
ARTICLE IN PRESS
0306-4379/$ - se

doi:10.1016/j.is.

�Correspond
fax: +390984 8

E-mail addre

guzzo@icar.cnr

sacca@icar.cnr.
Information Systems 32 (2007) 685–712

www.elsevier.com/locate/infosys
Mining unconnected patterns in workflows

Gianluigi Grecoa,�, Antonella Guzzob,c, Giuseppe Mancob, Domenico Saccàb,c

aDepartment of Mathematics, University of Calabria, Via P.Bucci 30B, 87036 Rende, Italy
bICAR, CNR, Via P.Bucci 41C, 87036 Rende, Italy

cDEIS, University of Calabria, Via P.Bucci 41C, 87036 Rende, Italy

Received 21 September 2005; received in revised form 11 March 2006; accepted 22 May 2006

Recommended by M. Weske
Abstract

General patterns of execution that have been frequently scheduled by a workflow management system provide the

administrator with previously unknown, and potentially useful information, e.g., about the existence of unexpected

causalities between subprocesses of a given workflow. This paper investigates the problem of mining unconnected patterns

on the basis of some execution traces, i.e., of detecting sets of activities exhibiting no explicit dependency relationships that

are frequently executed together. The problem is faced in the paper by proposing and analyzing two algorithms. One

algorithm takes into account information about the structure of the control-flow graph only, while the other is a smart

refinement where the knowledge of the frequencies of edges and activities in the traces at hand is also accounted for, by

means of a sophisticated graphical analysis. Both algorithms have been implemented and integrated into a system

prototype, which may profitably support the enactment phase of the workflow. The correctness of the two algorithms is

formally proven, and several experiments are reported to evidence the ability of the graphical analysis to significantly

improve the performances, by dramatically pruning the search space of candidate patterns.

r 2006 Elsevier B.V. All rights reserved.

Keywords: Frequent patterns discovery; Graph mining; Workflow management
1. Introduction

A workflow is a partial or total automation of a
business process, in which a collection of activities

must be executed by humans or machines, according
to certain procedural rules. Workflows may be
conveniently defined, analyzed and supported by
means of Workflow Management System (WfMS).
e front matter r 2006 Elsevier B.V. All rights reserve

2006.05.001

ing author. Tel.: +390984 496429;

39054.

sses: ggreco@mat.unical.it (G. Greco),

.it (A. Guzzo), manco@icar.cnr.it (G. Manco),

it (D. Saccà).
These systems represent the most effective technolo-
gical infrastructure for managing business processes
in several application domains (cf. [1–4]), and they
are, therefore, more and more utilized into enter-
prises. In fact, enhancing the functionalities of
WfMSs has become a very active research area in
recent years, and several efforts have been already
spent in order to provide facilities for the human
system administrator while designing complex pro-
cesses as well as to offer an ‘‘intelligent’’ support in
the decisions which have to be taken by the
enterpriser during the enactment [5–9].

In this paper, we continue on the way of enhancing
the functionalities of WfMSs by proposing some data
d.

www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2006.05.001
mailto:ggreco@mat.unical.it
mailto:guzzo@icar.cnr.it
mailto:manco@icar.cnr.it
mailto:sacca@icar.cnr.it

ARTICLE IN PRESS
G. Greco et al. / Information Systems 32 (2007) 685–712686
mining techniques, which are specifically tailored to
help the human system administrator to gain some
previously unknown, and potentially useful informa-
tion from the low-level data collected into the log files
during past enactments of the system. Differently
from classical process mining techniques, where the
focus is on extracting the ‘‘hidden’’ model underlying
the low-level data (see, e.g., [10–13] and the discus-
sion in Section 6), in this paper we deal with the
enactment phase of the workflow life-cycle: we
assume that a workflow model has been already
designed and installed over some platforms, and we
want to provide an effective support for the decisions
to be taken during each execution, based on the
history of past executions. To this aim, specific data
mining techniques can be used depending on the
perspectives workflow specifications are looked from
(cf. [14]).

In a simple scenario where one looks at workflows
from a data perspective only, classical mining
techniques, such as the ‘‘market basket analysis’’,
can be used to find interesting and potentially useful
knowledge about the business data at hand. How-
ever, these classical techniques do not fit scenarios
where one looks at workflows from a control-flow

perspective, in which the focus is instead on the causal
relations and on the constraints on the occurrence of
the tasks. For instance, the administrator may be
interested in knowing whether there are subprocesses
frequently scheduled in the same enactment, or
whether there are correlations (in previous enact-
ments) between the order of execution of a set of
activities and the execution of a specific final activity.

In this perspective, important correlations among
activities are already hardwired in the workflow
model, independently from any execution history
and, therefore, the mining may be effectively driven
Fig. 1. An example w
by the workflow structure to detect unexpected and
useful information only.

And, in fact, the peculiarities of the domain raise
the necessity to deal with the natural graphical
representation of control flows, so that specific
mining algorithms have to be conceived. An example
applicative context is next illustrated by considering
the automatization of a ‘‘sales ordering’’ process.

Example 1. Consider the workflow schema depicted
in Fig. 1, according to the graphical notation of the
event-driven process chains (EPCs) [15], where the
process is represented as chains of events (drawn as
hexagons) and functions (drawn as boxes) connected
by means of logical connectors. The schema supports
a sales order process as follows. As soon as a
customer issues a request to purchase a given
product, the enterpriser checks the availability of
the required items. Three different stocks are avail-
able: stocks X and Y, containing items of type A; and
stock Z which contains items of type B. If the
requested items are not available in the respective
stocks, the order is rejected and the corresponding
transaction is aborted. Otherwise, the order is
accepted and the items are shipped to the customer.
In this latter case, two further events may occur:
either the trial period elapses without any claim by
the customer, or the customer issues a claim for
defective item (in which case a substitution has to be
accomplished).

In this scenario, it could be crucial to characterize
the discriminant factors that will lead to the rejection
of the order or to the shipping of a defective item. In
fact, specialized mining techniques may reveal
important information to be used to diagnose the
business process and to identify problems within the
supply chain. For instance, by looking at the traces
orkflow schema.

ARTICLE IN PRESS
G. Greco et al. / Information Systems 32 (2007) 685–712 687
stored in the log files, one may discover that requests
for items of type B frequently ended in the previous
enactments with an ‘‘Abort Transaction’’ event.
Clearly enough, this mined knowledge is useful for
the enterprise, for it evidences some dimensioning/
structuring problems with stock Z.

A first contribution towards the definition of
techniques tailored for the scenarios depicted above
has been proposed by Greco et al. [16], where the
problem of identifying the structures of the execu-
tions, also called patterns, that have been scheduled
more frequently by the workflow system (short:
frequent patterns) has been proposed.

Settled within the graphical representation of
workflows, frequent patterns may be roughly viewed
as subgraphs corresponding to subprocesses of the
process at hand. And, in fact, the algorithms
proposed in [16] are able to discover frequent
patterns that are also connected. These algorithms
are useful, for instance, in scenarios similar to the one
described in Example 1: there, a correlation between
the requests for items of type B and the ‘‘abort

transaction’’ event necessarily entails (because of the
workflow structure) that all the functions and events
involved in the path connecting them frequently co-
occur in the log traces as well. However, albeit very
valuable, connected patterns are not the sole
important information which can be extracted from
the analysis of the execution traces, as evidenced
below.

Example 2. Consider again the workflow schema
depicted in Fig. 1. By looking at some execution
traces, one may also notice that orders involving
items of type A frequently end with a request for
substitution. Notice that, although the ‘‘items are

required of type A’’ and ‘‘substitution is required’’
events co-occur frequently, it does not necessarily
mean that the events contained within any path
between them are frequent as well, i.e., that a
frequent connected pattern has to be detected.
Indeed, it could be the case that only a small
percentage of the requests dispatched by a single
stock end with a request for substitution; yet,
considered regardless of the stock which serves them,
the frequency of the orders for items of type A ending
with a request for substitution could be significantly
high, thus highlighting a problem in the supplier and/
or in the production process. In this circumstance, a
frequent unconnected pattern can be detected that
provides the enterprise with the suggestion of revising
the supplying process for item A. But, by analyzing
patterns in the way paved in [16], one would not
identify this criticality, since no particular problem
can be detected in any of the two stocks.

In this paper, we continue on the way paved by
Greco et al. [16], by generalizing the problem of
discovering frequent connected patterns to more
general patterns of execution, and in particular by
investigating the problem of discovering possible
‘‘correlations’’ among unconnected patterns, once
frequent connected ones have been already discov-
ered.

We point out that the techniques we propose in the
paper assume that a limited set of executions is given
as input; so they are not well suited for performing
correctness checks on the basis of all possible
executions, e.g., for determining modelling anomalies
such as unsuccessful paths. Indeed, such ano-
malies can be better detected at design time
by means of reasoning tools, especially if appro-
aches to the modelling are used which impose
correctness constraints leading to effective checks
(as in the case of Petri nets-based models [14]). Thus,
we assume that possible anomalies in the modelling
have been already detected and eventually removed,
so that we can rather focus on extracting unexpected
knowledge about the actual execution flow of the
processes.

For instance, our techniques can be used for
singling out sets of subprocesses that are very often
executed together; for identifying subprocesses which
are related by some unexpected (w.r.t. the workflow
structure) causal relation; for identifying association
rules among the tasks of the workflow; and for
identifying critical subprocesses that lead with high
probability to (un)desired final configurations. More
in general, these techniques can be used for identify-
ing a synthetic but focused picture of the actual
behavior of the workflow system within a specific
application scenario, which can be profitably
exploited during further coming enactments.

1.1. Contributions and organization

Technically, the basic tool one needs for discover-
ing all the kinds of knowledge described above is the
ability of dealing with unconnected patterns, which
are arbitrary subsets of connected patterns exhibiting
no explicit dependency relationships. The aim of
this paper is precisely to investigate this research
issue by designing and implementing efficient solu-
tions for the frequent unconnected patterns discovery

ARTICLE IN PRESS
G. Greco et al. / Information Systems 32 (2007) 685–712688
(short: FUPD) problem, in which a set of frequent
connected patterns is given in input, and all the
subsets of this set that are frequent as well have to be
discovered. In more details:
�
 We introduce and formalize the FUPD problem of
discovering frequent unconnected patterns in
workflow executions.

�
 We present a first solution for FUPD, that is, the ws-

unconnected-find algorithm, consisting in the
application of a levelwise algorithm (in the a

priori style [17]) which combines all the uncon-
nected patterns and then checks for their fre-
quency.

�
 We show how the structure of the workflow

together with some elementary information such
as the frequency of the occurrences of elementary
activities suffices for significantly pruning the
search space. Accordingly, we enhance and
optimize the ws-unconnected-find algorithm, thus
obtaining an efficient and practically fast algo-
rithm, called ws�-unconnected-find.

�
 We perform an in-depth theoretical analysis of the

algorithms for formally proving their correctness.
In particular, we prove that the pruning of the
search space performed by the ws�-unconnected-

find algorithm is sound, i.e., no frequent uncon-
nected patterns are discarded.

�
 Finally, all the algorithms described in the paper

have been implemented and tested. In particular,
we evaluate the effectiveness of the pruning
strategies introduced in the ws�-unconnected-find

algorithm, by performing several experiments and
comparisons.
The rest of the paper is organized as follows. In the
next section, we define the formal model of workflow
and review the problem of mining frequent connected
patterns of execution. In Section 3, we propose a
levelwise algorithm for discovering frequent uncon-
nected patterns. Section 4 describes how the analysis
of the workflow structure and instances allows to
deduce tight bounds on the frequency of candidate
patterns, and consequently to specialize the a priori-
based algorithm. The algorithms have been imple-
mented and integrated into a software architecture
which is discussed in Section 5, where results of
experimental activity are also reported. Finally,
Section 6 discusses some related works, and Section
7 draws our conclusions.
2. Workflow model and mining problems

In this section, we introduce the formal framework
we shall exploit throughout the paper. In particular,
we first present the basic notions and definitions to
deal with workflow specifications, and we subse-
quently overview the approach in [16] to face the
problem of mining frequent connected patterns of
execution.

2.1. Workflow model: some preliminary observations

Despite the efforts of the Workflow Management
Coalition [18], a plethora of languages and models
still exist to support WfMSs, each one being
characterized by specific advantages and disadvan-
tages. For instance, many leading tools in the field of
business process engineering (e.g., SAP R/3 [19] and
ARIS [20]) model processes by means of EPCs [15],
where the control-flow structure of the process is
represented as a chain of events and functions

connected by means of logical connectors. However,
EPCs have been not intended as a formal specifica-
tion and, in fact, they are not equipped with a clear
and non-ambiguous semantics (cf. [21]). Other
systems are, instead, based on Petri nets [22,14]
possibly enhanced with specific extension and restric-
tions, in order to have a formal semantics exhibiting
parallelism, concurrency, synchronization, non-de-
terminism and mutual exclusion despite the graphical
nature. Finally, other systems use proprietary lan-
guages which may be possibly inspired by formalisms
such as the concurrent transaction logic [23,24], the
state chart model [25,26], the active object oriented

paradigm [27], and the process algebra [28].
Fortunately, for the kind of application discussed

in the paper, i.e., to deal with the problem of mining
frequent patterns of executions, the choice of a
modelling language is not a crucial issue, since in
order to single out frequent patterns of execution two
inputs are required only, that are: (1) a graphical
representation of the workflow schema, and (2) a log
of enactments compliant with the schema. Therefore,
we just need to look at workflow specifications from
the control-flow perspective (cf. [14]), and actually to
focus on the definition of the tasks occurring in the
process at hand and of the relationships of pre-
cedence among them. More advanced modelling
features are of limited interest in this context and,
thus, they can be disregarded without loosing in
generality—the reader interested in expanding on
these aspects is referred to, e.g., [29–31,14].

ARTICLE IN PRESS
G. Greco et al. / Information Systems 32 (2007) 685–712 689
In the light of the observations above, we decided
to model a workflow schema WS as a tuple
hA;E; a0;AF i, where A is a finite set of activities

(also called nodes in the following), E � ðA� AF Þ �

ðA� fa0gÞ is a relation of precedences among
activities (whose elements are simply called edges),
a0 2 A is the starting activity, and AF � A is the set
of final activities. The tuple hA;Ei is roughly referred
to as the control-flow graph of WS, in the following.
As an example, a control flow graph which will be
referred to throughout the paper is shown in
Fig. 2(a), for which a is the starting activity, and
AF ¼ fp; qg. Note that focusing on the control-flow
graph only makes our approach completely ortho-
gonal w.r.t. the underlying WfMSs, since other more
elaborate specifications, such as EPCs or Petri nets,
can be eventually formulated in our syntax, by
possibly discarding their specific more advanced
issues. As an example, we leave to the reader the
(straightforward) task identifying the control-flow
graph in the EPC shown in Fig. 1.

Actually, beside the syntax, another problem come
into play with the specification of the languages,
which pertains the semantics of the model (cf. [32]).
This is particularly true in the presence of branching
and synchronization patterns, e.g., for the synchro-

nized merge construct whose non-local behavior
causes serious semantics problems, faced in prag-
matic ways by the different vendors (see [33]).
However, the heterogeneity in the semantics for a
workflow schema is again not a serious issue for our
aims. Indeed, we are not interested in developing
verification or analysis techniques which require the
formalization of a suitable executable semantics.
Rather, we stress that the problem of mining frequent
patterns just requires that some enactments are given
(a)

Fig. 2. An example workflow schema: (a) the co
at hand, no matter of the way they have been actually
computed and, thus, independently from the in-
tended semantics underlying the workflow schema.
In fact, our approach is to a large extent ‘‘syntactic’’,
and the proposed techniques result to be orthogonal
w.r.t. any specific semantics.

Therefore, no specific executable semantics is
discussed and, again, the reader interested in
expanding on this subject is referred to the literature
(e.g., [29,30,14]). On the other hand, we assume that
a workflow schema exists which has been firstly
modelled and then enacted in some system; that
correctness/structuring constraints are issued on it;
and that the executions stored in the log actually
reflect this (possibly unknown) semantics. In parti-
cular, by abstracting from the specificity of the logs,
we may assume (as often done in the literature) that
each enactment is registered in the log as a sequence
of nodes identifiers, also called trace, denoting the
ordering of occurrence of the various tasks. Then, the
only (trivial) requirement is that this order must
respect the relationships of precedence in the control-
flow graph, i.e., an activity a may precede an activity
b in a trace if and only if there is a directed path from
a to b in the control flow. As an example, Fig. 2(b)
reports some traces for the workflow schema whose
control-flow graph is shown in Fig. 2(a).

Let t be a trace for a workflow schema
WS ¼ hA;E; a0;AF i. Starting from t, we can identi-
fy the subgraph of the control flow which was
enacted as the subgraph IðtÞ of hA;Ei induced over
the nodes in t. The graph IðtÞ is called an instance of
WS, denoted by WS � IðtÞ. And, consistently, a
log for a workflow schema WS may be equivalently
viewed as either a bag of traces or a bag of instances
of WS. As an example, Fig. 3 shows the instances
(b)

ntrol-flow graph, and (b) some traces for it.

ARTICLE IN PRESS

Fig. 3. Example instances.

G. Greco et al. / Information Systems 32 (2007) 685–712690
associated with the traces in Fig. 2(b) for the
workflow schema whose control flow is depicted
in Fig. 2(a). Throughout the paper we shall deal
with such a graphical representation rather than
with traces, in order to better exploit the topological
properties of the instances in the algorithms. In this
respect, it is worth noting that some commercial
tools, such as ARIS process performance monitor
[34], precisely deal with instances in form of
graphs, and that more elaborate techniques have
been proposed to reconstruct instance graphs from
traces, even when the underlying process model is
unknown [35].

2.2. Formal framework

Let us assume that a workflow schema WS is
given together with a log file, i.e., a bag of instances
F ¼ fI1; . . . ; Ing such that WS � I i, for each
1pipn. In this section, we formalize the basic
problems we deal with in the paper. Roughly
speaking, among the instances of F, we are
interested in discovering the most frequent patterns
of execution as next defined.

Definition 3 (Pattern). A graph p ¼ hAp;Epi is an
F-pattern (cf.F � p) if there exists I ¼ hAI ;EI i 2F
such that Ap � AI and p is the subgraph of I induced
by the nodes in Ap. Whenever F is clear from the
context an F-pattern is simply said to be a pattern.

In the following, we use the notation p1 [p2 to
denote the pattern hAp1 [Ap2 ;Ep1 [Ep2i, and p1 � p2

to denote the case where both Ap1 � Ap2 and Ep1 �

Ep2 hold. Sometimes, a pattern p1 [� � � [pn is
equivalently represented as the sets of all its
components, i.e., as fp1; . . . ; png.
A crucial property for patterns is the connected-
ness. Formally, a pattern p is connected if its
undirected version is connected, otherwise p is
unconnected.

Example 4. Let us consider again the schema
depicted in Fig. 2. Then, the following subgraphs
are connected patterns:

a d
q1

o p
q2

e
q3

On the other hand, it is easy to see that the
patterns fq1; q2g ¼ q1 [q2 and fq1; q3g ¼ q1 [q3 are
not connected.

Let suppðpÞ ¼ jfI jfIg � p ^ I 2Fgj=jFj be the
support of an F-pattern p, i.e., the number of
instances in the log F containing p as a sub-
graph. Then, given a real number minSupp, we
consider the following two relevant problems on
workflows:
FCPD: Frequent connected pattern discovery, i.e.,

finding all the connected patterns whose support is
greater than minSupp.
FUPD: Frequent unconnected pattern discovery, i.e.,

finding all the subsets of connected patterns (short:
unconnected patterns) whose support is greater than
minSupp.

Importantly, as a side effect of considering a
frequency threshold, we have that the formalization
of the problems FCPD and FUPD is to large extent
immune to noise, exceptions and anomalies in the
logs, which are in fact filtered out on the basis of their
statistic relevance. Therefore, the problems above are
well-defined even in the presence of logs that do not
fully comply with the control-flow graph or that are,
for instance, incomplete.

ARTICLE IN PRESS

a

p1

e

p2

q

p3

a b

p4

m p

p5

o p

p6

p

p7

a b q

p8

Fig. 4. Example frequent patterns on the instances of Fig. 3.

G. Greco et al. / Information Systems 32 (2007) 685–712 691
Example 5. Let us consider again the workflow
shown in Fig. 2, and the log consisting of the
instances depicted in Fig. 3. Let minSupp ¼ 30%.
Then, the pattern q2 of Example 4 is a frequent
connected pattern, because it occurs in three of the 10
instances. Conversely, q1 is unfrequent, since it
occurs in two instances only. Also, notice that none
of the nodes l, i, h is frequent, whereas q3 is frequent.
Moreover, it is easy to see that fq2; q3g is a frequent
unconnected pattern, since each instance including q3

also includes q2.

Note that the FCPD problem has been already faced
in [16], by resorting on the idea of exploiting the
control graph of WS in order to reduce the number
of patterns to generate. Specifically, [16] introduces
the notion of weak patterns and shows that working
with w-patterns rather than F-patterns is not an
actual limitation, since each frequent F-pattern is
bounded by w-patterns. Indeed, for each frequent F-
pattern p, a frequent w-pattern p0 exists such that
p � p0, and, moreover each weak pattern p0 � p is
frequent as well. Thus, weak patterns can be used in a
smart exploration of the search space, by adopting a
breadth-first search strategy. Roughly speaking,
frequent weak patterns can be extracted incremen-
tally, by starting from frequent ‘‘elementary’’ weak
patterns (i.e., weak patterns obtained by processing a
single node and then satisfying all the constraints),
and by extending each frequent weak pattern using
two basic operations: adding a frequent edge and
merging with another frequent elementary weak
pattern. The correctness of the approach follows
from the observation that the space of all connected
weak patterns can be traversed by means of the
precedence relation 5, defined as follows: p15p2 if
and only if p2 can be obtained from p1 by either
adding an edge, or merging p1 with an elementary
weak pattern it does not include. Details on the
algorithm exploiting this observation, called w-find,
can be found in [16]. Here, we just note that the
frequent connected patters obtained by w-find on the
instances of Fig. 3 with support 30% are those shown
in Fig. 4.

In the following section, we shall make use of the
set of all the frequent connected patterns for solving
the more general FUPD problem.

3. Mining unconnected patterns

Assume that the set CðFÞ of all the frequent (w.r.t.
minSupp) connected patterns in the set of instances
F for a schema WS has been already computed
(using, e.g., the w-find algorithm). In this section, we
investigate how to exploit CðFÞ in order to efficiently
deal with the FUPD problem. For the sake of
simplicity, let us assume throughout the section that
a threshold minSupp is given, so that by frequent

patterns we simply mean patterns whose support is
greater than minSupp.

We present a solution to the FUPD problem that
relies on the application of a levelwise algorithm (in
the a priori style [17,36]) for combining all the
patterns in CðFÞ, by subsequently checking for their
frequency. The algorithm, called ws-unconnected-find,
is shown in Fig. 5. It receives in input the workflow
schema WS and the set CðFÞ of the frequent
connected F-patterns, and returns all the subsets of
CðFÞ that are frequent as well.

While combining different connected patterns, ws-

unconnected-find exploits some smart strategies which
are able to reduce the search space and avoid
unnecessary computations. Specifically, the algo-
rithm takes benefit of the structural information of
the workflow schema WS only. An extension of the
algorithm which is also capable of exploiting
statistical information about the set F of instances
is presented in Section 4.

The first important observation for understanding
how ws-unconnected-find is designed is that in order
to solve the FUPD problem, we can focus without loss
of generality on the sets of frequent connected
patterns containing the starting activity, say a0, of
WS. Indeed, since the starting activity is executed in
each instance, each set of connected patterns that is
frequent inF can be extended with the initial activity
or, generally, with a pattern containing the initial
activity, without modifying its frequency. Therefore,
the following property trivially holds.

Proposition 6. For any two patterns p and q such that

p [q is a frequent unconnected pattern, there exists a

pattern p0 containing both p and the starting activity

ARTICLE IN PRESS

Fig. 5. Algorithm ws-unconnected-find ðWS; F; minSupp; CðFÞÞ.

G. Greco et al. / Information Systems 32 (2007) 685–712692
a0, i.e., p0 	 p [fa0g, such that p0 [q is frequent

as well.

In the light of this property, each frequent set of
connected patterns can be generated from the
frequent sets of connected patterns for which a
pattern contains the starting activity. These kinds of
frequent sets are called starting patterns in the
following. And, consistently, ws-unconnected-find

singles out the set of all the frequent starting
patterns, thereby avoiding the computation of the
subsets of the frequent starting patterns that do not
contain a0 (which, are in fact, necessarily frequent
as well).

Frequent starting patterns are incrementally built
by the algorithm by combining the frequent starting
patterns already discovered in the computation.
Interestingly, the combination can be carried out in
a very efficient manner with a smart exploration of
the space of all the connected starting patterns. To
see how this is possible, consider two starting
patterns r and p; we say that r directly precedes p,
denoted by r
 p, if there exist a connected pattern q

such that r ¼ p [q and such that q does not contain
the starting activity. Patterns that does not contain
the starting activity are called terminating patterns.
The above relation can be extended transitively: we
say that r precedes p, denoted by r
�p, if either r
 p

or there exists a starting pattern q such that r
�q and
q
�p. It is not difficult to see that starting patterns
can be constructed by means of a chain over the

relation.

Thus, the search space of starting patterns forms a
lower semilattice, and the bottom-up exploration of
such a lattice constitutes the second key ingredient of
ws-unconnected-find: at each step k þ 1, the algorithm
generates the set of all the possible unconnected
starting patterns made of k þ 1 distinct unconnected

ARTICLE IN PRESS
G. Greco et al. / Information Systems 32 (2007) 685–712 693
patterns, by combining the patterns already gener-
ated and tested to be frequent (stored in Lk and made
of k distinct unconnected starting patterns) with a
terminating pattern. Let us now detail the different
steps of ws-unconnected-find.

The algorithm starts by defining L0 as the set of
frequent patterns in CðFÞ that contain a0, and C0 as
the set of all the terminating connected patterns—
notice that C0 is, in fact, CðFÞ minus the starting
patterns in L0.

Then, at each step the algorithm generates a
number of candidates (stored in U) in the main cycle
(steps 4–13). Each generated pattern p is obtained
by means of the function UpdateCandidateList,
by combining a starting pattern in Lk with a
connected terminating pattern q in C0 which is not
in the set discardedðpÞ. This latter set is used for
optimization purposes. In fact, since we are inter-
ested in frequent unconnected components, given a
pattern p we can compute in advance a set of
patterns that must not be combined with p, denoted
by discardedðpÞ. Specifically, this set contains (i)
all the patterns which have a non-empty intersection
with p, and (ii) a set of patterns which merged
with p are guaranteed to produce an unfrequent
pattern. The set discardedðpÞ is initialized in the
procedure InitializeStructures. Moreover, notice
that each pattern r generated at the step k is also
equipped with two functions, startingðrÞ and
terminatingðrÞ, which store the starting and terminat-
ing patterns, respectively, that have been used for
generating r.

After all the candidates have been computed in the
set U, the function ComputeFrequentPatterns is
invoked (step 6) for filtering the elements in U which
frequently occur in F, thus creating the set Lkþ1

containing all the frequent unconnected patterns
made of k þ 1 connected patterns. This task is
simply accomplished by means of a scan in the
logs F.

Finally, the generated starting frequent patterns
are added to the actual result R, and in the steps 8–12
the set discardedðp0Þ is updated in order to include
patterns that combined with p0 will certainly lead to
an unfrequent pattern. Intuitively, if a pattern r is
known to be unfrequent (i.e., it belongs to U � Lkþ1),
then each pattern p0 � startingðrÞ cannot be extend
with terminatingðrÞ. This observation justifies the
expression in step 11.

Example 7. Assume minSupp ¼ 30% and consider
again the set of instances depicted in Fig. 3. Then, the
ws-unconnected-find algorithm initially considers the
frequent patterns shown in Fig. 4. In particular, p1; p4

and p8 are added to L0, since they are starting
patterns, whereas the remaining patterns are added
to C0. The algorithm then performs three main
iterations.

In the first iteration, at step 5, each pattern p 2 L0

is combined with a pattern in C0 which is not in
discardedðpÞ. For example, p1 is combined with
p2; p3; p5; p6 and p7. As a result, 12 candidate patterns
are computed in U, and the execution of step 6 yields
L1 ¼ fp1 [p2; p1 [p5; p1 [p6; p1 [p7g. In the second
iteration, candidate patterns are obtained by combin-
ing each element in L1. As a result, U contains eight
new candidate patterns, of which p1 [p2 [p6 and
p1 [p2 [p7 are inserted (as frequent) in L2. In the last
iteration, no new candidate patterns are obtained.

We conclude by stating a number of properties of
the algorithm. Specifically, we shall prove its
correctness and point out that its computational cost
is, in fact, related to the number of unconnected
components contained in frequent unconnected
patterns—this number influences the number of
scans to the log file as well.

Lemma 8. The ws-unconnected-find algorithm on

input WS ¼ hA;E; a0;AF i, minSupp, and CðFÞ is

such that
(1)
 for each pattern r 2 R, a0 2 startingðrÞ;

(2)
 for each pattern r 2 R and for each pattern

‘ 2 discardedðrÞ, either

� there exists r̄ 2 r such that r̄ [‘ is not an

unconnected pattern, or

� r [‘ is not frequent;
(3)
 for each pattern r 2 R and for each pattern ‘ 2 C0

such that there exists a pattern r̄ 2 r with r̄ [‘
being connected, ‘ is in discardedðrÞ.
Proof. We prove the properties by structural induc-
tion on the number k of iterations in the main loop
(steps 4–13). Clearly, ð1Þ trivially holds for k ¼ 0,
since R coincides in fact with L0. To see that ð2Þ and
ð3Þ hold for k ¼ 0 too, it is sufficient to consider how
the set discarded is initialized in InitializeStructures

for all the patterns in CðFÞ and, therefore, for the
starting patterns in L0. In particular, for each
r 2 R ¼ L0, and for each ‘ 2 discardedðrÞ, we
have that r \ ‘a; and, hence, r [‘ is not
unconnected.

ARTICLE IN PRESS
G. Greco et al. / Information Systems 32 (2007) 685–712694
Let us now assume that (1)–(3) hold at step k.
We show that they hold in k þ 1 as well. In
particular, it is sufficient to limit our attention on
the patterns in Lkþ1 which are eventually added to R

in the step 7, because for all the other patterns the
properties are ensured by induction. Moreover, since
Lkþ1 is obtained by just filtering out unfrequent
patterns from the set U (see step 6), we have to focus
on the steps that are performed in the function
UpdateCandidateList on input Lk.

As for property (1), consider a pattern r added to
U in step UCL6. Pattern r is the result of the union of
p and q (see UCL4), that are, respectively, a pattern
in Lk and a pattern in CðFÞ � L0 � discardedðpÞ.
Notice that startingðrÞ is set to p, while terminatingðrÞ

is set to q. Then, by inductive hypothesis, a0 2

startingðpÞ holds.
As for property (2), observe that discardedðrÞ ¼

discardedðpÞ [discardedðqÞ [f‘0 j 9er 2 U � Lk þ 1 s.t.
‘0 ¼ terminatingðr̄Þ ^ startingðr̄Þ ¼ rg, because of the
steps 11 and UCL4. Then, consider an arbitrary
pattern ‘ 2 discardedðrÞ. In the case where ‘ is in
discardedðpÞ, by inductive hypothesis there exists r̄ 2

p such that either r̄ [‘ is not an unconnected pattern
or r̄ [‘ is not frequent. Since p is a subset of r, it is
the case that r̄ belongs to r as well, and the property
follows. A similar line of reasoning applies in the case
where ‘ is in discardedðqÞ. Therefore, it remains to be
considered the case where ‘ ¼ terminatingðerÞ, for an
unfrequent pattern er such that startingðerÞ ¼ r. In this
case, the property follows because r [‘ is a superset
of er and must be, therefore, unfrequent as well.

Finally, as for property (3), consider a pattern ‘ 2
C0 such that there is r̄ 2 r with r̄ [‘ being connected.
We must show that ‘ is in discardedðrÞ. In the case
where r̄ belongs to p the property follows by
induction. Moreover, in the case where r̄ ¼ q, since
q is in CðFÞ, the pattern ‘ is inserted in discardedðqÞ

by initialization and is subsequently added to
discardedðrÞ in step UCL4. &

Theorem 9. The ws-unconnected-find algorithm on

input WS ¼ hA;E; a0;AF i, minSupp, and CðFÞ
terminates in at most jAj scans in the log file, and

computes the set R of all frequent starting patterns.

Proof. It is easy to see that R contains only frequent
starting patterns because of the property ð1Þ in
Lemma 8 and because of the test for the frequency
performed in the function ComputeFrequentPatterns.
Hence, we have to show that for each unconnected
starting pattern p, it is the case that p is in R too. The
proof is by structural induction on the number of the
components in p (short: size of p). The base case
where p consists of one (connected) pattern only,
trivially holds since it must be the case that p is in
CðFÞ. Therefore, let us assume that R contains the
set of all the frequent starting patterns of size k and
consider a frequent pattern p of size k þ 1. Since the
space of all unconnected patterns is a lower
semilattice, there exists a pattern p̄ such that p̄
 p.
This entails that p is the union of p̄ (of size k) with
some terminating pattern pt. Moreover, since p is
frequent, p̄ is frequent as well and it has been,
therefore, computed by the algorithm in the previous
step (and inserted in Lk), by inductive hypothesis.
Hence, in step k þ 1, the pattern p is eventually
generated in UCL4: in fact, since p̄ [pt is a frequent
unconnected pattern it must be the case that pt

belongs to C0 � discardedðpÞ (otherwise p̄ [pt is not a
frequent unconnected pattern, by properties (2) and
(3) in Lemma 8, thereby having a contradiction).

To conclude the proof, notice that the algorithm
requires a scan in the log file each time the function
ComputeFrequentPatterns is invoked. Therefore, the
number of scans coincides with the total number of
iterations (steps 4–13) that are in their turn bounded
by the maximum number of components which an
unconnected starting pattern can be made of. The
size of A is, in fact, a trivial upper-bound for such a
number. &
4. Optimizing candidate generation

The algorithm ws-unconnected-find takes already
advantage of some important observations in order
to perform a smart exploration of the search space.
In this section, we show how to further exploit the
peculiarities of the workflow graph, and specifically
some statistics on the set of instances F, in order to
identify, before their actual testing w.r.t. the logs,
those patterns which are necessarily (un)frequent.
The resulting algorithm, called ws�-unconnected-find,
is able to further prune the search space and to solve
the FUPD problem in a more efficient way. Actually,
in the description of this algorithm, we shall assume
that the control-flow graph of the workflow schema
at hand is acyclic, i.e., we do not consider repetitions
and loops. However, this simplification has been just
pursued for the sake of exposition and without
loosing in generality, since dealing with cyclic graphs
can be faced by means of some syntactic expedients
which are discussed afterwards the algorithm is
presented.

ARTICLE IN PRESS
G. Greco et al. / Information Systems 32 (2007) 685–712 695
4.1. Overview of the approach

The key idea in the design of the ws�-unconnected-

find algorithm is to combine the dynamic information
obtained from the frequency of single nodes and
edges, with the static information derived from the
workflow schema in order to predict (un)frequent
patterns. To get an intuition of the approach,
consider again the schema in Fig. 2 and the following
extreme scenario. Consider the activities a and p, and
notice that they are frequent but not necessarily any
path from a to p is frequent as well (this is what
happens, e.g., by considering the instances of Fig. 3
and minSupp ¼ 30%). At the other hand, as every
execution starting from a will eventually terminate in
p, we can then conclude that the frequency of any
pattern containing a is invariant if the pattern is
extended with p. Therefore, we can conclude that
nodes a and p form a frequent unconnected pattern
without looking at the actual co-occurrences in the
log file. Actually, many situations are less evident
than the above trivial case. For instance, by
analyzing both the instances and the graph structure
(with the techniques we shall develop in the paper),
we could conclude that m frequently occurs together
with a, since a necessary condition for the execution
of m is the execution of a. Incidentally, note also that
m and b cannot co-occur frequently, since the only
path connecting them is below the frequency thresh-
old (and hence the frequency of m cannot be related
to that of b).

The aim of this section is to systematically study
the circumstances in which some analysis on the
instances and the graph structure helps in pruning the
search space. Specifically, we develop a graph-
theoretic approach for predicting whether two
patterns are coupled, that only looks at the workflow
structure and at the frequency of the elementary
activities alone.

In the following, we assume the existence of a set
F of instances of a workflow schema WS. Then, let
q be a pattern of WS ¼ hA;E; a0;AF i which occurs
in f ðqÞ instances of F and p be a pattern which
occurs in f ðpÞ instances of F such that: q and p are
unconnected; and, there is a path from some activity
in p to some activity in q. Our aim is to compute as
efficiently as possible the number of instances in F
executing both the components p and q, denoted by
f pðqÞ. Clearly, the most trivial and inefficient way for
computing f pðqÞ is to make a scan of the log F.
However, we shall show how some proper data
structures and algorithms can be used for effectively
identifying a suitable lower bound and an upper
bound for f pðqÞ, denoted by lpðqÞ and upðqÞ,
respectively, in an efficient way which does not
require the access to the log.

To this aim, it is worth noticing that in real-life
scenarios, the execution of workflow activities is
typically bound to specific constraints, which rule the
relationship among the activities. Thus, we can
exploit both the topology of the schema WS and
the constraints issued over the nodes. Notice that, in
this respect, it is not convenient to focus on some
specific modelling language, since it would restrict the
applicability of the proposed algorithms to some
specific WFMSs. Rather, it makes sense to consider a
simple language where the basic features which are
common to most of the proposals in the literature are
allowed, so that techniques can be developed which
can be profitably integrated in different application
scenarios. Consequently, to make our approach as
much general as possible, we consider the very basic
constructs of sequence, iteration, split and join which
are common to most of the current workflow
languages, as it emerged by recent comparative
studies (e.g., [32]) based on workflow patterns
[37,38]. Moreover, we do not present any specific
executable semantics for constraints, since our aim is
just to consider their ‘‘static’’ properties (recall the
discussion in Section 2). Thus, as for the precondi-
tions, we assume that activities in A� fa0g are
partitioned inA_in [A^in, such that for any instance
I ¼ hAI ;EI i, and activity a in AI :
�
 if ai is in A^in, then fðaj ; aiÞ 2 E j aj 2 Ag � EI , i.e.,
ai is an and-join that can be executed only after all
its predecessors; and,

�
 if ai is in A_in, then jfðaj ; aiÞ 2 E j aj 2 Ag \ EI j40,

i.e., ai is an or-join that can be executed as soon as
one of its predecessors is. Note that this require-
ment is fairly trivial and it must hold no matter of
the specific semantics used by the system to solve
the problem with the vicious cycle (cf. [33]).

As for post-conditions, activities in A� AF are
partitioned in A^;_out [A�out, such that for any instance
I ¼ hAI ;EI i, and activity a in AI :
�
 if ai is in A�out, then jfðai; ajÞ 2 E j aj 2 Ag \ EI jp1,
i.e., ai is an exclusive-fork that enables at most one
outgoing activity; and,

�
 if ai is in A^;_out , then jfðai; ajÞ 2 E j aj 2 Ag \ EIgjX

0, i.e., ai enables some of the outgoing activities.
Note that this is in fact not a constraint.

ARTICLE IN PRESS
G. Greco et al. / Information Systems 32 (2007) 685–712696
Example 10. Consider again the control-flow struc-
ture of Fig. 2(a). In the following, we assume that

constraints on this graph are such that: A^in ¼

fd; c; b; fg and A_in ¼ fe; g; l; i; h; m; n; o; pg, while
A�out ¼ fa; hg, A^;_out ¼ ff; l; i; g; d; m; n; o; b; c; eg,and
AF ¼ fp; qg. The reader may check that instances in
Fig. 3 conform with these constraints.

4.2. Computing frequency bounds for activities

Let us start investigating how frequency bounds
can be efficiently computed in the case where patters
are made of single activities of WS. Given an
activity a 2 A, let Ga be the subgraph of the control
flow of WS induced by all the nodes b such that
there is a path from b to a in WS. Note that all such
nodes can be easily determined by reversing the edges
in WS and computing the transitive closure of a.
Moreover, the graph obtained from Ga by reversing
all its edges is denoted by G

a.

The starting point of our approach is to compute
for each node b in Ga, the number of instances in F
executing both the activities a and b, denoted by
f aðbÞ. Actually, as already pointed out, we turn to the
computation of a lower bound laðbÞ and of an upper
bound uaðbÞ for f aðbÞ.

In order to accomplish this task we need some
auxiliary data structures besides the workflow
schema which are used for storing the occurrences
of each activity and edge (connecting activities) in the
log F.

Definition 11 (Frequency graph). Let hA;Ei be the
control flow of a workflow schema WS and letF be
Fig. 6. Frequency graph associat
a set of instances of WS. The frequency graph

WSF ¼ hA;E; f A; f Ei is a weighted graph such that:
�

ed
f A : A 7!N maps each activity a to the number of
instances in F executing it, and

�
 f E : E 7!N maps each edge e to the number of

instances in F containing this edge.
Whenever no confusion arises, given an activity a 2

A (resp. an edge e 2 E), f AðaÞ (resp. f EðeÞ) will be
simply denoted by f ðaÞ (resp. f ðeÞ).

Fig. 6 shows the frequency graph associated with
the schema of Fig. 2, built by taking into account the
set of instances described in Fig. 3.

In order to derive the aforementioned bounds, we
first determine a topological sort ha ¼ b1; b2; . . . ; bki

of the nodes in G

a. Notice that as WS is acyclic,
G

a is also acyclic and a topological sort exists for it.
Then we proceed as shown in Fig. 7.

In the step 1, the lower and upper bounds of the
activity a are fixed to the known value f ðaÞ. Then,
each node bi in Ga is processed according to the
topological sort of G

a. In step 3, the set of all the

activities CðbiÞ that can be reached by means of an
edge starting in bi and that are in Ga is computed.
Step 4 is responsible for computing the upper bound
uaðbiÞ, whereas steps 5–9 are responsible for comput-
ing the lower bound laðbiÞ.

Intuitively, the upper bound uaðbiÞ can be com-
puted by optimistically assuming that each edge
outgoing from bi is in some path reaching a. This
justifies the formula of step 4.
with the schema of Fig. 2.

ARTICLE IN PRESS

Fig. 7. The compute_frequency_boundsðWSF; aÞ algorithm.

G. Greco et al. / Information Systems 32 (2007) 685–712 697
Concerning laðbiÞ, observe that each node cj 2

CðbiÞ is executed with a by at least laðcjÞ instances.
Therefore, we need to know how many of the
instances executing bi contribute to laðcjÞ. Two cases
arise: (i) bi 2 A^;_out , so the nodes connected to bi may
occur simultaneously within an instance, and (ii)
bi 2 A�out, then all cj are executed exclusively from
each other. This explains why in the first alternative
L^1 and L_1 are computed by maximizing the
contribution of each cj, whereas in the second
alternative the single contributions are summated.
Finally, observe that when cj 2 A_in, it may be not the
case that all of the laðcjÞ instances execute bi, thus
requiring to differentiate the formulas for L_1 and L^1
(and, in the same way, for L_2 and L^2).

Example 12. Let us consider the graph Gm induced
by node m:

a

c

g

m

b

A topological sort for G

m is hm; g; b; c; ai. Then, we
leave the careful reader to check that by applying
compute_frequency_boundsðWSF; mÞ, the following
bounds for node m can be obtained:

lmðgÞ ¼ 2; umðgÞ ¼ 2; lmðbÞ ¼ 1; umðbÞ ¼ 1,

lmðcÞ ¼ 1; umðcÞ ¼ 2; lmðaÞ ¼ 3; umðaÞ ¼ 4.
Before proceeding with the exposition, we want to
provide some intuition on how these bounds may be
practically used for pruning the search space.

Consider, for instance, the lower bound lmðaÞ ¼ 3.
This entails that pattern fmg frequently (w.r.t.
minSupp ¼ 30%) occurs with pattern fag. Therefore,
we can conclude that fmg [fag is a frequent
unconnected pattern without testing for its frequency
over the set of the instances. Conversely, given the
bound umðbÞ ¼ 1 we can conclude that fmg [fbg has
no chance of being frequent, and therefore it can be
pruned from the search space.

As an example scenario in which bounds cannot be
instead used for pruning the search space, let us conclude
by analyzing also the bounds for node o. Consider the
dependency graph Go, which is depicted below:

a

d

e

l

i

h

o

Then, by applying the algorithm, we obtain
uoðaÞ ¼ uoðeÞ ¼ 3, uoðxÞ ¼ 1 for x 2 fd; l; i; hg, and
loðyÞ ¼ 1 for each node y in Go. Thus, even though
feg [fog is a frequent unconnected pattern, lower
bounds do not help in detecting such pattern without
resorting to the logs. This is essentially due to the fact
that, since e 2 A_out, its lower bound depends from the
lower bounds of h, i and l (each of which belongs to
Go, with frequency 1).

ARTICLE IN PRESS
G. Greco et al. / Information Systems 32 (2007) 685–712698
We conclude the description of the algorithm for
computing bounds between pairs of activities by
discussing its main properties.

Theorem 13. The following properties hold for the

algorithm in Fig. 7:
(1)
 The parameters U, L_1 , L_2 , L^1 and L^2 are well

defined, i.e., uaðbiÞ and laðbiÞ are computed by

exploiting already processed values.

(2)
 For each node bi 2 Gi, the values laðbiÞ and uaðbiÞ

are, respectively, a lower and an upper bound for

the frequency f aðbiÞ.

(3)
 The procedure can be computed in time OðjGaj

2Þ.
Proof. (1) We show that the property hold by
structural induction on the processing of the topo-
logical sort ha ¼ b1; . . . ; bki for G

a. For the base

case, i.e., i ¼ 1 and b1 ¼ a, the values of uaðaÞ and
laðaÞ are both set to the actual value f ðaÞ. Then,
assume that all the values are correctly computed for
nodes b1; . . . ; bi�1 with ip2, and assume that the
execution of the algorithm is at the ith iteration (loop
in steps 2–10). We have to show that the formulas for
computing uaðbiÞ and laðbiÞ are well defined. Actually,
by careful looking at expressions in steps 4, 6, and 8,
we can see that both uaðbiÞ and laðbiÞ depends only on
the values of uaðcÞ and laðcÞ for some node c 2 CðbiÞ.
By construction in step 3, notice that CðbiÞ contains
only nodes in Ga that are reachable by means of an
edge by bi. Therefore, by construction of the
topological sort hb1; . . . ; bki, any node in CðbiÞ is in
the topological sort for some index hoi. Thus, nodes
in CðbiÞ have been already processed and the values
for the upper bound and the lower bound have
been correctly computed, because of the inductive
hypothesis.

(2) As before, we proceed by structural induction.
In the case i ¼ 1, the values of uaðaÞ and laðaÞ

coincide with the actual value f ðaÞ. Then, consider
the ith iteration of the algorithm and assume that
laðbjÞpf aðbjÞpuaðbjÞ, for each 1pjoi.

Let us first consider the value of uaðbiÞ computed in
step 4 of the algorithm and show that f aðbiÞpuaðbiÞ.
Assume, for the sake of contradiction that
uaðbiÞof aðbiÞ. Then, by looking at the expression of
uaðbiÞ, there are only three possible scenarios:
�
 uaðbiÞ ¼ f ðbiÞ, which is impossible since we would
have f ðbiÞof aðbiÞ;

�
 uaðbiÞ ¼ f ðaÞ, which is impossible since we would

have f ðaÞof aðbiÞ;
�
 uaðbiÞ ¼ U , with U ¼
P

e¼ðbi ;cÞjc2CðbiÞ
minðf ðeÞ;

uaðcÞÞ: In this case, by inductive hypothesis,
we have that uaðcÞXf aðcÞ (notice that c is in CðbiÞ,
and recall from the point ð1Þ above that nodes
in CðbiÞ have been already processed). There-
fore, we have that f aðbiÞ4ua ðbiÞ ¼ UXP

e¼ðbi ;cÞjc2CðbiÞ
minðf ðeÞ; f aðcÞÞ. But this is a contra-

diction. Indeed, each time an instance executes both
a and bi, thereby contributing to the frequency
f aðbiÞ, it is the case that there exists a node c such
that ðbi; cÞ is executed as well. By construction, c

belongs toCðbiÞ and therefore the execution of c

contributes to both the frequencies f ððbi; cÞÞ and
f aðcÞ. It follows that the value of f aðbiÞ is bounded
by
P

e¼ðbi ;cÞjc2CðbiÞ
minðf ðeÞ; f aðcÞÞ.

Let us now turn to evaluate the correctness of the
value of laðbiÞ. In this case, we have to distinguish
whether bi is in A^;_out , or is in A�out. We shall consider
the former case only, since the latter scenario can be
proven by using similar arguments. Assume, for the
sake of contradiction, that laðbiÞ4f aðbiÞ. Then, by
looking at the expression of laðbiÞ, there are only two
scenarios:
�
 laðbiÞ ¼ L^1 ¼ maxcj2CðbiÞ\A^in
flaðcjÞg. By inductive

hypothesis, since cj is in CðbiÞ, we have that
laðcjÞpf aðcjÞ, for each cj in the expression above.
Therefore, we can write f aðbiÞolaðbiÞ ¼

laðc̄Þpf aðc̄Þ, where c̄ is a node in CðbiÞ and,
hence, such that ðbi; c̄Þ is an edge in the control
flow of WS. However, it is impossible that
f aðbiÞof aðc̄Þ holds for such pairs of connected
nodes, because c̄ is a A^in node and, so, any
instance activating c̄ has to activate bi as well.

�
 laðbiÞ ¼ L_1 . Then,

laðbiÞ ¼ max
cj2CðbiÞ\A_in

max 0; laðcjÞ �
X

e¼ðd;cj Þ2E^dabi

f ðeÞ

0
@

1
A

8<
:

9=
;.

In this case, we can assume, w.l.o.g, that laðbiÞa0
(otherwise we get an immediate contradiction
with f aðbiÞ being greater or equal than 0).
Therefore, we have f aðbiÞolaðbiÞ ¼ laðc̄Þ �P

e¼ðd;c̄Þ2E^ d abi f ðeÞ, for a suitable node c̄ in
CðbiÞ \ A_in. Again, c̄ has been already processed
and it holds that laðc̄Þpf aðc̄Þ. Then, we
have: f aðbiÞ þ

P
e¼ðd;c̄Þ2E^dabi

f ðeÞolaðc̄Þpf aðc̄Þ.
But this is a contradiction. Indeed, since c̄ is in
A_in, each time an instance activates c̄ and does not
activate bi (i.e., the edge ðbi; c̄Þ is not being
exploited), it must be the case that an edge in

ARTICLE IN PRESS
G. Greco et al. / Information Systems 32 (2007) 685–712 699
the set fðd; cjÞ 2 E ^ dabig is activated as well.
Therefore, each time there is a contribution to
f aðbiÞ � f aðc̄Þ, there is a contribution as well for
f ðeÞ for some edge e 2 fðd; cjÞ 2 E ^ dabig.
(3) Notice that the main loop of the algorithm is
executed k times, where k is in fact the size of the
graph Ga. Then, at each step i, the computation of
the values uaðbiÞ and laðbiÞ just requires elementary
calculations and selection of minimum and maximum
values in set of jCðbiÞj elements. Since, jCðbiÞjpjGaj,
for each i, the quadratic bound easily follows. &

4.3. Computing frequency bounds for patterns

Let us now turn to the slightly more general
problem of approximating the value of f pðbÞ, for any
pattern p and any activity b, by means of suitable
lower and upper bounds. Notice that the value f pðbÞ

is the number of instances in F executing both the
pattern p and an activity b that precedes one of
the activities in p. To this aim, we simply reuse the
technique described in the previous section with some
adaptations. Let us first introduce some auxiliary
notation.

Definition 14. Let WS be a workflows schema. For
each connected pattern p ¼ hAp;Epi on WS, define:

INBORDERðpÞ ¼ fa 2 Ap j)b 2 Ap : ðb; aÞ 2 Ep,

9c 2WS� p : ðc; aÞ 2WSg

and

OUTBORDERðpÞ ¼ fa 2 Ap j 9c 2WS� p:

ða; cÞ 2WSg.

Let WSðpÞ be the workflow schema derived from
WS by adding a new and-join node, say ap,
corresponding to the pattern p, and by adding an
edge from each node b in p to ap. In the frequency
graph of WSðpÞ set f ðapÞ ¼ f ðpÞ, and f ðeÞ ¼ f ðpÞ for
each e ¼ ðb; apÞ 2 E. Moreover, given an activity a,
we denote by GðpÞa be the subgraph of the control
flow of WSðpÞ induced by all the nodes b such that
there is a path from b to a in WS, and we denote by
G

ðpÞa the graph obtained from GðpÞa by reversing all

its edges.

Then, the computation of the bounds for the co-
occurrence of any activity b with the patter p is
carried out by means of the function
compute_frequency_boundsðWSðpÞF; apÞ. This func-
tion will be simply denoted in the follows as
compute_frequency_boundsðWSF; pÞ.
Example 15. Let us consider the patterns p5 and p6 of
Fig. 4. According to the workflow schema shown in
Fig. 2, INBORDERðp5Þ ¼ fmg and INBORDERðp6Þ ¼ fog.
By adding the dummy nodes ap5 and ap6 , we obtain
the following induced subgraphs:

a

c

g

m

b

ap5

a

d

e

l

i

h

o ap6

By construction, we have f ðap5 Þ ¼ f ðp5Þ ¼ 4
and f ðap6Þ ¼ f ðp6Þ ¼ 3. Moreover, given that
jINBORDERðp5Þj ¼ jINBORDERðp6Þj ¼ 1, it is not diffi-
cult to check that lower bounds and upper bounds
for co-occurrences for p5 and p6 with other activities
coincide with those computed when the co-occur-
rences for activities m and o are considered. That is,
by means of the invocation of compute_frequency_
boundsðWSðpÞF; ap5 Þ, we obtain up5 ðxÞ ¼ umðxÞ and
lp5 ðxÞ ¼ lmðxÞ for each x 2 Gðp5Þap5

; whereas, by
means of compute_frequency_boundsðWSðpÞF; ap6Þ

we get up6 ðxÞ ¼ uoðxÞ and lp6ðxÞ ¼ loðxÞ for each
x 2 Gðp6Þap6

.

The correctness of the approach is stated by the
following result.

Theorem 16. Let WS be a workflow schema, F be a

set of instances, and be p a pattern. For any activity b,
let lap

ðbÞ and uap
ðbÞ be the lower and upper bound of the

occurrence of activity ap together with b, computed by

means of the algorithm compute_frequency_
boundsðWSðpÞF; apÞ. Then, lap

ðbÞ and uap
ðbÞ are

indeed lower and upper bounds for f pðbÞ.

Proof. We show by structural induction on the
topological sort hb0 ¼ ap; b1; . . . ; bni of nodes
in G

ðpÞap

that, for each bi 2 Gap
, it holds that

lap
ðbiÞpf pðbiÞpuap

ðbiÞ. For the base case b0 ¼ ap,
notice that ap is an and-join node reached by each
node b 2 INBORDERðpÞ. Hence, b0 is activated each
time all the elements in INBORDERðpÞ are activated.
Since each instance I including p must activate each
node in INBORDERðpÞ, I also activates ap. Hence,
f pðapÞ ¼ f ðapÞ. The thesis holds by observing that, by
construction, lap

ðapÞ ¼ uap
ðapÞ ¼ f ðapÞ ¼ f ðb0Þ.

ARTICLE IN PRESS
G. Greco et al. / Information Systems 32 (2007) 685–712700
For the inductive case, assume that lap
ðbjÞp

f pðbjÞpuap
ðbjÞ for 0pjoi. We prove now that

f pðbiÞpuap
ðbiÞ and f pðbiÞXlap

ðbiÞ. In order to
prove that f pðbjÞpuap

ðbjÞ, since f pðbiÞ is trivially
bounded by f ðbiÞ, it only remains to show that
UXf pðbiÞ—see, again, the bounds as for they
appear in Fig. 7. By inductive hypothesis, UXP

e¼ðbi ;cÞjc2CðbiÞ
minðf ðeÞ; f pðcÞÞ. Then, the thesis holds

by observing that for each instance I including both bi

and p there exists c 2 CðbiÞ such that both c and ðbi; cÞ
are included in I: in such a case, I contributes to f pðcÞ,
and hence

P
e¼ðbi ;cÞjc2CðbiÞ

minðf ðeÞ; f pðcÞÞ Xf pðbiÞ.
Finally, in order to prove that lap

ðbiÞpf pðbiÞ, two
cases have to be distinguished:
�
 bi 2 A^;_out . We show that f pðbiÞXmaxðL^1 ;L
_
1 Þ.

Indeed, if lap
ðbiÞ ¼ L^1 , then there exists c 2

CðbiÞ \ A^in such that lap
ðbiÞ ¼ lap

ðcÞ. By inductive
hypothesis, lap

ðbiÞ ¼ lap
ðcÞpf pðcÞ. But f pðcÞp

f pðbiÞ, since c 2 A^in and consequently each in-
stance executing c must also execute bi. If,
by the converse, lap

ðbiÞ ¼ L_1 , then there
exists c 2 CðbiÞ \ A_in such that lap

ðbiÞ ¼ lap
ðcÞ�P

e¼ðd ;cÞ2E^dabi
f ðeÞ. By inductive hypothesis,

lap
ðcÞp f pðcÞ, and consequently lap

ðbiÞpf pðcÞ�P
e¼ðd ;cÞ2E^dabi

f ðeÞ. The thesis holds by observing
that, since c 2 A_in, each instance passing from
both c and p either passes from bi or from some
other node d as a consequence, f pðcÞ�P

e¼ðd ;cÞ2E^dabi
f ðeÞpf pðbiÞ.
�
 bi 2 A�out. Again, we show that f pðbiÞXL^2 þ L_2 .

Indeed, each instance traversing both bi and p must
traverse exactly one bj 2 CðbiÞ. As a consequence,

f pðbiÞ ¼
P

bj2CðbiÞ\A^in
f pðbjÞþ

P
bj2C ðbiÞ \ A_in f j

where, for a given bj 2 CðbiÞ \ A_in, the term f j is

the number of instances traversing bi, bj and p.

Notice that f jX0 and f j must count at least f pðbjÞ �P
e¼ðd ;bj Þ2E^dabi

f ðeÞ instances: indeed, the latter is

the number of instances traversing both bj and p that

cannot enable other ancestors of bj than bi. The

thesis finally holds by observing that, by inductive
hypothesis, L^2p

P
bj2CðbiÞ\A^in

f pðbjÞ and L_2pP
bj2C ðbiÞ \ A_in fmaxð0; f pðbjÞ�

P
e¼ðd;bj Þ2E^dabi

f ðeÞÞg. &
4.4. Algorithm ws�-unconnected-find

After that the frequency bounds for a given pattern
(w.r.t. any activity) are computed, we can face the
most general problem. Let q be a pattern of WS
with frequency f ðqÞ and p be a pattern with frequency
f ðpÞ such that q and p are unconnected. A lower
bound and an upper bound for f pðqÞ are as follows:
�
 lpðqÞ ¼ maxð0;maxb2q flpðbÞ � ðf ðbÞ � f ðqÞÞg;
f ðqÞ � !

P
b2qðf ðqÞ � lpðbÞÞÞ
�
 upðqÞ ¼ minðf ðqÞ;minb2OUTBORDERðqÞ fupðbÞg;
f ðqÞ þ

P
b2q ðf ðqÞ � lpðbÞÞÞ.

Here, recall that OUTBORDERðpÞ refers to all the nodes
in q having outgoing edges in WS� q. The intuition
behind the above formulas is the following. The value
upðqÞ is obtained by taking into account the
contribution of each node b of q from which there
is a path to a node in p. However we may exclude
from the computation all internal nodes of q (i.e.,
those not in OUTBORDERðpÞ) as they are always
executed together with at least one node in
OUTBORDERðpÞ. Concerning the computation of lpðqÞ,
observe that there are at least lpðbÞ instances
executing b 2 q and p. So, as f ðbÞXf ðqÞ, there are
at least lpðbÞ � ðf ðbÞ � f ðqÞÞ instances connecting q

and p and executing b. It turns out that a suitable
lower bound is provided by the node exhibiting the
maximum such value.

Example 17. Let us consider again the patterns p4

and p5 of Fig. 4. According to the above formulas
and by considering the bounds shown in Example 15,
we obtain lp5 ðp4Þ ¼ 1 and up5ðp4Þ ¼ 2.

The correctness of the proposed bounds is stated
by the following theorem.

Theorem 18. Let WS be a workflow schema, F be a

set of instances, and p and q two patterns. Then, lpðqÞ

and upðqÞ are lower and upper bounds of f pðqÞ.

Proof. Let us first consider the expression for
the lower bound lpðqÞ. We first show that
f pðqÞXmaxb2q flpðbÞ � ðf ðbÞ � f ðqÞÞg. For b 2 q, let
us denote by f pðb j :qÞ the number of activities
executing both b and p, but not the entire q. Clearly,
the identity f pðbÞ ¼ f pðqÞ þ f pðb j :qÞ by definition.
Moreover, given that b is contained in q it follows
that f pðb j :qÞpf ðbÞ � f ðqÞ, where the term on the
right of the inequality is the number of instances
executing b but not the entire q. As a consequence,
f pðbÞpf pðqÞ þ ðf ðbÞ � f ðqÞÞ. By Theorem 16,
f pðbÞXlpðbÞ; thus, we obtain by simple algebraic
manipulations that lpðbÞ � ðf ðbÞ � f ðqÞÞpf pðqÞ. Fi-
nally, since the inequality holds for each b 2 q, we
obtain f pðqÞXmaxb2q flpðbÞ � ðf ðbÞ � f ðqÞÞg.

We now show that f pðbÞXf ðqÞ �
P

b2qðf ðqÞ�

lpðbÞÞ. Indeed, notice that each term of the form

ARTICLE IN PRESS
G. Greco et al. / Information Systems 32 (2007) 685–712 701
ðf ðqÞ � lpðbÞÞ with b 2 q is an upper bound on the
instances that execute q and for which the node b is
not executed with p. Therefore,

P
b2qðf ðqÞ � lpðbÞÞ is

an upper bound on the number of instance executing
q and not p; it follows that subtracting such a value
from f ðqÞ (total number of instances executing q), we
get an admissible lower bound for f pðqÞ.

Let us now consider the expression for the upper
bound upðqÞ. Assume again, for the sake of contra-
diction, that upðqÞof pðqÞ. There are three possible
scenarios only:
(1)
 upðqÞ ¼ f ðpÞ, which is impossible since we would
have f ðpÞof pðqÞ;
(2)
 upðqÞ ¼ minb2OUTBORDERðqÞfupðbÞg. In this case,

there exists a node b̄ in OUTBORDERðqÞ such that

upðqÞ ¼ upðb̄Þof pðqÞ. Due to the correctness of

the expression for upðb̄Þ, we have that:

f pðb̄Þpupðb̄Þof pðqÞ, which is impossible in its

turn, since each instance executing q activates b̄

by definition. P

(3)
 upðqÞ ¼ f ðqÞ þ b2q ðf ðqÞ � lpðbÞÞ. In this case,

observe that, since lpðqÞXf ðqÞ �
P

b2q ðf ðqÞ�

lpðbÞÞ, we have 2f ðqÞ � lpðqÞpupðqÞ. Recalling
that upðqÞof pðqÞ by hypothesis, we obtain
2f ðqÞ � lpðqÞof pðqÞ. Recall now that lpðqÞp
f pðqÞ, because of the first part of the proof.
Therefore, the above expression can be rewritten
as 2f ðqÞo2f pðqÞ. But this is a contradiction, since
each instance executing both q and p clearly
contributes to f ðqÞ (so that f pðqÞof ðqÞ). &
Generalized upper and lower bounds can be finally
used for pruning the search space of the ws-

unconnected-find algorithm. In fact, if for any two
patterns p and q such that upðqÞominSupp holds,
then it is always the case that p and q never occur
frequently together. Conversely, if lpðqÞXminSupp

then p and q can be combined into a pattern that is
frequent as well.

Thus, the algorithm ws-unconnected-find may be
optimized by incorporating the aforementioned ideas
in the algorithm ws�-unconnected-find, by suitably
adapting the procedures InitializeStructures, Upda-
teCandidateList and ComputeFrequentPatterns as
shown in Fig. 8.

Specifically, InitializeStructures computes the fre-
quency graph and all the frequency bounds for any
pattern, by exploiting the compute_frequency_bounds

algorithm. Procedure ComputeFrequentPatterns op-
timizes the computation of frequent patterns: it
exploits frequency bounds for statically detecting
frequent patterns in LF and unfrequent ones in LU ,
and verifies the frequency in the logF only for
patterns which cannot be tested with the frequency
bounds only (that is, all patterns in U � ðLF [LUÞ.

Finally, the UpdateCandidateList procedure re-
computes the set U of candidate patterns, by
additionally computing for each newly generated
candidate r ¼ p [q the values uqðpÞ and lqðpÞ, to be
exploited in the next stage for statically pruning the
list of candidates.

Example 19. Recall from Example 7 that L0 ¼

fp1; p4; p8g and C0 ¼ fp2; p3; p5; p6; p7g. Also, recall
that the ws-unconnected-find algorithm initially gen-
erates 12 candidates (cf. Example 7). Then, it can be
observed that in the first iteration of the ws�-
unconnected-find algorithm, the optimized Compute-
FrequentPatterns procedure of Fig. 8 removes from
the set U of candidates the unfrequent patterns
LU¼fp4[p2; p4 [p5; p4 [p6; p4 [p7; p8 [p2; p8 [p5;
p8 [p6; p8 [p7g, and the frequent ones LF ¼

fp1 [p2; p1 [p5g.

4.5. Dealing with loops

The ws�-unconnected-find algorithm depends on
the assumption that the control-flow graph is acyclic:
indeed, the proofs of the correctness results are based
on the fact that for any activity a, the graph Ga does
not contain a itself. As repetitions and loops often
occur in real-life workflows, it is relevant to show
that the scope of ws�-unconnected-find is not actually
limited as the algorithm can be adapted to deal with
cyclic control flows. The basic idea for performing
such an extension is to unfold cycles within the
instances of execution as informally discussed below.

Let T ¼ ft1; . . . ; tng be a log for a cyclic workflow
schema WS ¼ hA;E; a0;Fi. Let us assume for
simplicity that there exists only one cycle and it has
the format of a circuit, say ½a1; a2; . . . ; ak; a1—call
such activities cyclic. Then the activities a1; . . . ; ak

may occur several times in a same trace of T. Let n

be the maximum number of repetitions of the above
cycle over all the traces in T. We next build an
acyclic schema WSþ that, though different from
WS, is equivalent to it as far as the specific problem
of mining patterns of executions is concerned.

The set of activities in WSþ contains all the
acyclic activities of WS as well as nþ 1 distinct
copies of each cyclic activity ai, denoted by
ai½0; . . . ; ai½n. Edges of WSþ are defined as follows.

ARTICLE IN PRESS

Fig. 8. The ws�-unconnected-find ðF;WS;minSupp;CðFÞÞ algorithm.

G. Greco et al. / Information Systems 32 (2007) 685–712702
First, all the edges in WS among acyclic activities
are preserved in WS. Then, each edge in WS from
an acyclic activity to a cyclic one, say ðb; aiÞ, is
replaced by ðb; ai½0Þ. Further, for each edge in WS
from a cyclic activity to an acyclic one, say ðai; bÞ, and
for each j ¼ 0; . . . ; n, the edge ðai½j; bÞ is included in
WSþ if there is a trace t in T containing exactly j

repetitions of the cycle and ai is the last cyclic activity
in t. Finally, for each edge ðai; aiþ1Þ in the cycle and
for each j ¼ 0; . . . ; n, if there is a trace t in T
containing at least j occurrences of the sequence
½ai; aiþ1 then add ðai½j; aiþ1½j

0Þ, where j0 ¼ j þ 1 or j

depending whether aiþ1½0 precedes ai½0 in t or not.
As an example, the Fig. 9(b) shows the control flow
obtained by applying the procedure above to the
graph in Fig. 9(a) for a log T with n ¼ 2.

5. System architecture and experiments

All the algorithms proposed in the paper have been
implemented and integrated into a stand-alone system
architecture developed in Java. In this section, we shall
first discuss this architecture, and subsequently evalu-
ate over it the effectiveness of our approach, by
studying in particular the behavior of the ws�-
unconnected-find algorithm and its pruning capabilities.
5.1. System architecture

The system architecture is sketched in Fig. 10.
Notably, it is organized around various knowledge
and data-bases that, in fact, guarantee the interoper-
ability of the different software components.

The knowledge bases are of two kinds: persistent
repositories and auxiliary volatile data structures.
The persistent repositories store the workflow sche-
mas, the logs and the patterns. In particular, the
schemas in the Schema Repository can be either
designed by means of a graphical User Interface or
imported by some external sources by means of
suitable Import/Export modules. Actually, these
modules are not meant to be integrated into our
system architecture, since they strongly depend on
the specific application needs and since our techni-
ques are to large extent independent on the specific
modelling language. However, while different parsers
are required for different source languages, their
design can be easily carried in many practical
scenarios, because of the choice of the internal
modelling language, which has been kept simple
and which just allows the basic features which are
common to most of the proposals in the literature
(recall that we basically need the control-flow graph

ARTICLE IN PRESS

(a) (b)

Fig. 9. Handling cyclic control-flow graphs.

Fig. 10. System architecture.

G. Greco et al. / Information Systems 32 (2007) 685–712 703
only). Similarly, the Log Repository stores traces
imported by external sources or generated by means
of a Simulation Engine, which will be in-depth
discussed in Section 5.2. Finally, the Pattern Repo-

sitory stores all the patterns extracted through
workflow mining tasks.

While persistent repositories are conceived to
interact with the user, volatile data structures are
devoted to guarantee effectiveness and performances
of the implemented mining algorithms described in
the previous sections. Indeed, logs are not imported
in main memory as a whole. Rather, a Log Handler is
responsible of sequentially (on-demand) reading
some desired set of traces, so that the Instance

Builder module can translate them into instances (see
Section 2) and store them into main memory. Also,
patterns discovered by means of the mining algo-
rithms are handled in main memory so that they can
be navigated by means of the User Interface, and they
can be possibly stored on the repository.

The core of the architecture consists of the mining
module. For the sake of clarity and conciseness, the
basic components of the mining module are labelled
with the names of the algorithms and procedures
previously presented in the paper. Thus, the w-find

(resp. ws-unconnected-find) module is devoted for
discovering a frequent connected (resp. unconnected)
patterns, by implementing the techniques described
in the previous sections. In particular, w-find relies on
a Pattern Builder module which looks at the
structural specification of the process and performs
levelwise search of the space of all the possible
patterns. Each time a new pattern is discovered, a
Frequency Checker module is used to assess whether
the patter is frequent. Based on the connected
patterns discovered by w-find and kept in memory,
ws-unconnected-find starts composing patterns by
means of the Pattern Aggregator module. Eventually,
the Structural Optimizator module can help in
speeding up this process by performing the optimiza-
tions described in Section 4.4. Then, all the generated
patterns are again tested for their frequency by
means of the Frequency Checker.

An important aspect of our architecture is the
graphical User Interface which represents a very
intuitive front-end for the final user. The interface

ARTICLE IN PRESS
G. Greco et al. / Information Systems 32 (2007) 685–712704
relies on a Navigation Engine module providing
higher-level functionalities for browsing and exploit-
ing all the discovered knowledge and for reusing it in
the redesign/analysis phase of workflow. Two screen-
shots of this interface are reported in Fig. 11, which
basically report the workflow of Fig. 1 as for it is
modelled in the system. The workflow may be
modified in the central side of the screen in an
interactive way. Moreover, to help the user in dealing
with huge specifications, in the left-down side, a
zoom-in view of the workflow is provided, while in
the left-top side of the screen, all the elements
occurring in the workflow specification are listed.
Interestingly, the results of the mining algorithms are
provided to the user in an intuitive visual manner.
Indeed, after a mining algorithm is invoked by
setting some main parameters (e.g., in the bottom
of Fig. 11), the discovered patterns appear in a pop-
up list (e.g., in the top of Fig. 11), so that the current
selected pattern is evidenced in both the list and the
workflow (as a subgraph colored in blue) and it is
available for further analysis. For instance, it can be
saved in a jpeg format, or stored in the repository.

5.2. Simulation engine

An important module of our system architecture is
the simulation engine. Basically, it allows to generate
random instances and schemas over which mining
algorithms can be tested. Also, as a side function-
ality, mining synthetic data can serve the purpose of
identifying structural problems in the specifications.
Even though this is not the main aim of our
techniques (as discussed in Section 2), we believe
that this possibility is relevant for the case the schema
at hand has been designed by not considering
correctness constraints leading to effective checks.

Since the method for generating instances and
schemas suitable for the invocation of the w-find

algorithm has been discussed in [16], here we just
provide details on the generation of instances and
schemas suitable for testing ws-unconnected-find and
its optimized version. This generation can be tuned
according to
(1)
 the size of F,

(2)
 the average number d of frequent connected

patterns to use in the generation of frequent
unconnected patterns, and
(3)
 the average number u of frequent patterns to
exploit in the generation of unfrequent uncon-
nected patterns.
The main step in the whole process is the generation
of a schema containing the desired number of
frequent and unfrequent unconnected patterns. To
this purpose, we first generate a set S containing d

connected frequent patterns, where each pattern p 2

S has a frequency f p associated (which is greater than
a fixed frequency threshold). These patterns are the
basic components of the workflow schema, and their
composition shall define the structure of unconnected
patterns.

Frequent unconnected patterns are generated
according to the following strategy. Iteratively, a
pair p; q of patterns is randomly picked from S and
merged into r ¼ p [q. Then, r is then relabelled and
added to S, while p and q are retained in S with
probability pf . Precisely, r is obtained by connecting
OUTBORDERðpÞ to INBORDERðqÞ in such a way that p [

q is frequent but unconnected. Let f p and f q be the
frequencies of p and q, respectively. Each node in
OUTBORDERðpÞ is connected to a new node
a 2 A_in \ A�out. Similarly, a new node b 2 A_in \ A�out

is connected to each node in INBORDERðqÞ. Then, f r

(the total number of instances involving either p or q

is then set to maxðf p; f qÞ, and a connection between a

and b is set by adding at most n ¼ minðf p; f qÞ

unfrequent nodes to r, and by connecting a and b

by means of paths traversing such nodes. Further
nodes can be connected either to a or b in order to
retain frequencies.

Unfrequent unconnected patterns are built, start-
ing from frequent (either connected or unconnected)
patterns according to a similar strategy. Two
frequent patterns p and q randomly chosen from S

generate an unfrequent unconnected pattern r by
connecting OUTBORDERðpÞ and INBORDERðqÞ with
exactly one edge exhibiting a low frequency. Further
nodes are added and connected either to
OUTBORDERðpÞ or to INBORDERðqÞ in order to retain
frequencies. The resulting graph r still has
f r ¼ maxðf p; f qÞ, but p [q has frequency 1. Again,
p and q are retained into S with a fixed probability pu,
while r is added to S.

The above mentioned parameters u and d influence
the number of frequent and unfrequent unconnected
patterns to be generated. Starting from a set d of
connected patterns, unconnected frequent patterns
are generated until S reaches size u. Thus, at the end
of this step S contains u components, each of
which composed by several unconnected frequent
patterns. These components are used to iteratively
generate unfrequent unconnected patterns, until a
single graph is obtained. In order to limit the growth

ARTICLE IN PRESS

Fig. 11. Screenshots of the graphical User Interface.

G. Greco et al. / Information Systems 32 (2007) 685–712 705
of the graph, pu and pf are maintained relatively low
(typically, pf ¼ pu ¼ 0:2). Finally, the desired in-
stances are generated from the graph, by taking
into account the frequency requirement of each node
and edge.

Fig. 12 shows an example schema generated by
fixing d ¼ 20 and u ¼ 10. As we can see, exclusive-fork
nodes are extensively exploited to build both frequent
and unfrequent unconnected patterns. Despite its
apparent complexity, the schema exhibits several
regularities in the form of ‘‘diamond connections’’
(i.e., groups of paths starting from the same exclusive-
fork node and ending in the same or-join node).

On the basis of the above described generation
procedure, we can expect that the larger is the
difference between d and u, the higher is the number
of unconnected frequent patterns contained within
synthesized data. On the other side, the lower is the
difference, the higher is the number of unconnected
unfrequent patterns. It is worth noticing that the
workflow topology (number of nodes and node
connectivity) is directly influenced by the above

ARTICLE IN PRESS
G. Greco et al. / Information Systems 32 (2007) 685–712706
parameters. Indeed, at each step, the generation of a
new component introduces new nodes, and the degree
of each node in the border of the involved compo-
nents is increased. For example, by fixing d ¼ 15 and
ranging u from 2 to 14, we obtain workflow schemas
whose size ranges from 45 to 90 nodes and from 1300
to 5000 edges. Moreover, by ranging d from 10 to 40
we obtain schemas whose size ranges from 30 to 400
nodes, and from 500 to 105 edges. Notice also that the
frequency of each unconnected frequent pattern is
related to the number of unfrequent components and
the number of desired total instances. Indeed, if u is
the desired number of frequent unconnected patterns
to compose infrequently, the number of instances in
F necessary to compose them with frequency at least
f is jFj � u� f .

5.3. Results

We conducted a number of experiments aimed at
evaluating whether the computation of upper and
lower bounds avoids the generation of unnecessary
candidate patterns to check for frequency against the
log data. Actually, it is not our objective to compare
Fig. 12. An example
the proposed approach with existing general purpose
graph-based mining techniques. Indeed, it has been
already shown in [16] that specialized algorithms
(including w-find), specifically designed to handle
workflow constraints, can significantly outperform
traditional graph mining approaches, even when they
are suitably reengineered to cope with workflow
instances. Rather, our aim is to study the behavior of
the ws-unconnected-find algorithm and, specifically,
to evaluate whether the optimization proposed for
the procedures InitializeStructures, UpdateCandida-
teList and ComputeFrequentPatterns are effective in
practice.

In a first set of experiments, we evaluated the
ratio f ¼ ncc=ncp between the number ncc of candi-
date patterns checked against the logs and the
total number ncp of candidate patterns. Low values
of f represent a higher pruning capability of
the algorithm ws�-unconnected-find w.r.t ws-uncon-

nected-find. Fig. 13(a) shows the behavior of f for
d ¼ 10, minSupp ¼ 5% and increasing values of jFj
and u. As we can see, f is quite low, except
when u ¼ 8. Figs. 13(c) and (d) exhibit the number
of unfrequent and frequent unconnected patterns
synthetic schema.

ARTICLE IN PRESS
G. Greco et al. / Information Systems 32 (2007) 685–712 707
discovered by resorting to upper and lower bounds,
respectively.

Fig. 13(b) exhibits the ratio f for increasing values
of minSupp and u, when jFj ¼ 1:000 and d ¼ 15.
Peaks within the graphs are mainly due to the fact
that we are mining unconnected components: at
lower support values, patterns are mined as frequent
connected (indeed, the frequency of paths connecting
the components is greater than the given threshold).
As soon as support threshold increases, a higher
number of unconnected frequent patterns is detected
by the algorithm. Despite of these irregularities, we
can notice that increasing values of u influence the
pruning ability. In particular, by Figs. 14(a) and (b)
we can see that, with high values of u, upper bounds
provide substantial pruning ability. Again, the peaks
in Fig. 14(b) find their explanation in the transfor-
mation of unconnected patterns into connected
patterns.
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

|F|

f

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

1000

2000

3000

4000

5000

6000

7000

|F|

U
nf

re
qu

en
t c

an
di

da
te

s

u=2
u=4
u=6
u=8

(a)

(c)

u=2
u=4
u=6
u=8

Fig. 13. Performance graphs: (a) ratio f , increasing values of jFj and

upper bound, for increasing values of jFj and u; (d) pruning by lowe
Figs. 15(a) and (b) reports the pruning capabilities
of the algorithm (formally, the number of pruned
unfrequent and frequent patterns, respectively) for
increasing values of minSupp and d, with u fixed to 2
and jFj to 1.000. As a matter of fact, upper bounds
have high pruning capabilities that appear to be
independent of minSupp, to large extent. However,
for high values of minSupp, upper bounds seems to
be not effective. Interestingly (but not surprisingly),
results for lower bounds (cf. Fig. 15(b)) are dual;
indeed, lower bounds appears to be quite effective at
high values of minSupp, when several disconnections
among frequent patterns are guaranteed to exists
with high probability. Therefore, the combination of
the two bounds guarantees that ws�-unconnected-find

is able to significantly prune the search space, no
matter of the required frequency threshold.

As a final remark, it is worth mentioning that
upper bounds tend to be effective in the first steps of
5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

minSupp

f

u=2
u=4
u=6
u=8
u=10
u=12
u=14

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

200

400

600

800

1000

1200

1400

1600

1800

|F|

F
re

qu
en

t c
an

di
da

te
s

(b)

(d)

u=2
u=4
u=6
u=8

u; (b) ratio f , increasing values of minSupp and u; (c) pruning by

r bound, for increasing values of jFj and u.

ARTICLE IN PRESS

5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

minSupp

un
fr

eq
ue

nt
 c

an
di

da
te

s

u=2
u=4
u=6
u=8
u=10
u=12
u=14

5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

1400

minSupp

fr
eq

ue
nt

 c
an

di
da

te
s

u=2
u=4
u=6
u=8
u=10
u=12
u=14

(a) (b)

Fig. 14. Pruning effectiveness, for increasing values of minSupp and u: (a) pruning by upper bound; (b) pruning by lower bound.

G. Greco et al. / Information Systems 32 (2007) 685–712708
the algorithm (i.e., in the computation of Lk for
low values of k), whereas lower bounds effectiveness
distributes throughout the entire execution of
the algorithm. Fig. 16 shows an example distribution
for d ¼ 15 and different values of u, with
minSupp ¼ 5%.

6. Related work: workflow mining and graph mining

The natural representation of a workflow execu-
tion as a directed graph (in which nodes represent the
activities, and edges represent the relationships
between them) can in principle allow to tackle the
FUPD problem by exploiting graph-based structure
mining techniques, for identifying frequent substruc-
tures in a given graph dataset [39]. Notably, these
techniques represent the most related literature for
our research, as no specific proposal for mining
complex patterns in workflows has been proposed so
far. Therefore, we shall next review and discuss some
graph-mining approaches, which are receiving more
and more attention because of their interesting
applications in web analysis and in bioinformatics.

Typically, the approaches proposed in the litera-
ture rely on a representation of the available data as a
set of labelled graphs fGkðVk;Ek; lkÞjk ¼ 1; . . . ; ng
where Vk and Ek represent nodes and arcs,
respectively, and lk represents a mapping from nodes
(or, in some approaches, edges) to labels. Then,
they investigate the task of discovering the subgraphs
occurring at least in a fixed fraction of
fGkðV k;Ek; lkÞj k ¼ 1; . . . ; ng. Seminal approaches to
graph mining exploit multi-relational techniques [40],
by combining the modelling capability of first-order
logic programming with some smart strategies for
exploring the search space. However, these solutions
turned out to be effective only to some extent,
because of their limits in properly facing some of the
peculiarities and of the challenges related to graph
mining. In fact, in order to efficiently face the
problem of discovering frequent substructures from
a set of graphs, mining algorithms have been
subsequently proposed that comply with the follow-
ing key requirements, which are specific for graph
mining purposes:
(1)
 large graphs must only be considered after small
graphs;
(2)
 each graph must be considered exactly once.
The first point has been conveniently addressed in the
literature by means of a levelwise refinement
approach, and by exploring the search space by
either a breadth-first search [36,41,42], or a depth-
first search [43–46]. Instead, the second point turned
out to be more challenging. Indeed, in order to
ensure that a given graph is not considered twice, one
has to check whether the graph to hand is isomorphic
to some previously processed graph. However, when
different nodes/edges can share the same label,
checking for graph isomorphism becomes a difficult
problem for which no polynomial-time algorithm is
known and for which, therefore, suitable heuristics
have to be conceived.

In the current literature, the issue of processing
each graph once is tackled be means of a generate-
and-test approach. Firstly, a normal form is asso-
ciated with each graph (which is therefore encoded in
a different data-structure), and a criterium for sorting
these encodings is devised. Interestingly, encodings
are defined such that their comparison can be
efficiently done, and such that isomorphic graphs

ARTICLE IN PRESS

10 15 20 25 30 35 40
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

U
nf

re
qu

en
t c

an
di

da
te

s

d

minSupp=5
minSupp=10
minSupp=15
minSupp=20
minSupp=25
minSupp=30
minSupp=35
minSupp=40
minSupp=45
minSupp=50

10 15 20 25 30 35 40
0.0

2000.0

4000.0

6000.0

8000.0

10000.0

12000.0

14000.0

16000.0

18000.0

20000.0

d

F
re

qu
en

t c
an

di
da

te
s

minSupp=5
minSupp=10
minSupp=15
minSupp=20
minSupp=25
minSupp=30
minSupp=35
minSupp=40
minSupp=45
minSupp=50

(a) (b)

Fig. 15. Pruning effectiveness, for increasing values of d and minSupp: (a) pruning by upper bound; (b) pruning by lower bound.

1 2 3 4 5 6 7
0

500

1000

1500

2000

2500

Iteration

un
fr

eq
ue

nt
 c

an
di

da
te

s

d=15,u=6
d=15,u=8
d=15,u=10
d=15,u=12
d=15,u=14

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

Iteration

fr
eq

ue
nt

 c
an

di
da

te
s

d=15,u=6
d=15,u=8
d=15,u=10
d=15,u=12
d=15,u=14

(a) (b)

Fig. 16. Distribution of pruning abilities along the iterations: (a) pruning by upper bound; (b) pruning by lower bound.

G. Greco et al. / Information Systems 32 (2007) 685–712 709
have the same set of possible encodings. Then, once a
new graph is generated and suitably encoded, an
exhaustive procedure is used for determining whether
another encoding has been already stored which can
be associated to the graph and which precedes the
current encoding according to the sorting criterium.
Graphs for which this encoding exists are discarded.
Normal forms often rely on graph invariants, i.e.,
properties which characterize the topological struc-
ture of a graph. Graph invariants are easier to
compare, and usually are identical for isomorphic
graphs. Indeed, the various approaches in the
literature differ in the definition of the invariants as
well in the strategy adopted for generating candi-
dates. Examples of graph invariants are DFS codes
[43,45] and canonical representations of the adja-
cency matrix [41,42,44].
Given the existence of these techniques, the reader
may now wonder whether they can be adopted to
deal with the problem of mining frequent workflow
instances. Clearly enough, this is possible after some
modifications are performed in order to fit the
peculiarities of the specific applicative domain of
workflow systems. Nonetheless, there are some issues
which make the aforementioned approaches unprac-
tical, and which are discussed below.
�
 First, in a workflow setting each node represents a
distinct object, that is, a distinct activity; therefore,
no two nodes may share the same label. This fact
makes the graph isomorphism problem easier than
in the general case, since simple heuristics can be
detected to cope with. Therefore, more efficient
algorithms can be devised.

ARTICLE IN PRESS
G. Greco et al. / Information Systems 32 (2007) 685–712710
�
 Second, the generation of patterns with (general
purposes) graph-based approaches would not
benefit of the exploitation of the execution
constraints imposed by the workflow schema,
such as precedences among activities, synchroni-
zation and parallel executions of activities (see,
e.g., [7,14,11]). By contrast, it has been shown in
[16], that specialized algorithms capable of hand-
ling such constraints can significantly outperform
traditional graph mining approaches, even when
they are suitably reengineered to cope with work-
flow instances.

�
 Third, all these approaches are able to discover

connected patterns only. Thus, they do not cover
the case of both connected and disconnected
patterns. To the best of our knowledge, the only
approach suitable for such a general task is [47],
where patterns to be discovered may include
wildcards. But again, this approach would not
benefit of the specific constraints which can be
defined over a workflow schema.

Before leaving this section, we discuss some further
works which are related, even though in an indirect
manner, to our research. First, the solutions pro-
posed in this paper share some similarities with the
approach recently developed in [48], for the problem
of mining frequent itemsets (i.e., set of items). Indeed,
Calders [48] argued that the use of frequency bounds
for itemsets may significantly reduce the access to the
database to count their actual number of occur-
rences. However, frequency bounds are only com-
puted on the basis of the antimonotonicity property of
the a priori algorithm, and strongly rely on the
assumption of knowing the supports of all the
subsets of a given itemset. For instance, by knowing
the frequencies for itemsets fAg, fBg, fCg, fA;Bg,
fB;Cg, and fA;Dg, the set of rules in [48] are able to
deduce possibly useful bounds for the itemset
fA;B;Cg; however, given the frequencies for itemsets
fA;Bg and fC;Dg only, rules in [48] cannot derive
non-trivial bounds for fA;B;C;Dg. Our approach is,
instead, specifically tailored for solving such circum-
stances. Indeed, it is able to deduce tight bounds for
unconnected patterns on the basis of the knowledge
of the frequencies of its connected components and
of its atomic constituents (nodes and edges), only.
Clearly, this is possible by exploiting some structural
information (defined over the workflow schema)
which is instead missing for the itemset mining
problem. And, in fact, finding deduction rules for
situations in which some of the subsets are missing,
and when we only have partial knowledge of the
supports has been left as an open problem in [48].

Finally, it is very relevant to note that a different,
more traditional way of applying mining techniques
in workflow systems consists in exploiting the
information collected during the enactment of a
process not yet supported by a WfMS (e.g., the
transaction logs of ERP systems like SAP) to derive a
model explaining all the recorded events [10–13].
Indeed, creating a work-flow design is a complicated
time-consuming process and typically there are
discrepancies between the actual work-flow processes
and the processes as perceived by the management
(cf. [10]). Accordingly, some specialized mining
techniques have been devised in the literature which
start by gathering information about the work-flow
processes as they take place, rather than with a work-
flow design, and address the problem of extracting
the ‘‘hidden’’ model underlying the stored low-level
data (e.g., transaction logs). Possibly, their output,
i.e., the ‘‘mined’’ synthetic model, is used to (re)de-
sign a detailed workflow schema, capable of support-
ing automatic further enactments of the process.
Therefore, these kinds of technique, called process

mining techniques in the literature, are completely
orthogonal with the techniques discussed in the
paper, since they offer a valuable support at design
time, rather than in the enactment phase.

7. Conclusion

In this paper we have addressed the problem of
mining frequent unconnected workflow patterns.
Basically frequent unconnected patterns are sets of
connected patterns that frequently occur together in
some log data (this may happen whenever the paths
between the components fail to be frequent, e.g.,
because there are two or more alternative paths each
one being unfrequent). Since each pattern represents
a set of activities that are frequently executed
together and may be abstractly seen as a subprocess
in the workflow schema, unconnected patterns can be
used by the system administrator to identify inter-
esting and useful correlations among subprocesses
which are apparently not related with each other.
This information is useful to gain further semantic
knowledge about the process.

To face the problem, we have proposed two
algorithms which take benefit of the peculiarities of
the application. The ws-unconnected-find algorithm
takes into account information about the structure of
the workflow, only. The ws�-unconnected-find

ARTICLE IN PRESS
G. Greco et al. / Information Systems 32 (2007) 685–712 711
algorithm is a smart refinement where the knowledge
of the frequencies of edges and activities in the
instances at hand is also accounted for, in order to
prune the search space of candidate patterns. The
refinement has been made possible by means of the
exploitation of some graph-theoretic techniques
which allow to deduce tight bounds for the co-
occurrences of patterns without resorting to the log.
The correctness of both algorithms is formally
proven, and several experiments evidence the ability
of the graphical analysis to significantly improve the
performances.

We conclude by observing that models proposed in
this paper are essentially propositional models, for
they assume a simplification of the workflow schema
in which many real-life details are omitted. However,
we believe that it can be very useful to enhance the
models to cope with more complex constraints, such
as time constraints, and rules, e.g., for exception
handling. Designing data mining techniques looking
at workflows under both the data and the control-
flow perspective is left as subject for further research.
Also, as another avenue of further research, it would
be interesting to asses whether some of the observa-
tions and techniques exploited in the paper can be
used for performing similar optimizations in different
contexts in which the model for the data is assumed
to be a graph [42,36,49].
References

[1] A. Bonifati, F. Casati, U. Dayal, M.C. Shan, Warehousing

workflow data: challenges and opportunities, in: Proceedings

of the 27th International Conference on Very Large Data

Bases (VLDB’01), 2001, pp. 649–652.

[2] U. Dayal, M. Hsu, R. Ladin, Business process coordination:

state of the art, trends and open issues, in: Proceedings of the

27th International Conference on Very Large Data Bases

(VLDB’01), 2001, pp. 3–13.

[3] M. Sayal, F. Casati, U. Dayal, Ming-Chien Shan, Integrating

workflow management systems with business-to-

business interaction standard, in: Proceedings of the 18th

International Conference on Data Engineering (ICDE’02),

2002, pp. 287–296.

[4] M. Weske, G. Vossen, C. Bauzer Medeiros, F. Pires,

Workflow management in geoprocessing applications, in:

Proceedings of the Sixth ACM International Symposium on

Advances in Geographic Information Systems (GIS’98), 1998,

pp. 88–93.

[5] M. Castellanos, F. Casati, M.-C. Shan, U. Dayal, ibom: a

platform for intelligent business operation management, in:

Proceedings of the 21th International Conference on Data

Engineering (ICDE’05), 2005, pp. 1084–1095.

[6] M. Gillmann, W. Wonner, G. Weikum, Worklow manage-

ment with service quality guarantee, in: Proceedings of the
ACM Conference on Management of Data (SIGMOD02),

2002, pp. 228–239.

[7] P. Koksal, S.N. Arpinar, A. Dogac, Workflow history

management, SIGMOD Recod 27 (1) (1998) 67–75.

[8] W. van der Aalst, M. Weske, D. Grunbauer, Case handling: a

new paradigm for business process support, Data Knowledge

Eng. 53 (2) (2005) 129–162.

[9] M. Weske, W. van der Aalst, H.M.W. Verbeek, Advances in

business process management, Data Knowl. Eng. 50 (1)

(2004) 1–8.

[10] W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L.

Maruster, G. Schimm, A.J.M.M. Weijters, Workflow mining:

a survey of issues and approaches, Data Knowl. Eng. 47 (3)

(2003) 237–267.

[11] J.E. Cook, A.L. Wolf, Automating process discovery through

event-data analysis, in: Proceedings of the 17th International

Conference on Software Engineering (ICSE’95), 1995,

pp. 73–82.

[12] W.M.P. van der Aalst, A. Hirnschall, H.M.W. Verbeek, An

alternative way to analyze workflow graphs, in: Proceedings

of the 14th International Conference on Advanced Informa-

tion Systems Engineering, 2002, pp. 534–552.

[13] R. Agrawal, D. Gunopulos, F. Leymann, Mining process

models from workflow logs, in: Proceedings of the Sixth

International Conference on Extending Database Technology

(EDBT’98), 1998, pp. 469–483.

[14] W.M.P. van der Aalst, K.M. van Hee, Workflow Manage-

ment: Models, Methods, and Systems, MIT Press, Cambridge,

2002.

[15] G. Keller, M. Nüttgens, A.W. Scheer, Semantische Process-

modellierung auf der Grundlage Ereignisgesteuerter Process-

ketten (EPK), Veröffentlichungen des Instituts für

Wirtschaftsinformatik (iWi), Heft 89, University of Saarland,

1992.

[16] G. Greco, A. Guzzo, G. Manco, D. Saccà, Mining and

reasoning on workflows, IEEE Trans. Knowl. Data Eng. 17

(4) (2005) 519–534.

[17] R. Agrawal, R. Srikant, Fast algorithms for mining associa-

tion rules, in: Proceedings of the 20th International Con-

ference on Very Large Databases, 1994.

[18] L. Fisher (Ed.), Workflow Management Coalition, Workflow

Handbook 2003, Future Strategies, Lighthouse Point, Flor-

ida, 2003.

[19] J. Hernandez, The SAP R/3 Handbook, 1997.

[20] A.W. Scheer, Business Process Engineering, ARIS-Navigator

for Reference Models for Industrial Enterprises, Springer,

Berlin, 1994.

[21] W.M.P. van der Aalst, Formalization and Verification of

Event-driven Process Chains, Computing Science Reports

98/01, Eindhoven University of Technology, Eindhoven, 1998.

[22] W.M.P. van der Aalst, The application of petri nets to

workflow management, J. Circuits Syst. Comput. 8 (1) (1998)

21–66.

[23] A. Bonner, Workflow, transactions, and datalog, in: Proceed-

ings of the 18th ACM Symposium on Principles of Database

Systems (PODS’99), 1999, pp. 294–305.

[24] H. Davulcu, M. Kifer, C.R. Ramakrishnan, I.V. Ramakrish-

nan, Logic based modeling and analysis of workflows, in:

Proceedings of the 17th ACM Symposium on Principles of

Database Systems (PODS’98), 1998, pp. 25–33.

[25] D. Wodtke, G. Weikum, A formal foundation for distributed

workflow execution based on state charts, in: Proceedings of

ARTICLE IN PRESS
G. Greco et al. / Information Systems 32 (2007) 685–712712
the Sixth International Conference on Database Theory

(ICDT’97), 1997, pp. 230–246.

[26] D. Wodtke, J. Weissenfels, G. Weikum, A. Dittrich, The

Mentor project: steps towards enterprise-wide workflow man-

agement, in: Proceedings of the IEEE International Conference

on Data Engineering (ICDE’96), 1996, pp. 556–565.

[27] G. Kappel, P. Lang, S. Rausch-Schott, W. Retschitzagger,

Workflow management based on object, rules, and roles,

IEEE Data Eng. Bull. 18 (1) (1995) 11–18.

[28] M.P. Sing, Semantical considerations on workflows: an

algebra for intertask dependencies, in: Proceedings of the

International Workshop on Database Programming Lan-

guages (DBPL’95), 1995, pp. 6–8.

[29] F. Casati, S. Ceri, B. Pernici, G. Pozzi, Conceptual modeling

of workflows, in: Advances in Object-Oriented Data Model-

ing, MIT Press, Cambridge, 2000, pp. 281–306.

[30] D. Georgakopoulos, M. Hornick, A. Sheth, An overview of

workflow management: from process modeling to workflow

automation infrastructure, Distributed and Parallel Data-

bases 3 (2) (1995) 119–153.

[31] H. Schuldt, G. Alonso, C. Beeri, H. Schek, Atomicity and

isolation for transactional processes, ACM Trans. Database

Syst. 27 (1) (2002) 63–116.

[32] W. van der Aalst, A. Hofstede, Yawl: yet another workflow

language, 2002.

[33] Wil van der Aalst, Jörg Desel, Ekkart Kindler, On the

semantics of EPCs: a vicious circle, EPK 2002, Geschäft-

sprozessmanagement mit Ereignisgesteuerten Prozessketten,

2002, pp. 71–79.

[34] IDS Scheer, Aris process performance manager (aris ppm):

measure, analyze and optimize your business process perfor-

mance (whitepaper). Saarbruecken, Germany, hhttp://

www.ids-scheer.comi, 2002.

[35] B.F. van Dongen, W.M.P. van der Aalst, Multi-phase process

mining: building instance graphs, in: Proceedings of the

Conceptual Modeling—ER 2004, 2004, pp. 362–376.

[36] A. Inokuchi, T. Washi, H. Motoda, An a priori-based

algorithm for mining frequent substructures from graph data,

in: Proceedings of the Fourth European Conference on

Principles of Data Mining and Knowledge Discovery, 2000,

pp. 13–23.

[37] W. Aalst, A. van der, B. Hofstede, A. Kiepuszewski,

Advanced workflow patterns, in: O. Etzion en, P. Scheuer-

mann (Ed.), Seventh International Conference on Coopera-
tive Information Systems (CoopIS 2000), Lecture Notes

in Computer Science, vol. 1901, Springer, Berlin, 2000,

pp. 18–29.

[38] W.M.P. Van der Aalst, A.H.M. Ter Hofstede, B. Kiepus-

zewski, A.P. Barros, Workflow patterns, Distributed Parallel

Databases 14 (1) (2003) 5–51.

[39] T. Washio, H. Motoda, State of the art of graph-based data

mining, SIGKDD Explorations 5 (1) (2003) 59–68.

[40] L. Dehaspe, H. Toivonen, Discovery of frequent DATALOG

patterns, Data Min. Knowl. Discovery 3 (1) (1999) 7–36.

[41] A. Inokuchi, T. Washi, H. Motoda, Complete mining of

frequent patterns from graphs: mining graph data, Mach.

Learn. (2003) 321–354.

[42] M. Kuramochi, G. Karypis, Frequent subgraph discovery, in:

Proceedings of the IEEE International Conference on Data

Mining (ICDM’01), 2001, pp. 313–320.

[43] X. Yan, J. Han, gSpan: graph-based substructure pattern

pining, in: Proceedings of the IEEE International Conference

on Data Mining (ICDM’02), 2001, pp. 721–724.

[44] J. Huan, W. Wang, J. Prins, Efficient mining of frequent

subgraph in the presence of isomorphism, in: Proceedings of

the Third IEEE International Conference on Data Mining

(ICDM’03), 2003, pp. 549–552.

[45] X. Yan, J. Han, CloseGraph: mining closed frequent graph

patterns, in: Proceedings of ACM International Conference

on Knowledge Discovery and Data Mining (KDD’03), 2003,

pp. 286–295.

[46] S. Nijssen, J.N. Kok, A quickstart in frequent structure

mining can make a difference, in: Proceedings of the ACM

SIGKDD’05 Conference on Knowledge Discovery and Data

Mining, 2005.

[47] N. Vanetik, E. Gudes, Mining frequent labeled and partially

labeled graph patterns, in: Proceedings of the 20th Interna-

tional Conference on Data Engineering (ICDE’04), 2004,

pp. 91–102.

[48] T. Calders, Deducing bounds on the support of itemsets, in:

R. Meo, P. Lanzi, M. Klemettinen (Eds.), Database

Support for Data Mining Applications, Lecture Notes in

Artificial Intelligence, vol. 2682, Springer, Berlin, 2004,

pp. 214–233.

[49] M. Zaki, Efficiently mining frequent trees in a forest, in:

Proceedings of the Eighth International Conference on

Knowledge Discovery and Data Mining (SIGKDD02),

2002, pp. 71–80.

http://www.ids-scheer.com
http://www.ids-scheer.com

	Mining unconnected patterns in workflows
	Introduction
	Contributions and organization

	Workflow model and mining problems
	Workflow model: some preliminary observations
	Formal framework

	Mining unconnected patterns
	Optimizing candidate generation
	Overview of the approach
	Computing frequency bounds for activities
	Computing frequency bounds for patterns
	Algorithm ws^*-unconnected-find
	Dealing with loops

	System architecture and experiments
	System architecture
	Simulation engine
	Results

	Related work: workflow mining and graph mining
	Conclusion
	References

