a tuple
hMarked; Ready;Executedi, with Ready;Executed � A
and Marked � E.

Intuitively, the state of an execution is determined by the
set (Executed) of activities which have been already executed
by the set (Ready) of activitieswhich have received the inputs
they need and which are, hence, ready for being executed,
and by the set (Marked) of edges corresponding to the
outputs of executed activitieswhichwill eventually be inputs
to other activities. An execution is modeled by means of a
transition system over such states. Then, if after t transitions
(short: step t), the state is St ¼ hMarkedt; Readyt; Executedti
and the next state Stþ1 is one of the outcomes of a
nondeterministic transition function �, defined next.

Definition 3. Let WS ¼ hA;E; a0; F i be a workflow schema,
and St ¼ hMarkedt; Readyt; Executedti be the state at the
step t. Then, �wsðStÞ is the set of all states hMarkedt [
�Markedtþ1; Readytþ1; Executedt [Readyti, such that

1. �Markedtþ1 is a subset X of fða; bÞ j a 2 Readyt;
ða; bÞ 2 Eg such that 8a 2 Readyt; OUTminðaÞ �
jfða; bÞj ða; bÞ 2 Xgj � OUTmaxðaÞ, i.e., each ready
activity, say a, activates a number of outgoing arcs in
the range defined by OUTminðaÞ and OUTmaxðaÞ.

2. Readytþ1 ¼ faja 2 ðA� ðExecutedt [ReadytÞÞ,
jfðb; aÞj ðb; aÞ 2 Markedtgj � INðaÞg, i.e., an activity
a becomes ready for execution as soon as at least INðaÞ
of its predecessor activities are completed.

Now, we are in the position to formally define a
workflow execution. An execution starts with the state S0 ¼
h;; fa0g; ;i and, at each step, it applies the transition
function �ws until a final state is reached.

Definition 4. LetWS ¼ hA;E; a0; F i be a workflow schema and
�ws be a transition function. An execution e on a workflow
schemaWS ¼ hA;E; a0; F i is a sequence of states ½S0; . . . ; Sk�
such that

1. S0 ¼ hf;g; fa0g; f;gi and
2. Stþ1 2 �ðStÞ for each 0 � t � k.

Moreover, ifExecutedk \ F 6¼ ; orReadyk [ �Markedk ¼ ;,
then e is said to be terminating; otherwise, it is said to be
partial.

Given an instance e ¼ ½S0; . . . ; Sk�, the set Executedk is
also denoted by ExecutedðeÞ. Note that, in the above
definition, a terminating execution e for which ExecutedðeÞ \
F ¼ ; corresponds to an abnormal execution which does not
reach a final state. In this case, there are neither activities
ready for being executed (i.e., Readyk ¼ ;) nor outputs
which may eventually activate other activities (i.e.,
�Markedk ¼ ;); hence, e is said to be unsuccessful. Other-
wise, e is said to be successful—observe that a successful
execution may terminate with some ready activity that will
be never executed, i.e., with Readyk 6¼ ;.

From now on, given a workflow schema WS, the set of
all the successful executions is denoted by Sws, while the set
of all the unsuccessful executions is denoted by Uws.

Example 2. An example of execution over the workflow
schema presented in Example 1 is reported in Fig. 2. The
indexed columns represent the steps of the execution.
Note that, at the fifth step, the financial department
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(activity g) has rejected the order (that is, not forwarded it
to l), causing the ending of the workflow execution.

As suggested by the previous example, the choices made
during an execution may cause a success or a failure.
Moreover, checking whether the workflow has a sequence
of choices leading to a success is an intractable problem.
Specifically, we next show that it is complete for the class
NP of problems that are solvable in polynomial time by
nondeterministic Turing machines—see [28] for some back-
ground on computational complexity.

Proposition 1. Let WS ¼ hA;E; a0; F i be a workflow schema.
Then, 1) deciding whether there exists an execution e that
reaches a final state (i.e., ExecutedðeÞ \ F 6¼ ;Þ is NP-
complete, but 2) the problem becomes P-complete if all nodes
in A are full forks.

Proof.

1. Membership in NP is trivial. For the hardness,
recall that, given a Boolean formula � over
variables X1; . . . ; Xm, the problem of deciding
whether it is satisfiable is NP-complete [28].
Without loss of generality, assume � to be in
conjunctive normal form. Then, we define a
workflow schema WSð�Þ ¼ hA;E; ao; fSatgi,
such that A consists of an initial activity a0 of
the activities Xi; TXi; FXi for each 0 � i � m, the
activities Cj for each distinct clause j of �, and a
final state Sat. Moreover, we define INðSatÞ ¼ n
(where n is the number of clauses contained in �)
and INðaÞ ¼ 1 for any other activity a 6¼ a0.

The set of precedences E is defined as follows:

. For each Xi, ðXi; TXiÞ and ðXi; FXiÞ are in E
with constraintsOUTminðXiÞ ¼ OUTmaxðXiÞ ¼ 1.
Thus, each time the activity Xi is executed,
it is required to make a choice between its
possible successors; note that, in our encod-
ing, TXi means that Xi is true, while FXi

means that Xi is false. Finally, an arc
ða0; XiÞ is in E and constraints OUTminðaÞ ¼
OUTmaxðaÞ ¼ m are added.

. For each Cj, we have that ðCj; SatÞ is inEwith
constraints OUTminðSatÞ ¼ OUTmaxðSatÞ ¼ 1.
Moreover, we have that ðTXi; CjÞ 2 E in the
case thatXj appears in the clauseCj, while we
have ðFXi; CjÞ 2 E in the case thatXi appears
negated in the clause Cj. Finally, for each
node a 2 fTXi; FXig, OUTminðaÞ ¼ OUTmaxðaÞ
¼ OutDegreeðaÞ.

Now, assume� is satisfiable. Then, it is possible to
choose the successor of eachXi in away that all the
activities Cj can be executed. Hence, the activity
Satwill eventually be reached. On the other side, if
there exists a path leading to Sat, it can be easily
mapped into a satisfying assignment for �.

2. Assume that, for each a 2 A, OUTmaxðaÞ ¼
OutDegreeðaÞ. It is easy to see that, for the
problem of deciding whether a given activity can
be executed, we can assume without loss of
generality that OUTminðaÞ ¼ OutDegreeðaÞ too. In-
deed, it is always convenient to activate all of the
outgoing arcs in a: If an activity cannot be
executed with the activation of all the outgoing
arcs in a, then it cannot be executed in any other
type of execution. Then, the problem can be solved
in polynomial time by applying the function �ws,
that it is actually a deterministic function. For the
hardness, we consider the AND/OR GRAPH AC-

CESSIBILITY problem [29]: We are given an and/or
graph G ¼ ðV ;EÞ (i.e., a directed graph such that
each vertex is assigned either a _ or ^ label) and
two vertices s and t; the problem is to decide
whether t can be reached from s. A vertex labeled
by _ can be reached if and only if at least one of its
predecessors are reached, whereas a vertex
labeled by ^ can be reached if and only if all of
its predecessors are reached. Notice that vertices
without predecessors can be reached by default.
We construct a workflow schema WSðGÞ by
adding a starting activity connected to all the
vertices without predecessors and s as well. For a
vertex a labeled by _ in G, we fix INðaÞ ¼ 1,
whereas INðaÞ ¼ InDegreeðaÞ is a is labeled by ^
inG. The only final activity is t. It is worth noticing
that t is reachable from s inG if and only ifWSðGÞ
admits an execution reaching the final state. tu

3 PROBLEM DESCRIPTION AND COMPLEXITY

RESULTS

In this section, we are interested in formalizing and
analyzing the complexity of some interesting reasoning
tasks whose usage can help the system administrator in
predicting the workflow evolution. The analysis is carried
out on the basis of the formal model of workflow schema
and execution provided so far.

Let us first of all address the following problem: Assume
that an execution has arrived at a given point and, before
letting it proceed, the administrator wants to know whether
it will lead to a successful termination or not. The problem
can be formalized as follows.

Let WS be a workflow schema and e ¼ ½S0; . . . ; Sh� be a
partial execution on WS. A successful execution e0 2 Sws

whose first hþ 1 steps are ½S0; . . . ; Sh� is said to be a
successful extension of e and is denoted by e ! e0.

Definition 5 (Successful Termination Prediction—STP).

Let WS be a workflow schema and e be a partial execution.
Then, the STP problem for e is deciding whether there exists a
successful extension of e.
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We point out that the STP problem appears in [10] in the
form of guaranteed executions in the more complex setting
of transactional processes. We next show that STP is
intractable.

Proposition 2. Let WS be a workflow schema and e ¼
½S0; . . . ; Sh� be an execution that is not terminating. Then,
the STP problem for e is NP-complete.

Proof. Membership derives from the fact that we can guess
an execution e0 such that e0 is successful and check (in
polynomial time in the size of WS) whether its first hþ 1
steps are ½S0; . . . ; Sh�. For the hardness, let h ¼ 0 and,
without loss of generality, assume in the workflow
schema the initial activity does not correspond to a final
one. Thus, we can consider the problem of deciding
whether there exists a successful execution e0 with
½S0� ! e0. The hardness follows from Proposition 1. tu
The above discussion sheds some light in the intrinsic

difficulty of solving such problems “statically.” Reasoning
about the structure seems not to be a valuable approach;
hence, we are motivated in using data mining techniques
that can be directly applied to a set of instances collected in
the log of the workflow system. Indeed, one could be
interested in a more pragmatic version of the STP problem:
Given the history of past executions, does the current execution
have a chance to eventually succeed? We formalize the
problem next.

Definition 6 (Frequent Successful Termination Predic-
tion—FSTP). Let WS be a workflow schema, Se ¼
fe1; . . . ; eng be a set of successful executions on WS, each
one equipped with a frequency fi ¼ fiðeiÞ 2 N, minFreq be a
natural number, and e be a nonterminating execution on WS.
Then, the problem FSTP for e with regard to Se and minFreq
is deciding whether

P
fijei2Se;e!eig fi � minFreq, i.e.,

whether the number of successful extensions of e in Se is
greater than or equal to minFreq.

As a matter of fact, the STP problem is equivalent to an
instance of the FSTP problem.

Proposition 3. Let a workflow schema WS and a nonterminat-
ing execution e be given in input. Then, the STP problem is
equivalent to the FSTP problem for e with regard to Sws, where
minFreq ¼ 1 and fiðeiÞ ¼ 1 for each execution ei 2 Sws.

Proof. By definition, under the assumptions of the state-
ment, the problem FSTP corresponds to check whether
jfeijei 2 Sws; e ! eigj � 1. This happens if and only if
there exists ei 2 Sws such that e ! ei. tu
The complexity of the FSTP problem mainly depends on

the number of executions in Se. If this number is low (e.g.,
polynomially bounded by the size ofWS), then the problem
can be effectively solved, as the following proposition
shows. Nevertheless, when the size of Se grows, one cannot
expect to reduce the complexity by finding some succinct
representation of Se: Also, in this case, a time exponential in
the size of WS cannot be avoided unless P ¼ NP.

Proposition 4. Let WS be a workflow schema and e ¼
½S0; . . . ; Sh� be an execution that is not terminating. Then,
given a set Se ¼ fe1; . . . ; eng of terminating executions on
WS, each one equipped with a frequency fi ¼ fiðeiÞ 2 N and
a natural number minFreq,

. the FSTP problem for e with regard to Se and
minFreq can be solved in time polynomial in the size
of WS and Se, but

. the succinct FSTP problem, in which Se is represented
by a data structure with size polynomially bound in
the size of WS, is NP-complete.

Proof.

1. Observe that, for each ei, checking whether e ! ei
can be done in polynomial time in the size of WS.
Hence, a naive polynomial algorithm (in the size
of WS and Se) consists in summing the frequency
associated to each execution ei 2 Se with e ! ei
and, hence, checking whether the corresponding
sum is greater than minFreq.

2. Membership is trivial. For the hardness, observe
that the FSTP problem in the statement of
Proposition 3 can be obviously formulated in a
succinct way: Indeed, Se needs not to be explicitly
stored. But, the succinct problem is nothing but
the STP problem, which is NP-complete by
Proposition 2. tu

An appealing way for solving the FSTP problem is to use
specialized data mining techniques for graphs. To this end,
we first need to characterize workflow executions in terms
of connected subgraphs of the workflow schema.

Definition 7. Let WS ¼ hA;E; a0; F i be a workflow schema and
e ¼ ½S0; . . . ; Sk� be an execution. Then, the instance asso-
ciated to e is the graph Ie ¼ hAe;Ee; a0; Fei, where Ae ¼
[t¼1;kExecutedt,Ee¼fða; bÞjða; bÞ2[t¼1;kMarkedt; b 2Aeg,
and Fe ¼ Ae \ F . In case e is a successful execution, Ie is said
to be a successful instance.

An instance for the workflow schema presented in
Example 1 is shown in Fig. 3.

In the following, given a workflow schema WS, we
denote by 2WS the family of all the subgraphs of the graph
hA;Ei and by IðWSÞ the set of all instances.

Observe that, while deciding whether a subgraph is an
instance that is polynomial, instead deciding whether there
exists a successful instance is not tractable.

Proposition 5. Let WS ¼ hA;E; a0; F i be a workflow schema.

Then,

. given a subgraph I of WS, deciding whether I is an
instance of WS can be done in polynomial time in the
size of E and

. deciding whether WS admits a successful instance is
NP-complete.
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Fig. 3. An instance of the workflow schema of Fig. 1.



Proof.

1. We construct the sequence of states correspond-
ing to I by traversing the subgraph I starting
from the initial node and by applying in a
constructive way the function � using all arcs in
I as marked. Clearly, the algorithm is polynomial
in the size of E.

2. Membership is trivial; for the hardness, observe
that there exists a successful instance, say Ie, if
and only if there exists a successful execution, e,
to which Ie is associated. The hardness follows
from Proposition 1. tu

We now introduce the notion of pattern that will be

crucial in the process of data mining. To provide a more

uniform notation, given a graph p (e.g., a workflow schema

or a pattern) and a node a of p, we denote by InDegreepðaÞ
(respectively, OutDegreepðaÞ) the number of ingoing (re-

spectively, outgoing) edges of a.

Definition 8. Let WS be a workflow schema and F be a multiset

of instances. Then, a graph p ¼ hAp;Epi 2 2WS is an

F -pattern (cf. F � p) if there exists I ¼ hAI;EIi 2 F such

that Ap � AI and p is the subgraph of I induced by the nodes

in Ap. In the case F ¼ IðWSÞ, the subgraph is simply said to

be a pattern. Moreover, if Ap contains some final activity in

WS, then p is said to be successful.

Roughly speaking, an F -pattern is a subgraph of a

workflow instance in F . Thus, we are using the notion of

pattern with the meaning which is being adopted by the

data mining community in several other applicative

domains. For instance, patterns are subtrees in the mining

of frequent trees (see, e.g., [2]), subsequences in the mining

of sequences (see, e.g., [1]), and so on. Hence, Definition 8 is

inserted into a data mining context and is not related at all

with the notion of pattern used in software engineering

contexts (and recently by van der Aalst, et al. [30] for

supporting workflow modeling2).
Let us now consider the following problem of data

mining on graphs that consists in discovering patterns

which frequently arise.

Definition 9 (Frequent pattern mining—FPM). Let WS be a

workflow schema, F a multiset of instances, and minSupp a

real number with 0 � minSupp � 1. Then, the problem FPM

for F consists in finding all the frequent F -patterns, i.e., all

the F -patterns for which suppðpÞ � minSupp, where the

support suppðpÞ is defined as jfIjfIg � p ^ I 2 Fgj=jF j.
Frequent patterns can be used for heuristically solving

the problem FSTP, that is, for deciding whether a sequence

of states will very likely (e.g., with a reasonable support)

lead to a successful (or unsuccessful) termination. In fact,

given a partial execution e and a support minSupp, e will

very likely lead to a successful end if there exists at least one

successful frequent F -pattern containing all the activities

executed in e. Then, in order to make our approach

effective, we will show in the following section some

techniques for the efficient computation of frequent

patterns of executions.

4 MINING CONNECTED FREQUENT PATTERNS

In this section, we present two algorithms for mining
connected frequent patterns (i.e., subgraphs) in workflow
instances. Let us assume that a workflow schema WS ¼
hA;E; a0; F i and a multiset of instances F ¼ fI1; . . . ; Ing are
given. Then, a naive algorithm for mining frequent patterns
can generate directly the subgraphs and test in polynomial
time whether they are instances of WS. Our approach is
based on the idea of reducing the number of patterns to
generate by only considering F -patterns that are not only
connected but also deterministically closed. This restriction is
formalized next.

Definition 10. Given a graph p ¼ hAp;Epi 2 2WS , the determi-
nistic closure of p (cf. ws-closureðpÞ) is inductively defined as
the graph p0 ¼ hAp0 ; Ep0 i such that:

1. Ap � Ap0 and Ep � Ep0 (basis of induction),
2. a 2 Ap0 is an and-join implies that for each ðb; aÞ 2 E,

ðb; aÞ 2 Ep0 and b 2 Ap0 ,
3. a 2 Ap0 is a deterministic fork implies that for each

ða; bÞ 2 E with b or-join,3 ða; bÞ 2 Ep0 and b 2 Ap0 .
Moreover, a graph p such that p ¼ ws-closureðpÞ is
said to be ws-closed.

Intuitively, the above definition provides a way for
extending a subgraph p by including all the activities that
are enforced to be executed with some activity in Ap by
means of the constraints issued over WS. And, in fact, the
definition can be used to introduce a notion of pattern
which only depends on the structure of the workflow
schema, rather than on the instances F or IðWSÞ. The need
of this weaker notion will be clear in a while.

Definition 11. A weak pattern, or simply w-pattern, is a ws-
closed graph p 2 2WS , such that for each node a,
jfða; bÞjða; bÞ 2 Epgj � OUTmaxðaÞ.

Example 3. Consider the workflow graph of Fig. 1 and the
subgraphs in Fig. 4. Then, p1 is not a w-pattern since
ws-closureðp1Þ ¼ p2 6¼ p1 and, hence, condition 2 of
Definition 10 is not satisfied. Notice that p2 is instead a
w-pattern since ws-closureðp1Þ ¼ p2. Also, p3 is not a
w-pattern since condition 2 of Definition 10 is not
satisfied (indeed, ws-closureðp3Þ ¼ p4 6¼ p3). Again, p4 is
a w-pattern, as ws-closureðp4Þ ¼ p4.

The following proposition characterizes the complexity
of recognition for the three notions of pattern; in particular,
it states that testing whether a graph is a w-pattern is in L
[28], i.e., it can be efficiently solved by a deterministic
logarithmic-space bounded Turing machine. This efficiency
is the result of the deterministic closure property and of the
fact that w-patterns are defined over the schema, rather than
on the instances.

Proposition 6. Let p 2 2WS . Then,

1. Deciding whether p is a pattern is NP-complete.
2. Given a multiset F of instances, deciding whether p is

an F -pattern can be done in polynomial time in the
size of F .
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2. See also http://tmitwww.tm.tue.nl/research/patterns.

3. Notice that relaxing the condition for b to be an or-join might lead to
closures that cannot be traced by any execution. In fact, if b is an and-join
synchronizing two mutually exclusive activities a and a0 (e.g., that are
activated by some XOR-fork), then a will never occur in the same execution
with b.



3. Deciding whether p is an F -pattern is NP-complete
if F is succinct (i.e., if it can be represented by a data
structure whose size is polynomially bounded by the
size of WS).

4. Deciding whether p is a w-pattern is in L.

Proof.

1. The problem is inNP as we can guess a subgraph
I by choosing for each node a the arcs to be
activated so that OUTminðaÞ � jfða; bÞjða; bÞ 2 Epgj
� OUTmaxðaÞ. Then, from Proposition 5, we can
check in polynomial time that I is an instance;
finally, deciding whether p is a subgraph of I can
be done in polynomial time.

The hardness follows from Proposition 1;
indeed, we can assume p to be formed by a single
activity, actually a final one (without loss of
generality, we can assume that WS has only one
final activity, indeed we can add a new activity f
to which all the final ones can be connected).
Thus, p is a pattern if and only if there exists a
successful execution.

2. By definition of F -pattern, we can simply test if p
is a subgraph of any instance.

3. Membership is trivial, as we can check in poly-
nomial time whether, for each instance I, fIg � p
and I 2 F . For the hardness, observe that deciding
whether p is a pattern corresponds to checking
whether p is a F -pattern with F ¼ IðWSÞ.

4. The proof is given by defining a Turing machine
that, given a workflow schema and a graph p
encoded into the input tapes, can decide in
deterministic logarithmic space whether p is a
w-pattern. In fact, both WS and p can be encoded
by fixing an arbitrary order on the activities. In
order to verify properties 1, 2, and 3 of
Definition 10, we simply need to access each arc
of p and WS and exploit two counters. Clearly,
encoding such counters requires logarithmic
space. tu

It turns out that the notion of weak pattern is the most
appropriate from the computational point of view.Moreover,
working with w-patterns is not an actual limitation, since the
closure of each frequent F -pattern is, in turn, a frequent
w-pattern aswell. Rather, it is a compact and efficientway for
the mining of frequent patterns, as shown below.

Proposition 7. Let p be a frequent F -pattern. Then,
1) ws-closureðpÞ is both a weak pattern and a frequent
F -pattern and 2) each weak pattern p0 � p is a frequent
F -pattern.

Proof. In order to prove 1), we observe that, for each I 2 F
such that fIg � p, property fIg � ws-closureðpÞ holds.
Indeed, if p is not a weak pattern, then, according to
Definition 10, there exists a 2 Ap such that one of the
following cases occur:

. a is an and-join and there exists an edge ðb; aÞ =2 E;

. a is a deterministic fork and there exists an edge
ða; cÞ =2 Ep with c or-join.

By Definitions 3 and 7, each instance I 2 F containing
a, must contain b; c and ðb; aÞ; ða; cÞ as well. As a
consequence, ws-closureðpÞ is frequent as well.

In order to prove 2), it suffices to see that, if there
exists an unfrequent w-pattern p0 � p, then it should
contain at least either an unfrequent node a or an
unfrequent edge ða; bÞ. But, this is a contradiction since
both a and ða; bÞ belong to p as well. tu
However, a weak pattern is not necessarily an F -pattern

nor even a pattern. As shown in the next sections, we shall
use weak patterns in our mining algorithms to optimize the
search space, but we eventually check whether they are
frequent F -patterns.

4.1 Levelwise Search Algorithm

The first algorithm we propose for mining frequent
connected F -patterns uses a levelwise theory. Roughly
speaking, we incrementally construct frequent weak pat-
terns by starting from frequent “elementary” weak patterns
(defined below) and by extending each frequent weak
pattern using two basic operations: adding a frequent arc
and merging with another frequent elementary weak
pattern. As we shall show, the correctness follows from
the results of Proposition 7 and from the observation that
the space of all connected weak patterns constitutes a lower
semilattice with a precedence relation � , defined next.

The elementary weak patterns from which we start the
construction of frequent patterns are obtained as the ws-
closures of the single nodes.

Definition 12. Let WS ¼ hA;Ei be a workflow schema. Then,
for each a 2 A, the graph ws-closureðhfag; fgiÞ is called an
elementary weak pattern (cf. ew-pattern).

Observe that the empty graph, denoted by ? , is an
elementary weak pattern. The set of all ew-patterns is
denoted by EW. Moreover, let p be a weak pattern, then
EWp denotes the set of the elementary weak patterns
contained in p. Note that, given an ew-pattern e, EWe is not
necessarily a singleton, for it may contain other ew-patterns.

Given a set E0 � EW, ComplðE0Þ ¼ EW�
S

e2E0 EWe

contains all elementary patterns which are neither in E0

nor contained in some element of E0.
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Fig. 4. Example subgraphs of the schema of Fig. 1. p2 and p4 are w-patterns.



We now introduce a precedence relation � among
connected weak patterns. First of all, let us denote by E�

the subset of arcs in WS whose source is not a deterministic
fork, i.e., E� ¼ fða; bÞ 2 E j OUTminðaÞ < OutDegreeðaÞg.
Definition 13. Given two connected w-patterns, say p ¼

hAp;Epi and p0 ¼ hAp0 ; Ep0 i, p � p0 if and only if:

1. Ap ¼ Ap0 and Ep0 ¼ Ep [ fða; bÞg, where ða; bÞ 2
E� �Ep and OUTmaxðaÞ > OutDegreepðaÞ (i.e., p0

can be obtained from p by adding an arc), or
2. there exists p00 2 ComplðEWpÞ such that p0 ¼

p [ p00 [X, where X is either empty if p and p00 are
connected or contains exactly an edge in E� with
endpoints in p and p00 (i.e., p0 is obtained from p by
adding an elementary weak pattern and possibly a
connecting arc).

Note that ?� e for each e 2 EW.

Example 4. Consider again the workflow of Fig. 1 and the
subgraphs in Fig. 5. The subgraphs p1, p2, and p4 are
elementary patterns: p1 ¼ ws-closureðhfe1g; ;iÞ, p2 ¼
ws-closureðhfe2g; ;iÞ, and p4 ¼ ws-closureðhfcg; ;iÞ. p3 is
not an elementary pattern as no node can generate it.
Notice that p1 � p3 and p2 � p3. Finally, p4 is contained in
both p1 and p2 (and, hence, p4 � p1 and p4 � p2).

The following result states that all the connected weak
patterns of a given workflow schema can be constructed by
means of a chain over the � relation.

Lemma 1. Let p ¼ hAp;Epi be a connected w-pattern. Then,
there exists a chain of connected w-patterns, such that
?� p1 � . . . � pn ¼ p.

Proof. We prove this by induction on the size of p, jpj ¼
jApj þ jEpj. The base case, i.e., p 2? , is trivial. For the
case p 62 EW, assume that for each weak pattern p0 such
that jp0j � jpj, there exists a chain ?� q1 � . . . � qm ¼ p0.

Two situations may occur:

1. 9ða; bÞ 2 Ep \E�, such that ða; bÞ does not belong
to any elementary pattern contained in p and the
graph p0 obtained from p by deleting such an arc
(p0 ¼ hAp;Ep � fða; bÞgi) is connected. In such a
case, p0 is a weak pattern with p0 � p. Hence, by
induction, ?� q1 � . . . � qm � p. The theorem
follows for n ¼ m and p1 ¼ q1; . . . ; pn ¼ qn.

2. For each ða; bÞ 2 Ep \ E�, such that ða; bÞ does not
belong to any elementary pattern contained in p,

the graph p0 ¼ hAp;Ep � fða; bÞgi is not connected.
Two subcases can be further devised:

a. There exists an elementary weak pattern
e 2 EWp, which is connected to the graph p�
e by means of exactly one arc in E�; that is,
e 2 ComplðEWp�eÞ and, hence, ðp� eÞ � p and
the theorem follows by induction.

b. Elementary patterns are not connected by
means of arcs in E�. In this case, let
ep0; ep1; . . . ; epm be the elementary patterns
contained in p and q ¼ ðp� ep0Þ [ ep1 [ . . . [
epm be the weak pattern obtained from p by
deleting edges and nodes in ep0 which do not
occur in any other epi with 0 � i � m. By
construction, ep0 2 ComplðqÞ and, hence,
q � p. As in the other case, since jqj � jpj, by
induction there exists a chain of weak
patterns ?� q1 � . . . � qm ¼ q. tu

It turns out that the space of all connected weak
patterns is a lower semilattice with regard to the
precedence relation � . And, in fact, the algorithm w-find,
reported in Fig. 6, exploits an a-priori-like exploration of
this lower semilattice. Specifically, at each stage, the
computation of Lkþ1 (steps 5-14) is carried out by
extending any pattern p generated at the previous stage
(p 2 Lk) in two ways: 1) by adding frequent edges in E�

(addFrequentArc function) and 2) by adding an elementary
weak pattern (addEWFrequentPattern function). Each
pattern p0, generated by the functions above, is an
admissible subgraph of WS (cf. WS � p0), i.e., for each
a 2 Ap0 , OutDegreep0 ðaÞ � OUTmaxðaÞ. The properties of the
w-find algorithm are reported below.

Lemma 2. In the w-find algorithm, the following propositions
hold:

1. addFrequentArc adds to U connected patterns, which
are not necessarily F -patterns.

2. addFrequentEWPattern adds to U connected
w-patterns (not necessarily patterns).

3. For each k, Lk contains only frequent connected
F -patterns.

Proof. We shall prove the above statements by induction on
k. The proof is structured as follows: First, observe that
L0 contains a set of frequent connected F -patterns.
Indeed, by definition, each elementary weak pattern is
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connected. Next, assuming that for a given k � 0, Lk

contains only a set of frequent connected F -patterns,
observe that:

. Statement 1 holds. Indeed, since the input graph p
is a connected F -pattern, each graph p0 obtained
from p by adding a frequent arc ða; bÞ is connected
as well. Notice now that, if WS � p0, then for each
instance fIg � p, the graph I 0 ¼ I [ fða; bÞg is an
admissible instance, i.e., I 0 2 IðWSÞ. Indeed, for
each execution eI associated to I, an execution eI 0
can be obtained by adding ða; bÞ to �Markedtþ1

whenever a 2 Readyt. Moreover, fI 0g � p0, thus
entailing that p0 is a pattern. Finally, notice that, in
principle, F may contain no I 0 satisfying the
above condition.

. Statement 2 holds. Indeed, notice that addEW -
FrequentPattern returns any admissible con-
nected subgraph p obtained from the union of a
F -pattern p0 with an elementary pattern p00. If p is
not a w-pattern, then either there exists an and-join
a 2 Ap and ðb; aÞ 2 E such that ðb; aÞ 62 Ep, or there
exists a deterministic fork a 2 Ap and ða; bÞ 2 E
with b or-join, such that ða; bÞ 62 Ep. In both cases,
there exists a node a and an edge e (containing a)
such that e 62 Ep. But, this cannot happen, since a
is contained either in p0 or in p00: Indeed, since p0

and p00 are w-patterns, e is contained in any of

them and, consequently, in Ep. Finally, notice that
p00 is not necessarily a pattern and, consequently,
p is not necessarily a pattern as well.

. Statement 3 holds. Indeed, it follows from
statements 1 and 2 that the set of candidate
graphs U contains either connected patterns or
connected F -patterns. The consequence is trivial
by noticing that step 12 of the algorithm adds to
Lkþ1 the only patterns in U which are frequent
with regard to F . tu

We next show that all the weak patterns are actually
computed by the algorithm.

Proposition 8 (Correctness). The algorithm of Fig. 6 terminates
and computes all and only the frequent connected weak
patterns.

Proof. The algorithm w-find computes all the elements in
the lower semilattice induced by the operator � over
w-patterns. The correctness follows from Lemma 1,
stating that any weak pattern is represented by a chain
in this lower semilattice, and by the observation that we
also prune the chains that will lead to unfrequent
patterns. The latter is done by replacing the function
addEWPattern in the definition of the relation � with
addFrequentEWPattern. tu
As a conclusion of the presentation of w-find, we again

remark that focusing on weak patterns is an efficient way for
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Fig. 6. Algorithm w-findðF ;WSÞ.



computing frequent patterns. In fact, Proposition 7 states
that 1) for each frequent F -pattern p0, there exists a frequent
weak pattern p (hence, computed by w-find) containing p0

and 2) any subgraph of any frequent weak pattern (again,
computed by w-find) is a frequent F -pattern as well.

4.2 Mining by Connecting Components

The algorithm w-find, proposed in Fig. 6, performs a smart
levelwise exploration of the lower semilattice analyzed in
Lemma 1. However, a different strategy can be exploited by
observing that, in general, any connected pattern can be
obtained by either composing two connected subgraphs or
by extending a subgraph by means of an edge.

Lemma 3. Let p 2 ð2WS � EWÞ be a connectedF -pattern. Then,
there exist two F -patterns p1 and p2 (not necessarily distinct)
such that p ¼ p1 [ p2 [X, whereX can be either the empty set
or the graph hfa; bg; fða; bÞgi with a 2 p1 and b 2 p2.

Proof. Let p be a connected pattern not in EW . Then, due to
Proposition 7, q ¼ ws-closureðpÞ is a weak pattern. Due to
Lemma1, there exists a chain of connectedw-patterns such
that q0 ¼?� q1 � . . . qn�1 � qn ¼ q. Moreover, each qiþ1

can be derived from qi by either adding an edge in pi or by
connecting an elementary weak pattern to qi. By denoting
with �qi the graph that we compose with qi, in order to
derive qiþ1, we derive the following relationship: �q0 �
�q0 [�q1 � . . . �

S
i¼0;n�1 �qi ¼ q. Without loss of gen-

erality, we can assume that there exists 0 � j � n such that
p01 ¼

S
i¼0;j �qi and p02 ¼

S
i¼jþ1;n�1 �qi are connected (it

trivially holds for j ¼ n� 1). Then, by the definition of the
relation of precedence� , we have that p01 and p02 are either
connected or can be connected by means of an edge. The
result follows by letting p1 ¼ p01 \ p and p2 ¼ p02 \ p. tu
The above lemma states that candidates can be generated

by iteratively connecting components. In fact, we can
generate a candidate at the nth level of the lattice bymerging
two components at the jth and ðn�jÞth level, respectively. It
is clear that in the worst case, for j ¼ n�1, we degenerate to
the levelwise search described in the previous section;
nonetheless, in the best case, this approach converges in
exponentially fewer iterations. Obviously, we also need an
additional effort for identifying the components that can be
merged. Roughly speaking, these components must be such
that their boundaries can match, where the boundary of a
graph in 2WS is the set of nodes that (according to aworkflow
schema WS) admit either an input or an output edge.

In order to formalize the above intuitions, given a graph
p ¼ hAp;Epi 2 2WS , we denote by INBORDERðpÞ ¼ fa 2 Ap j
InDegreepðaÞ < InDegreeðaÞg the set of all the nodes in p
which admit a further incoming edge and by OUTBORDERðpÞ
¼ fa 2 Ap j OutDegreepðaÞ � OUTmaxðaÞg the set of all nodes
in pwhich admit an outgoing edge. The sets INBORDERðpÞ and
OUTBORDERðpÞ represent the input andoutput boundaries of p,
i.e., the set of nodes inside p, which can reach (respectively,
can be reached by) other nodes outside p. Notice that, by
construction, the input boundary of a w-pattern cannot
contain and-join activities. Similarly, the output boundary of
a w-pattern cannot contain deterministic forks.

The boundaries can be exploited to connect components.
Since an arc connects the boundaries of two components, it
suffices to concentrate on frequent arcs and iteratively

generate new candidates by merging the frequent compo-
nentswhoseboundariesareconnectedbymeansof thosearcs.

Based on this idea, we have developed another algorithm
(c-find), whose details are reported in Fig. 7. It starts by
computing frequent elementary patterns (step 1). Then, the
core of the algorithm is a main loop (steps 3-24), in which
the following operations are performed. For each node
a 2 WS, the set INFðaÞ (respectively, OUTFðaÞ) of F -patterns
containing a in the input (respectively, output) boundary is
computed (steps 5-6). In steps 8 and 9, the variables FA and
FP are used to store frequent arcs that may connect
patterns and candidates that may be generated by compos-
ing “compatible” patterns.

Then, boundaries are recomputed for the new candidate
F -patterns (steps 11-21) and frequent F -patterns are
detected by computing the frequency of each candidate
(step 22). Notice that boundaries for candidate F -patterns
can be incrementally computed by extending the bound-
aries of the connected components and that new candidates
can be generated also by merging F -patterns sharing some
nodes. The algorithm terminates when no further candi-
dates can be found, i.e., when the computed patterns have
empty input-output boundaries.

Theorem 1 (Correctness). The c-find algorithm terminates and
computes all and only the frequent connected weak patterns.

Proof. Correctness trivially holds by step 22 of the
algorithm: Indeed, no pattern is included in R unless it
is not an F -pattern. As for completeness, let p be an
F -pattern. We prove by induction on jpj that p 2 R. The
case p 2 EW statement trivially holds as a consequence
of step 1 of the algorithm. Let us consider the case jpj � 1.
By Lemma 3, there exist p1; p2 such that p ¼ p1 [ p2 [X,
where X can be the empty set or an edge connecting p1
and p2. By induction, both p1 and p2 are in R. Let us
assume, without loss of generality, that p1 is added to R
at iteration k1 and that p2 is added to R at iteration
k2 � k1. Two situations may occur:

1. p1 \ p2 6¼ ; and p ¼ p1 [ p2. In such a case, p is
added to PF at the iteration k2 þ 1 and, conse-
quently, it is added to R.

2. p ¼ p1 [ p2 [ fða; bÞg. Again, without loss of gen-
erality, we can assume that a 2 OUTBORDERðp1Þ
and b 2 INBORDERðp2Þ. In such a case, by step 8 of
the algorithm, ða; bÞ 2 FA at iteration k2 þ 1. By
steps 11 and 12 of the algorithm, p 2 PF at
iteration k2 þ 1 and, hence, p 2 R.

Observe finally that each candidate pattern p is
considered at most k times, where k is the number of
connected patterns contained in p. Since the number of
candidate patterns is finite, the algorithm must
terminate. tu
In comparing the performance of the c-find algorithm

with the w-find algorithm proposed in the previous section,
it is interesting to notice that the c-find algorithm can
generate more candidates than w-find, but in general
reaches convergence more quickly (number of iterations).

Proposition 9. Let C be the set of candidate patterns generated by
c-find and let Nc be the steps required for its execution. Let W
be the set of candidate patterns generated by w-find and let
Nw be the steps required for its execution. Then, W � C and
Nc � Nw.
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Proof. It is easy to see that c-find considers all the candidate
patterns consideredbyw-find. This is a trivial consequence
of Lemma 3 and of the observation that c-find degenerates
in w-find each time it considers elementary patterns in R.
This also entails Nc � Nw. However, in general, C ¼ W
does not hold. Indeed, let us consider the situation in
which there are four patterns p1, p2, p3, and p4 and the
patterns p1 [ p2 and p2 [ p4 are frequent, but the pattern
p1 [ p3 is not. Assume also that patterns p1 [ p2 and p3 [ p4
are connected by means of an edge ða; bÞ. In such a case,
c-findwould generate the (unfrequent) candidate pattern
p1 [ p2 [ p3 [ p4 [ fða; bÞg, but w-findwould not. tu
As a consequence of the above statements, the two

algorithms can be considered as viable alternatives, and a
preference can be carried out only by considering the
particular structure of the workflow schema that had
generated the instances. The next section will also provide
a discussion and a comparison between the two algorithms.

5 EXPERIMENTS AND DISCUSSION

In this section, we study the behavior of the algorithms
w-find and c-find by evaluating both their performance and
their scalability. As shown in the previous section, the
algorithms are sound and complete with regard to the set of
frequent w-patterns. Nevertheless, in principle, the number

of candidate w-patterns generated could be prohibitively
high, thus making the algorithms unfeasible on complex
workflow schemas. Moreover, we also compare the
performance of our implementations with regard to several
existing techniques for computing frequent itemsets
adapted to the particular applicative domain.

In our experiments, we mainly use synthetic data.
Synthetic data generation can be tuned according to:

1. the size of WS,
2. the size of F ,
3. the size jLj of the frequent weak patterns in F , and
4. the probability p� of choosing a E�-arc.

The ideas adopted in building the generator for synthetic
data are essentially inspired by [21].

5.1 Performance of w-find

In a first set of experiments, we tested the w-find algorithm
by first considering some fixed workflow schemas and
generating synthesized workflow instances. In particular,
the nondeterministic choices in the executions are per-
formed according to a binomial distribution with mean p�.
Frequent instances are forced into the system by replicating
some instances (in which some variations were randomly
performed) according to jLj. Fig. 8a reports the number of
operations (matching of a pattern with an instance) for
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increasing values of jF j. The figure shows that the
algorithm scales linearly in the size of the input (for
different supports).

In a second set of experiments, we randomly generate
the workflow schemas to test the efficiency of the approach
with regard to the structure of the workflow. To this aim,
we fix jF j and generate workflow instances according to
the randomly generated schema. The actual number of
nodes and arcs is chosen by picking from a Poisson
distribution with fixed mean value. In order to evaluate
the contribution of the complexity of workflow schemas, we
exploit the factor f ¼ jE�j

jEj , which represents the degree of
potential nondeterminism within a workflow schema.
Intuitively, workflow schemas exhibiting f ’ 0 produce
instances with a small number of candidate w-patterns.
Conversely, workflow schemas exhibiting f ’ 1 produce
instances with a large number of candidate w-patterns.
Fig. 8b shows the behavior of w-find when f ranges
between 0 (no nondeterminsm) and 1 (full nondetermin-
ism) for different values of minSupp values. It is interesting
to observe that even for significantly higher values of f (real
workflow schema are expected to have a degree of
nondeterminism less then 0:5), the smart way of searching
the search space reduces drastically the number of
candidates being generated. Finally, in Fig. 8c, we report
the number of candidates at the varying of the number of
nodes for different values of f . It is worth noting the
exponential behavior due to the combinatorial explosion of
the search space.

5.2 Comparing w-find and Apriori

We consider an implementation of the Apriori algorithm,
which only computes frequent itemsets of edges in E�. Such
an approach is significant for analyzing the performance
overhead suffered by traditional frequent-pattern mining
methods, which typically can be easily adapted to mine
workflow instances, but are not tuned to take into account
domain information about the workflow schema. We per-
form several experiments comparing the performance of the
Apriori approach with the ones of w-find on increasing
values of jF j and minSupp. For a data set of instances
generated as said before with regard to the workflow
schema of Fig. 1, the comparison is reported in Fig. 9b.

As expected, w-find outperforms Apriori by an order of
magnitude. This is mainly due to the fact that, contrary to
w-find, in the Apriori implementation, arcs in E� are
combined without taking into account the information
provided by the workflow schema.

Fig. 9a shows instead the behavior of both Apriori and
w-find when f ranges between 0 (no nondeterminsm) and 1
(full nondeterminism). Again, Apriori is outperformed by
w-find. Notice that for small values of f , both the algorithms
produce a small number of candidates; however, in this
situation, w-find still performs significantly better than
Apriori for smallminSupp values (e.g., 0.1). In fact, for lower
values of minSupp, the number of candidates increments
significantly and, hence, the focused strategy of w-find leads
to a significant gain. However, we point out that the
adaptation of Apriori tested here might be a viable solution
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Fig. 9. w-find versus Apriori. (a) Number of candidates with regard to f. (b) Number of candidates for different minSupp values.



for the mining of “nearly deterministic” workflows, if we
are, moreover, interested in very frequent patterns
(minSupp > 0:2).

5.3 Comparing w-find with WARMR and Prefix-Span

A possible further approach to consider is the WARMR
algorithm, devised in [26], which allows an explicit
formalization of domain knowledge (like, for example, the
connectivity information provided by the workflow sche-
ma) which can be directly exploited by the algorithm. The
setting file that we have used is reported in Fig. 10
(predicates to be mined are on the right).

The results of the comparison are shown in Fig. 11a,
where we report the correlation between the number of
candidate patterns and the number of the nodes in the
workflow schema at the varying of f .

In the evaluation of the algorithm, we also have made
some comparison with regard to methods for mining
sequential pattern. However, a workflow is not a sequence;
nonetheless, we can assume to represent each instance as a
sequential pattern by considering the ordering of execution
of each activity. For example, the instance reported in Fig. 3
can be described by the sequence s1 ¼ hS; c; ðefgÞ; ðe2lÞ;
ð4; 5Þ; j2; j; l; ðmnoÞ; Ai if we assume that each activity
requires the same amount of time to be executed. Note that
we grouped all the activities that we assume to be executed
at the same time. Conversely, if the activity g requires more
time, a possible ordering of executions associated to the
same instance is s2 ¼ hS; c; e; ðe2Þ; ð4; 5Þ; j2; j; g; l; ðmnoÞ; Ai.
Thus, s1 and s2 are distinct sequences associated to the same
instance. It follows that any sequential pattern algorithm can
be used for extracting frequent instances, but it cannot be
complete in the sense that some frequent instances will not
be mined since the sequences associated to the executions
are possibly quite different (and, hence, infrequent). In our
testing, we compared w-find with the PrefixSpan algorithm
[4], but in order to achieve a finer analysis, we assume each
activity to require the same time to be executed; essentially,

PrefixSpan has been applied on the sequences constructed
from each instance by performing a breadth-first search,
starting from the initial activity.

The results are reported in Fig. 11b, where we report the
number of candidates generated at each stage of the
computation for a fixed workflow schema. Again, this
experiment is significative only for understanding the
advantage of amore focusedmethod and is not a comparison
on “pure” sequences where PrefixSpan is expected to out-
perform both w-find and c-find. In fact, we can see that the
more elaborate and domain dependent way of searching
patterns in the lattice leads to a smaller number of patterns to
be generated.

5.4 Comparing w-find and c-find

Finally, we report the experimental results of the
comparisons between w-find and c-find. In a first set of
experiments, we fixed a value of f (0.7) and generated
5,000 random instances. In Fig. 12a, we report the number
of candidates generated over such instances at the
varying of the minimum support. It is interesting to
observe that w-find performs better than c-find, especially
for lower values of minSupp.

For a second set of experiments, we fixedminSupp ¼ 0:2,
and we made the comparison at the varying of f . This
second set of experiments, whose results are reported in
Fig. 12b confirmed the quality of w-find of generating fewer
candidates, for every type of workflow (regardless of the
degree of nondeterminism).

The factor that may instead lead to a preference of c-find
is in the number of steps performed. Let us consider Fig. 13,
which reports the number of candidates generated at the
different steps of the algorithm (the scale is logarithmic).
Here, the behavior of c-find is somehow dual to that ofw-find
(as reported in Fig. 11b). Indeed, c-find at each successive
step generates more candidates than in the previous one and
this leads the process to converge quickly. Conversely,
w-find after a certain number of steps dramatically reduces
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Fig. 10. The setting file used in the WARMR approach.

Fig. 11. (a) Comparison of w-find with WARM over a fixed workflow schema. (b) Comparison of w-find with PrefixSpan.



the number of new frequent patterns discovered and, hence,
it requires more iterations. A more direct comparison is
reported in Fig. 13b, from which it is evident that the faster
rate of convergence of c-find is paid with a bigger number of
candidates generated. Since the number of steps coincides
with the number of scans of the database, in the case of huge
databases, c-find may be convenient.

More generally, c-find is expected to exhibit better
performance than w-find with dense workflow databases.
More specifically, a set of workflow instances is dense if the
number of expected frequent patterns is large with regard to
the size of the workflow. If a database of instances exhibits
this peculiarity, the number of candidate patterns to be
generated is likely to be of the same order ofmagnitude as the
number of frequent patterns (that is, the number of
unfrequent patterns is small with regard to the set of frequent
ones). In such a case, both c-find and w-find are expected to
compute (almost) the same set of candidates. However, the
look-ahead strategy of the c-find algorithm guarantees a
faster convergence rate. Clearly, more efficient extensions
could be devised to the proposed algorithms for dense
databases in order to avoid candidate generation (e.g., in the
style of [3]).

6 CONCLUSIONS

We have introduced the problem of mining frequent
instances of workflow schemas, motivated by the aim of

providing facilities for the system administrator to monitor

the actual behavior of theworkflowsystem inorder topredict

the “most probable” workflow executions. We have shown

that the use of mining techniques is justified by the fact that

even “simple” reachability problems are intractable.
We have proposed two novel graph mining algorithms

specialized to deal with constraints imposed by the

structures of workflow schemes and instances and we have

studied their properties, both theoretically and experimen-

tally, by showing that they represent an effective means of

investigating some inherent properties of the executions of

a given schema.
Following our approach, future research might develop

more elaborated algorithms that are able to deal with more

expressive modeling features which have been not con-

sidered in our formal framework. For instance, a valuable

on-going extension is dealing with supporting cyclic

instances by integrating our techniques with well-known

approaches for mining periodic patterns (see, e.g., [31]).
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Fig. 13. (a) Number of candidates generated at the different steps. (b) Comparison of w-find with c-find.

Fig. 12. Comparison of w-find with c-find. (a) Number of candidates for different minSupp values. (b) Number of candidates at the varying of the
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