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Abstract—We propose ARN, a semisupervised anomaly de-
tection and generation method based on adversarial reconstruc-
tion. ARN exploits a regularized autoencoder to optimize the
reconstruction of variants of normal examples with minimal
differences, that are recognized as outliers. The combination of
regularization and adversarial reconstruction helps to stabilize
the learning process, which results in both realistic outlier
generation and substantial detection capability. Experiments on
several benchmark datasets show that our model improves the
current state-of-the-art by valuable margins because of its ability
to model the true boundaries of the data manifold.

Index Terms—Anomaly Detection, Outlier Detection, Anomaly
Generation, Outlier Generation, Generative Adversarial Net-
works, Variational Autoencoders

I. INTRODUCTION

Anomaly detection is a prominent research topic in data
mining and machine learning that aims at discovering unex-
pected elements in data populations, with relevant applications
in several fields such as smart manufacturing, healthcare,
security and finance. Historically, this research task has been
extensively investigated and several methods have been pro-
posed that find outliers based on either statistical modeling
or spatial proximity [1]. In general, approaches to outlier
detection can be classified as supervised, semi-supervised, and
unsupervised.

Supervised methods exploit the availability of a labeled
data set, containing observations already labeled as normal
and abnormal, in order to build a model for the normal class.
Since usually normal observations are the great majority, these
data sets are unbalanced and specific classification techniques
must be designed to deal with the presence of rare classes.
Extreme class imbalance can hamper the discovery of local
patterns characterizing rare classes, thus impeding the learning
of effective models.

Non-supervised methods overcome these limitations as they
do not require prior information concerning the anomalous
examples. Semi-supervised methods typically assume that only
normal examples are given. The goal is hence to find a
partitioning of the domain space into dense accepting regions,
containing the normal objects, and sparse rejecting regions,
containing all the other objects significantly deviating from
normality [2]. By contrast, unsupervised methods make no
assumption on the class distribution and search for outliers in
an unlabelled data set by assigning to each example a score
which reflects its degree of abnormality.

In this paper we focus on semi-supervised anomaly detec-
tion with a slightly different objective: By exploiting only
the examples labeled as normal, can we build a model that

accurately characterizes both normal and abnormal behaviors?
In other words, for a given example, what is the core set of
relevant features characterizing the decision boundaries be-
tween normality and outlierness? This formulation resembles
the zero-shot learning approach that is gaining popularity in
computer vision and natural language processing [3]. The
focus is hence on methods that can explain the data by
generating feature representations of both seen and unseen
classes, which can hence be exploited to build a classifier
capable of discriminating among them. Probabilistic generative
models are the basic tool for achieving this.

Generative models for anomaly detection, based on latent
representations, are gaining substantial attention in the current
literature [4]–[8], due to their capabilities in modeling the
hidden causal relationships that ultimately characterize data.
The expressive representation schemes offered by deep net-
works [9], combined with sophisticated yet effective learning
mechanisms based on stochastic backpropagation, approxi-
mate Bayesian inference [10] and adversarial learning [11],
make these models extremely flexible and accurate in describ-
ing the properties of the data.

Despite their flexibility, the approaches proposed in the
current literature are still unable to supply realistic outlying
properties that can support the detection process. Typically,
generative methods tend to model the domain space via
biased probability distributions; here, anomalies can be re-
garded as samples lying in low-density regions within such a
probability space. However, within complex manifolds, over-
generalization can occur [12], thus hindering the capability
to detect realistic outliers: in such cases, only anomalies
with dramatically altered data properties turn out to be easily
identifiable. Generative adversarial learning methods mitigate
this issue with their capability to accurately reconstruct por-
tions of the true distribution. Still, they exhibit two potential
shortcomings. On one side, mode collapse and dropping can
prevent a faithful reconstruction [13], with the result that
normal samples can be deceived as outliers. On the other
side, the generated adversarial samples tend to overlap the
true distribution [14], with the consequence that the resulting
discriminator exhibits limited detection abilities besides trivial
outliers. The problem hence becomes: how to generate reliable
outliers that can support the discriminator in devising the
actual boundaries of a complex data manifold?

We claim that an effective anomaly detection and gener-
ation strategy can be obtained by (i) providing an efficient
exploration of the data manifold, and (ii) generating, for each
available normal sample, its abnormal counterpart. In practice,
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we aim at mapping each sample in a suitable latent feature
representation space, from which an alternative reconstruction
can be obtained with minimal but substantial differences from
the original sample. The mapping within the latent space can
be obtained in a controlled way by exploiting simple yet
effective regularization schemes [10], [15]. At the same time,
the adversarial reconstruction can enable the generation of data
that is still consistent with the underlying manifold, while at
the same time relating the latent representation to abnormal
behavior.

Our contributions can hence be summarized as follows:
• We propose a framework based on the combination of

variational autoencoders and adversarial learning with the
objective of generating realistic outliers supporting the
learning of an outlier detector. The framework relies es-
sentially on normal data but can be easily extended to also
take into account a limited amount of supervision. We
discuss different modeling alternatives for tackling this
task through the adoption of a neural network architecture
that models latent dependencies at different abstraction
levels.

• We evaluate the proposed framework on several bench-
mark datasets, by showing that: (a) the generated outliers
are realistic, as they resemble the original data and still
exhibit some specific features that the discriminator can
recognize; (b) the resulting anomaly detector is competi-
tive with the state of the art, robust to noise and capable
of taking advantage of the efficient exploration of the
entire data manifold in the learning process.

The rest of the paper is organized as follows. Section II
discusses the recent contributions in the current literature and
provides a systematic review of the approaches related to our
task of interest. Section III discusses the mathematical details
of our proposal. The effectiveness of the proposed model is
illustrated in section IV, and pointers to future developments
are discussed in section V.

II. RELATED WORK

We structure the analysis of the literature by considering
the tasks of outlier detection and generation. The former has
been extensively studied in the literature [16] and can be
characterized as a prediction problem: given an instance from
a specific domain space, the objective is to score its anomaly
likelihood. The latter is relatively new and has gained attention
with the recent spread of deep generative models [10], [11],
[17].

A. Outlier Detection

Anomaly detection is a challenging task due to the under-
lying class imbalance. To overcome this problem, most of
the proposed solutions are based on unsupervised or semi-
supervised approaches. Traditional non-supervised approaches
rely on one-class classification (e.g., One-class Support Vector
Machines [2]), distance-metrics (e.g. Isolation Forest [18])
or nearest neighbor algorithms [19]. Recently, deep anomaly
detection has emerged as a critical direction [9]. In particular,

autoencoders [20] have been extensively used for unsupervised
anomaly detection based on deep learning [21]–[25].

An autoencoder is a neural network that learns low dimen-
sional representations of the input data and, at the same time,
its reconstruction from such a reduced encoding that is as
close as possible to its original input. The core feature is the
capability of devising encodings that ignore the “signal noise”.
As a consequence, they can be naturally employed for anomaly
detection: Normal examples tend to map back to themselves,
while anomalous tuples tend to produce divergent reconstruc-
tions. In practice, for a given example x, the outlierness score
is given by the reconstruction error ‖x−D(E(x))‖, where E
and D represents the encoder and decoder components of the
autoencoder architecture.

Within an autoencoding framework, outlierness is typically
established on the basis of a pre-defined threshold T : If the
reconstruction error is higher than T the sample is labeled
as outlier. Tian, Zhou, Fan, et al. [26] propose a (weakly)
supervised anomaly detection approach that allows to identify
anomalies without the need for T . In particular, their model
is built upon an autoencoder which use two decoders, namely
inlier decoder (Din) and outlier decoder (Dout). The former
performs the reconstruction for inlier samples, while the
latter focuses on outlier samples. Both decoders work in a
competitive way as they both associate a reconstruction score
for the input samples. Unlabelled data are fed in both decoders
and they are labeled as either outliers or inliers, based on the
lowest reconstruction error.

Besides reconstruction error, an alternative emerging re-
search direction is the adoption of Generative Adversarial
Networks (GANs) [4] to directly embed the detection process
within a generative framework. GANs [11] estimate generative
models via an adversarial process, in which two models are
trained simultaneously. A generator G aims at capturing the
data distribution, while a discriminator D aims at estimating
the probability that an example came from the training data
(i.e. real data) rather than from the generated data (i.e. fake
data). To learn the generative distribution pG over the data, a
prior noise distribution is defined and then a mapping from
the prior noise distribution to the data space is learned. The
discriminator output is a single scalar value and it can be
interpreted as probability that the input sample came from the
real data rather than pG.

To the best of our knowlege, the first approach that com-
bines generative adversarial networks and outlier detection is
AnoGAN [27]. The model aims at learning a mapping from
the latent space to realistic (normal) samples. The mapping
procedure is defined as an iterative process: The goal is to find
a point z in the latent space corresponding to the generated
sample that is most similar to the input sample. The similarity
is computed as a combination of residual and feature matching
loss [28] and represents the anomaly score. The mapping is
devised as a sequence of backpropagation steps that make
the overall detection procedure inefficient. To overcome this
limitation, some variants [7], [29], [30] are proposed. For
example, ALAD [7] represents an improvement that, in ad-



dition to generator and discriminator, exploits an encoder to
refine the detection capabilities by discriminating the pair
(x,E(x)) versus (G(z), z). The underlying architecture also
tries to overcome the cycle-consistency problem [31], suffered
by architectures based on BiGAN [32], like [30].

GANomaly [5] combines adversarial learning and latent
representation through an encoding-decoding framework. The
model is composed by a generator and a discriminator, but the
generator consists of three components: an encoder-decoder
that maps the input samples into a latent space and back,
and a further encoder that is used to map the reconstruc-
tion of the decoder in the latent space. The anomaly score
is defined as the distance between the latent representation
of the input sample and that of the reconstruction. Akçay,
Atapour-Abarghouei, and Breckon [33] propose an extension
of GANomaly particularly suited for input data represented by
images. In such case in fact, the adoption of skip connections
can substantially improve the reconstruction and consequently
boost the detection abilities.

ADAE [34] models both the generator and the discriminator
as autoencoders. The reconstruction error of the discriminating
autoencoder represents the anomaly score. The claimed advan-
tage is that this choice allows the better split between normal
and anomalous scores, leading to superior performance.

Finally, a recent line of research is exploring the adoption
of ensemble architectures based either on autoencoders [35]
or GANs [36]. In general, ensembles can efficiently combine
baseline models and thus better model the distribution of
normal data. Ensembles are particularly effective with GANs,
where a group of generators and a group of discriminators can
be trained together, so that every generator gets feedback from
multiple discriminators, and vice versa.

B. Outlier Generation

The generation of artificial outliers can serve the double
purpose of testing outlier detection algorithms and aiding the
training phase. For example, the class imbalance can be solved
by generating artificial outlier that can be exploited to refine
the detection phase for real outliers.

In principle, probabilistic generative models can be easily
adapted to produce outliers, by sampling from low density re-
gions. For example, Laptev [8] proposes an approach based on
variational autoencoders to generate synthetic time series with
anomalies. The idea is to learn the latent space representation
of real data and then to generate anomalies by sampling from
the outlier region of the latent space. The problem with such a
naive approach is that, when the original data is characterized
by complex manifolds, overgeneralization is likely to weaken
the generation, as discussed in the introduction.

Rizzo, Pang, Chen, et al. [6] propose a (weakly) supervised
framework based on the detection and generation of outliers,
called WALDO (Wasserstein Autoencoder for Learning the
Distribution of Outliers) that combines the approach outlined
in [26] (discussed above) with Wasserstein autoencoders [17].
The basic assumption is that data is generated from an un-
known and unlabeled mixture of inlier and outlier distributions

(PuX = (1− v)P iX + vP oX ) and the goal is to learn generating
distributions P iG and P oG which minimize Wp(P

i
X , P

i
G) and

Wp(P
o
X , P

o
G). The approach requires that both examples from

PuX and P iX are provided in the training phase.
FenceGAN [14] extends the basic framework of GANs

by observing that the generated adversarial samples tend to
overlap the true distribution. As a consequence, they propose
a modification of the underlying adversarial framework to
devise a generator capable of generating samples lying on
the boundaries of the data distribution. The resulting learning
process yields a discriminator specifically tailored for “dif-
ficult” outliers. The problem with such an approach is that
the boundary is parameterized by a threshold representing
the discrimination uncertainty. The latter can be domain-
dependent and as a consequence tuning the relative threshold
can be difficult.

III. ADVERSARIAL RECONSTRUCTION NETWORKS

We structure our approach within a probabilistic framework
where, given x, y with x ∈ D and y ∈ {0, 1}, we would like
to devise a probability measure p(y|x) quantifying whether
x qualifies as anomalous (y = 1). Within a semi-supervised
setting, we assume that observable samples come from a
distribution PD such that x ∼ PD is associated with y = 0.
Our approach relies on three components. First, we devise a
probabilistic classifier pθ(y|x), which models the outlierness
degree and is parameterized by θ. This is the main expected
outcome of our framework, which is modeled as a deep neural
network classifier. However, our approach relies on learning
pθ(y|x) by only looking at samples from PD.

The learning process is based on an outlier generator gφ(·),
which starting from random noise z produces an outlier x̃ upon
which to train the classifier. In principle, within a standard
generative setting, it would suffice to jointly optimize φ and
θ to maximize the likelihood

Ex∼PD
[
log pθ(0|x)

]
+ E z∼N(0,I)

x̃∼gφ(z)

[
log pθ(1|x̃)

]
,

stating that the distribution Pφ (the distribution related to gφ)
differs substantially from the distribution PD of real data. This
simple approach has the shortcoming that a simple solution
would be a trivial generator gφ producing extreme values
without any informative value. By contrast, real life anomalies
can represent borderline situations, such as anomalous combi-
nations of eligible values within an observation. Essentially, a
generator gφ is informative when it is capable of generating
realistic anomalies that force pθ to detect relevant features
from PD to be exploited for classification purposes.

Based on the above intuition, we would like to devise a
generator that, starting from an x ∼ PD, generates a variant
x̃ which resembles x although representing an outlier. This
can be done by resorting to an encoder which can summarize
the relevant features of x, to be exploited afterwards for
reconstructing a suitable variant. We adopt a probabilistic
encoder qψ(z|x), which can be easily regularized to ensure



stability to the learning process. The objective function to
maximize can hence be rewritten as:

L(θ, φ, ψ) = Ex∼PD
[
log pθ(0|x)

]
+ E x∼PD

z∼qψ(·|x)
x̃∼gφ(z)

[
log pθ(1|x̃)

]

+ E x∼PD
z∼qψ(·|x)
x̃∼gφ(z)

[
log p(x|x̃)

]
+ Reg(qψ) .

(1)

The third term in the equation models the fact that it is possible
to easily reconstruct x from x̃: In practice, this means that both
x and x̃ are equally probable from the latent z. A justification
for the above loss can be seen in a variational setting. Consider
an observation x, y and consider all possible variants x̃ of x
for which the response is anomalous (i.e., ỹ = 1), then:

log p(x, y) = log

∫
p(x, y, x̃, ỹ) dx̃

= log

∫
p(x, y, x̃, ỹ, z) dx̃dz .

Consider now the decomposition p(x, y, x̃, ỹ, z) ≈
p(y|x) p(ỹ|x̃) p(x|x̃) p(x̃|z) p(z) and a proposal variational
distribution q(z|x). By way of the Jensen inequality, we have:

log p(x, y) ≥
∫
q(z|x)p(x̃|z) log p(y|x) dx̃dz

+

∫
q(z|x)p(x̃|z) log{p(ỹ|x̃)p(x|z)} dx̃dz

−
∫
q(z|x) log q(z|x)

p(z)
dz

= log p(y|x) + E z∼q(·|x)
x̃∼p(·|z)

[
log p(ỹ|x̃)

]
+ E z∼q(·|x)

x̃∼p(·|z)

[
log p(x|x̃)

]
−KL [q(z|x)‖p(z)] .

We finally obtain eq. 1 by averaging over all possible x ∼ PD.
Figure 1a summarizes the components of the model and
the main flow in the learning process: Given an observation
x ∼ PD, we encode it in a latent code z upon which a
reconstruction x̃ can be obtained that the classifier should
in principle classify as negative, while still resembling the
original x as much as possible.

A. Adversarial Learning

A problem with eq. 1 is the presence of two apparently
contrasting objectives within the same function. By simulta-
neously optimizing θ, φ and ψ, the learning process has to
face the problem of generating an observation x̃ which should
be classified as positive, while at the same time penalizing
any departure from the original observation x. Again, this can
result in an unstable learning process, which can be solved
by alternating optimization with competing objectives: The
generator and encoder aiming at obtaining the best possible
reconstruction, and by contrast the classifier aiming at spot-
ting all possible differences. In practice, the learning process

can be restructured into an adversarial game with associated
discriminator loss

LD(θ|φ, ψ) = Ex∼PD
[
log pθ(0|x)

]
+ E x∼PD

z∼qψ(·|x)
x̃∼gφ(z)

[
log pθ(1|x̃)

] (2)

and generator loss

LG(φ, ψ|θ) = E x∼PD
z∼qψ(·|x)
x̃∼gφ(z)

[
log pθ(0|x̃)

]

+ E x∼PD
z∼qψ(·|x)
x̃∼gφ(z)

[
log p(x|x̃)

]
−KL [qψ(z|x)‖p(z)] .

(3)

Figure 1 shows the differences between the proposed ARN
and two similar approaches from the literature. FenceGAN
([14], fig. 1c) uses the typical GAN architecture with modified
loss functions to generate samples that lie at the boundary
of the real data. The discriminator score is directly used
as an anomaly score. Like FenceGAN, ARN builds realis-
tic outliers by training the discriminator to recognize even
minimal discrepancies from normality. However, within ARN
the generation phase relies on a faithful reconstruction, thus
correlating outliers to negligible noise relative to the true
distribution. In other words, the contrasting objective that x̃
must be scored as an outlier, despite the fact that it resembles
the true x as faithfully as possible, forces the discriminator to
capture the true essence of the original data manifold.

GANomaly ([5], fig. 1b) is a GAN-based model that also
exploits faithful reconstructions, but the anomaly score relies
on the difference in the reconstruction. The last encoder is
used to map the reconstruction of the decoder in the latent
space in order to have the best input representation. The
anomaly score is defined as the difference between GE(x) and
E(GD(GE(x))). While this is not an issue on outliers coming
from substantially different distributions, minimal differences
would map in the same latent space and hence they would be
difficult to identify.

Another substantial difference between ARN and the other
adversarial approaches lies in the fact that, for each x ∼ PD,
the generator produces an outlying variant x̃ ∼ gφ(z), given
z ∼ qψ(z|x). Since qψ(z|x) approximates the true poste-
rior p(z|x), the entire manifold is efficiently explored, thus
avoiding the mode collapse that typically affects adversarial
approaches.

B. Unbalanced Learning

The above framework can be easily adapted to cope with
partial supervision provided by a limited number of samples
from the minority (outlier) class. When y is known for
both normal and anomalous samples (and consequently PD
represents the entire domain D, including x related to y = 1),
ARN can be trained with the objective
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Fig. 1: ARN compared to other generative adversarial approaches.

max
θ

min
φ,ψ

Ex,y∼PD
[
log pθ(y|x)

]
+ E x,y∼PD

z∼qψ(·|x)
x̃∼gφ(z)

[
log(1− pθ(y|x̃))

]

+ E x∼PD
z∼qψ(·|x)
x̃∼gφ(z)

[
log p(x|x̃)

]
+KL [qψ(z|x)‖p(z)] ,

(4)

stating that the generator should be aimed at opposing the true
class, while at the same time maintaining the best possible re-
construction (that is to say, by introducing the minimal changes
that cause a reversal in the classification). In practice, the
adversarial game introduces a synthetic resampling mechanism
that allows to build a robust classification.

IV. EXPERIMENTAL ASSESSMENT

We conduct an extensive empirical evaluation of the pro-
posed model on real-world datasets. Our goal is to answer to
the following research questions:

• RQ1. Does the outlier generator produce realistic out-
liers? In other words, does the output of the data generator
produces data with meaningful, realistic and non-trivial
anomalies? How does it affect the predictive power?
(Section IV-A)

• RQ2. In real-world scenarios, can the classifier com-
ponent be used to predict unobserved anomalies? How
does its predictive power compare to other state-of-the-art
approaches? (Section IV-B)

• RQ3. How is the accuracy affected by contamination in
the learning process? In what degree a limited amount of
supervision helps the learning process? (Section IV-C)

• RQ4. Which components of the model contribute to the
overall quality? How do the architectural choices affect
the accuracy of the resulting predictions? (Section IV-D)

• RQ5. How efficient is the learning process of ARN
compared to the other state of the art approaches? (Sec-
tion IV-E)

We implemented ARN using the PyTorch framework [37].
In order to foster reproducibility, we publicly release all the

data and code necessary to replicate our experiments1. Among
the specific implementation details, it is worth noticing that,
during model learning, the sampling x̃ ∼ gθ(z) has to be
properly arranged in a way that avoids breaking the back-
propagation of the gradient. Numerical attributes are modeled
by Gaussian distributions, unless otherwise specified. The
sampling can hence follow the usual reparametrization trick.
For binary/discrete attributes we explore two choices. The first
one is to model such attributes as numeric and resort to the
standard sampling for numerical attributes. Alternatively, we
can adapt the framework described in [38], by exploiting the
Gumbel Distribution and devising a Straight-Through (ST)
Gumbel Estimator with the further trick of annihilating the
temperature during the training process. We call the two
alternative instantiations respectively ARNN and ARNG. In
both cases, the component p(x|x̃) within the loss is modeled
as a Gaussian reconstruction probability, i.e. log p(x|x̃) ≈
−γ‖x− x̃‖2, with γ representing a weighting constant.

A. Outlier Generation

In a first set of experiments, we answer to RQ1 and specif-
ically we evaluate the capability of the generator to produce
data with meaningful, realistic and non-trivial anomalies. The
evaluation is performed on MNIST2, a dataset of handwritten
digits. Each instance consists of a 28 × 28 gray-scale image
representing a digit in the interval {0, . . . , 9}. The objective
of the analysis is twofold: On one side, we would like to get a
visual perception of the changes that the generator produces on
the input data; On the other side, we want to show how these
changes affect the resulting prediction of the discriminator.
To do so, we binarize the input data and then train ARN
on the whole set of images. The graphs in fig 2 describe
a stable learning process, with both LD and LG achieving
convergence. Concerning LG the term representing the loss in
reconstruction consistently converges, while the loss on the
adversarial component increases: A clear sign that, despite
the efforts by the generator, the classifier progressively refines
its capability of discriminating between normal and generated
samples.

The results of the generation are illustrated in fig. 3. The
first row represents the original (greyscale) image, from which

1https://github.com/arnwg/arn
2http://yann.lecun.com/exdb/mnist

https://github.com/arnwg/arn
http://yann.lecun.com/exdb/mnist


Fig. 2: Stability of the learning process.

the binary representation (on the third row) is sampled. The
images in the second row represent, for each image, the
parameters of the reconstructed Gumbel distribution, from
which x̃ is sampled (fourth row). We can notice that, despite
the strong similarity between the first two rows (and the last
two as well), the last row exhibits some artifacts. Such artifacts
severely affect the response of the classifier, which recognizes
x as normal and x̃ as abnormal. In practice, the small variations
do not affect the semantic of the image (a human eye can
easily still recognize the number represented in x̃) but the
few artifacts (either missing or redundant white pixels) are
recognized by the classifier as anomalous.

In order to quantify the quality of the reconstruction,
we compute a variant of the Fréchet Inception Distance
(FID) [39]. In practice, we consider a traditional Variational
Autoencoder trained on the original data. This autoencoder is
then exploited to produce a latent representation of both the
original images and the generated variants produced by ARN.
The FID is then computed on these latent representations.
Figure 4 shows how FID progressively decreases during the
training process.

Figure 5 illustrates how both generated and real data are
mapped in the latent space on an example training process,
where the autoencoder is learned with a latent size K = 2.

The shaded dots represent the manifold of the original (normal
data), with each color representing a different digit. We also
plot some sample images and their corresponding variant
produced through the generator. Within the graph, original
samples are represented with fully opaque circle markers, and
the corresponding variants (exhibiting the same color) with the
‘+’ marker. We can see that the variants lie in a neighborhood
of the original images: Still, they diverge from them and
sometimes they even cross the boundaries of the corresponding
regions within the manifold.

B. Outlier Detection

In this section we answer to RQ2 and specifically we
study the predictive accuracy of ARN in comparison to other
approaches in the literature.

1) Datasets: The experiments focus on six different stan-
dard benchmark datasets, described below.
• KDDCUP993 consists in a collection of network activity

data, with each instance describing statistics relative to
a connection (a sequence of TCP packets exchanged
between two peers). Each connection is labeled as either
normal or attack. There are 22 different types of at-
tacks (with frequency ranging from popular to extremely
rare), grouped in four macro-categories. We consider
the reduced version of the dataset that contains 10%
of the instances. In the experiments, we consider three
variants. The first one (KDDCUP99) representing all
possible attacks. This version is extremely unbalanced
towards the anomalous class. KDDCUP99Rev , a subset
of KDDCUP99 where the majority classes (smurf and
neptune) are removed. The rationale for the latter is that,
without these attacks, the dataset exhibits a more realistic
unbalance (∼ 98%) towards normal connections. Finally,
KDDCUP99Inv is a version where normal and anomaly
classes are reverted. This interpretation of the dataset is
adopted in several baselines and hence it is worth being
considered in the comparisons.

• NSL-KDD4 is a refined version of KDDCUP99. It is
introduced in [40] to solve some of the inherent problems
of KDDCUP99 dataset. In particular, it does not include
redundant examples (which could bias both the learning
process and the evaluation) and exhibits a balance be-
tween the classes.

• DoH5 is a dataset describing packet flows representing
benign and malicious DoH (DNS over HTTPS) traffic
along with non-DoH traffic. The dataset is characterized
by 28 features describing flow properties, such as number
of bytes sent/received, stats on packet length and packet
time, etc. We only focus on DoH traffic and use the “be-
nign” and “malicious” classes. Since DoH is unbalanced
towards the “malicious” class label, we also consider its
reverted variant that we call DoHInv in the following.

3http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
4https://www.unb.ca/cic/datasets/nsl.html
5https://www.unb.ca/cic/datasets/dohbrw-2020.html
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Fig. 3: Anecdotal evidence of Outlier generation on MNIST.
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Fig. 4: FID between x and x̃ along the training process.
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Fig. 5: Representation of real and generated images on a two-
dimensional latent space.

• CoverType6 is a multiclass classification dataset that is
used in predicting forest cover type from cartographic
variables only. Instances in this dataset represent areas
within the Roosevelt National Forest of northern Col-
orado. Each area is associated with a type, relative to

6https://archive.ics.uci.edu/ml/datasets/covertype

the underlying ecological processes. There are 7 classes.
In our study, instances from classes 1,2 and 3 are consid-
ered as normal points and instances from the remaining
classes, representing less typical types, are considered
anomalies.

• CreditCard7 [41] is a dataset representing online trans-
actions occurred in a time span of two day, labeled either
as legit or fraud. The dataset only contains numerical
attributes and is highly unbalanced, since the transactions
labeled as fraud represent only 0.17% of all transactions.

• Bank8 is a dataset relative to direct marketing campaigns
of a banking institution [42]. Each instance describes a
prospective customer with a label describing whether the
customer buys the product or not. Again, the dataset is
unbalanced with the number of “yes” being a minority.
In addition, all attributes are categorical.

For each of the above datasets, we identify a normal and
an anomalous class. The objective is to train ARN on the
normal samples in order to obtain a classifier that is able to
correctly discriminate between normal and anomalous. Table I
summarizes the description of each dataset. For each dataset,
data preprocessing includes one-hot encoding for categorical
attributes and min-max scaling on all numerical attributes.

2) Evaluation Protocol: In our experiments, from each
dataset we sample train Dtr, test Dte and validation Dv

subsets. Training data only contains normal samples, whereas
validation and test contain both normal and anomalous sam-
ples. The sampling process is structured to guarantee that (i)
the normal/anomalous proportions are kept consistent in the
test and validation sets, and (i) all samples in the minority class
are exploited. In particular, the normal samples maintain the
80/15/5 proportions on train/test/validation, and the anoma-
lous samples 75/25 respectively, but the ratio N/A (where
N and A represent the total number of normal and anomalous
samples, respectively) is maintained in both test and validation,
when possible.

To evaluate the performance of our model and to compare
with the baseline methods we compute the Area Under the
Curve (AUC) [43] and the Area under the Precision-Recall
Curve (AUPRC) [44]. All the experiments are performed on

7http://www.ulb.ac.be/di/map/adalpozz/data/creditcard.Rdata
8https://github.com/GuansongPang/anomaly-detection-datasets
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Dataset Normal Anomalous Features
Type Size Type Size Categorical Numeric Dtr Dte(N/A) Dv(N/A)

KDDCUP99 normal 97,278 DoS, probe, R2L, U2R 396,743

7 34

77,822 14,592/29,756 4,864/9,919

KDDCUP99Rev normal 97,278 DoS\{smurf, neptune}, 8,752 81,323 11,966/3,282 3,989/1,094probe, R2L, U2R
KDDCUP99Inv DoS, probe, R2L, U2R 396,743 normal 97,278 274,006 91,197/36,479 31,540/12,161
NSL-KDD normal 77,054 DoS, probe, R2L, U2R 71,463 68,501 6.396/6,396 2,157/2,157
DoH benign 19,807 malicious 249,836 2 28 15,846 2,971/18,738 990/6,246
DoHInv malicious 249,836 benign 19,807 184,444 46,794/7,427 15,598/2,475
CoverType 1,2,3 530,895 4,5,6,7 50,117 44 10 444,764 64,599/18,794 21,532/6,265
CreditCard normal 284,315 fraud 492 - 30 227,846 42,352/369 14,117/123
Bank no 36,548 yes 4,640 10 - 26,383 7,614/1,740 2,551/580

TABLE I: Dataset Description

20 runs and the average values are reported, with statistical sig-
nificance computed at 95% confidence. To guarantee sample
variability in each run, the above described sampling process
only considers half of the abnormal examples.

3) Baselines: We choose the state-of-the-art anomaly de-
tection methods discussed in fig. 1: FenceGAN [14], which
uses the typical GAN architecture with modified loss functions
to generate samples that lie at the boundary of the real data
manifold; and GANomaly [5], a GAN-based model structured
into an encoder-decoder-encoder network. In addition, we
compare with OC-SVM [2], for its flexibility and capability
to identify a wide range of nonlinear boundaries separating
classes of data in both a supervised and unsupervised way.

We also introduce a simple baseline that exploits an Au-
toencoder trained on normal data to achieve low MSE recon-
struction error. The error can be used to identify whether an
example is abnormal or not, as discussed in section II. Al-
though autoencoding-based anomaly detection is not suitable
for generating outliers, it is worth investigating how ARN and
other baselines compare to this simple approach in detection
ability.

4) Results: Table II reports the results of the evaluation.
We include both the ARNG and ARNN variants, which
consistently exhibits suitable values of AUC and AUPRC on
all datasets. On datasets where the anomalous class balances
with the normal class, the results are comparable with those of
the competing methods. However, with class imbalance, ARN
tends to have a better response in terms of precision, and in
general there is a consistent gain in performance. Figure 6
shows how the generation process provides realistic samples
with minimal but substantial deviations from their original
that characterize the generated samples as anomalous. In fact,
generated samples tend to share similarities with anomalous
samples, in terms of discrepancy from the normal samples.

The modeling choices regarding the categorical attributes
do not seem to indicate a clear winning strategy. By looking
at the results for CoverType and Bank, we see that the re-
sponses, albeit comparable, are inverted with a predominance
of the Gumbel softmax in CoverType and of the continuous
relaxation for Bank.

C. Robustness

Besides the ideal situation where all training examples are
actually normal, we consider other two specific experiments.
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Fig. 6: Real and generated anomalies in KDDCUP99Rev . The
x axis enumerates the data attributes, the y axis normalizes
the attribute values in the [0, 1] interval. Each sample is
represented as a set of dots according to its value for each
attribute. Red dots are attribute values for real normal samples;
blue stars are related to generated anomalies; finally, yellow
crosses represent real anomalies.

• Contamination, in which we contaminate the training
samples by adding a percentage of anomalous data that
are still considered normal. The idea is that, in a truly
unsupervised situation, little is known about the true dis-
tribution of the data. A model is deemed robust when the
accuracy is tolerant to a moderate amount of abnormality.

• Weak supervision, where a limited amount of examples
are known to belong to the minority class. Since in
principle our approach is also capable of exploiting such
supervision (as explained in section III-B), it is important
to see whether the generation process is aided by a limited
amount of tuples actually labeled as anomalous.

In order to measure robustness, we contaminate the training
data with a percentage of anomalous tuples expressed as
p = A/N , where N and A are the amounts of normal and
anomalous tuples in the training set, respectively.



Dataset ARNG ARNN FenceGAN GANomaly OC-SVM Baseline
AUC AUPRC AUC AUPRC AUC AUPRC AUC AUPRC AUC AUPRC AUC AUPRC

KDDCUP99 .98 ± .01 .99 ± .01 .99 ± .01 .99 ± .01 .99 ± .00 .99 ± .00 1.00 ± .00 1.00 ± .00 .96 ± .00 .97 ± .00 1.00 ± .00 1.00 ± .00
KDDCUP99Rev .97 ± .01 .95 ± .02 .99 ± .00 .94 ± .02 .84 ± .01 .77 ± .01 .92 ± .01 .86 ± .01 .81 ± .00 .71 ± .00 .91 ± .01 .87 ± .01
KDDCUP99Inv .98 ± .02 .98 ± .01 .93 ± .05 .95 ± .04 .92 ± .03 .72 ± .08 .91 ± .04 .90 ± .03 .95 ± .00 .82 ± .00 1.00 ± .00 1.00 ± .00
NSL-KDD .98 ± .01 .98 ± .01 .98 ± .00 .97 ± .01 .96 ± .00 .97 ± .00 .97 ± .01 .97 ± .01 .96 ± .00 .97 ± .00 .99 ± .00 .98 ± .00
DoH .99 ±.01 1.00 ± .00 1.00 ± .00 1.00 ± .00 .88 ± .02 .97 ± .00 .99 ± .00 1.00 ± .00 .88 ± .00 .97 ± .00 .96 ± .00 .99 ± .00
DoHInv .98 ± .01 .97 ± .01 .99 ± .00 .96 ± .01 .89 ± .02 .44 ± .05 1.00 ± .00 .98 ± .01 .90 ± .00 .49 ± .01 .99 ± .00 .91 ± .04
CoverType .96 ± .01 .97 ± .01 .93 ± .03 .94 ± .02 .70 ± .03 .41 ± .02 .56 ± .05 .30 ± .04 .73 ± .02 .43 ± .02 .53 ± .02 .28 ± .02
CreditCard - - .99 ± .01 .59 ± .06 .90 ± .01 .51 ± .03 .84 ± .02 .36 ± .05 .92 ± .01 .57 ± .01 .99 ± .00 .76 ± .01
Bank .70 ± .05 .63 ± .07 .76 ± .04 .69 ± .07 .56 ± .01 .23 ± .01 .53 ± .02 .22 ± .02 .60 ± .00 .28 ± .00 .65 ± .00 .32 ± .01

TABLE II: Comparative analysis. Bold (resp. gray) values represent models with statistically higher (resp. lower) scores.

Table III reports the results. We split the analysis in two
tables: The first one focuses on imbalanced datasets and
compares the response to contamination with GANomaly, for
the values p = 1% and p = 5%. The second table reports the
results concerning ARNG for balanced datasets, with a higher
contamination ranging from 0% to 50% . We can see that as
we increase the contamination the accuracy tends to decrease
steadily. This decrease is lower than GANomaly which by
contrast seems to be more heavily affected by contamination.

For the weak supervision, we compare ARN with
WALDO [6], an approach that combines Wasserstein autoen-
coders to detect and generates both inliers and outliers. This
experiment is only illustrated on KDDCUP99Rev and Bank on
table IV. We can see a substantial improvement on the baseline
performance, even with a minimal amount of supervision.
The advantage over WALDO is substantial, which by contrast
does not seem able to efficiently exploit the small portions of
anomalous data to improve the detection accuracy.

D. Ablation Study

In a final set of experiments, we study the contribution of
each component of the model to the accuracy. We already
discussed the effects of modeling discrete attributes with either
a Gumbel distribution or a continuous relaxation. We next
evaluate two more aspects: The importance of regularization
and of the adversarial learning process over a standard ELBO
optimization. Within table V, ARNX−KLD represents model
ARNX trained without regularization, and ARNGE represents
ARNG trained by optimizing the ELBO in eq. 1. The reg-
ularization seems to play a prominent role in guaranteeing
robust reconstructions. Also, the adversarial learning provides
a substantial advantage in the learning process, as we can see
by comparing ARNG and ARNGE .

E. Architecture and learning

For the last research question concerning the efficiency
of ARN, we discuss here the architectural details and their
effects on the computational efficiency of the learning process.
First, ARN is learned via an alternate maximization algorithm.
In order to stabilize the learning process, we progressively
inject noise on the discriminator labels as suggested in [45].
As a result, the learning phase is generally smooth (as also
illustrated in fig. 2). All the models were trained using the
Adam optimization. We also adopt different learning rates for
the discriminator and the generator.

Fig. 7: Running times in minutes (log scale).

Throughout the experiments described in sections IV-B
through IV-D, we devised simple architectures for both
the generator and the discriminator, based on linear layers
equipped with batch normalization. The architecture in IV-A
also exploits convolutional layers in order to learn better
representations for the MNIST images. All experiments were
performed on an NVIDIA DGX equipped with 4 V100 GPU.
Figure 7 summarizes the running times for each model on the
datasets described in IV-B. Here, we can notice the ARN is the
second last performer in almost all the datasets. However, the
order of magnitude is comparable for all models except for
OC-SVM that clearly requires much longer execution times
w.r.t. all the other evaluated algorithms.

V. CONCLUSION

The Adversarial Reconstruction Network (ARN) is a
twofold neural architecture aimed at generating and identifying
anomalies in data sets. The learning scheme consists in an
adversarial game between a generator and a discriminator,
respectively designed as a variational encoder-decoder struc-
ture and a supervised network. Its peculiarity lies in its data
generation approach: Anomalies are generated by observing
non-anomalous samples based on two guiding principles. First,
generated data are reconstructed from original input samples
to lie in the same boundaries of the data manifold. Second, the
reconstruction is guided to highlight elements that characterize
the generated sample as anomalous. We showed that such an
approach is effective in detecting outliers, robust to noise in
the training data and easily adaptable to weak supervision.
Furthermore, it is capable of generating realistic outliers.

The proposed approach requires prior knowledge of at
least the samples labeled as normal. However, in principle
the nature of the adversarial approach to reconstruction does
not necessarily require knowledge concerning the prior class



KDDCUP99Rev KDDCUP99Inv CoverType
ARNN GANomaly ARNG GANomaly ARNG GANomaly

No contamination .99 ± .00 .92 ± .01 .98 ± .02 .91 ± .04 .96 ± .01 .56 ± .05
p = 1% .98 ± .00 .88 ± .02 .98 ± .02 .88 ± .07 .70 ± .06 .54 ± .11
p = 5% .93 ± .05 .81 ± .01 .95 ± .03 .76 ± .20 .72 ± .10 .52 ± .10

KDDCUP99 NSL-KDD DoH
No contamination .98 ± .01 .98 ± .01 .99 ± .01

p = 1% .96 ± .03 .98 ± .01 1.00 ± .00
p = 5% .94 ± .03 .95 ± .04 .99 ± .01
p = 10% .83 ± .09 .93 ± .03 .99 ± .00
p = 25% .74 ± .14 .91 ± .04 .98 ± .01
p = 50% .65 ± .12 .74 ± .07 .78 ± .06

TABLE III: Robustness to contamination.

Datasets Method 0% Anomalies 1% Anomalies 3% Anomalies

KDDCUP99Rev
ARNN .99 ± .00 .99 ± .00 .99 ± .00
ARNG .97 ± .01 .99 ± .00 .99 ± .00
WALDO - .80 ± .01 .80 ± .01

Bank ARNN .76 ± .04 .79 ± .06 .89 ± .03
ARNG .70 ± .05 .72 ± .04 .82 ± .05
WALDO - .56 ± .01 .56 ± .01

TABLE IV: Weak supervision: Comparison with WALDO.

Dataset ARNG ARNN ARNG−KLD ARNN−KLD ARNGE

KDDCUP99 .98 ± .01 .99 ± .01 .93 ± .04 .99 ± .00 .74 ± 09
KDDCUP99Rev .97 ± .01 .99 ± .00 .96 ± .03 .97 ± .01 .83 ± .05
KDDCUP99Inv .98 ± .02 .93 ± .05 .97 ± .02 .93 ± .06 .88± .04
NSL-KDD .98 ± .01 .98 ± .00 .98 ± .01 .95 ± .02 .74 ± .07
DoH .99 ± .01 1.00 ± .00 .73 ± .01 .76 ± .02 .99 ± .01
DoHInv .98 ± .01 .99 ± .00 .93 ± .05 .99 ± .00 .83 ± .04
CoverType .96 ± .01 .93 ± .03 .72 ± .05 .93 ± .04 .77 ± .08
CreditCard - .99 ± .01 - .86 ± .08 .75 ± .06

TABLE V: Ablation Study.

distribution. In fact, the latter could be directly inferred in the
learning process (e.g. by exploiting bayesian inference), thus
allowing a generalization of the proposed approach towards a
fully unsupervised setting. We believe that this is an intriguing
challenge and a direction worth further investigation that we
plan to cope as future work.
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