
J Intell Inf Syst (2008) 30:153–181
DOI 10.1007/s10844-006-0024-x

Mining categories for emails via clustering
and pattern discovery

Giuseppe Manco · Elio Masciari · Andrea Tagarelli

Received: 20 February 2004 / Revised: 30 November 2005 /
Accepted: 2 June 2006 / Published online: 25 January 2007
© Springer Science + Business Media, LLC 2007

Abstract The continuous exchange of information by means of the popular email
service has raised the problem of managing the huge amounts of messages received
from users in an effective and efficient way. We deal with the problem of email
classification by conceiving suitable strategies for: (1) organizing messages into
homogeneous groups, (2) redirecting further incoming messages according to an
initial organization, and (3) building reliable descriptions of the message groups
discovered. We propose a unified framework for handling and classifying email
messages. In our framework, messages sharing similar features are clustered in a
folder organization. Clustering and pattern discovery techniques for mining struc-
tured and unstructured information from email messages are the basis of an overall
process of folder creation/maintenance and email redirection. Pattern discovery is
also exploited for generating suitable cluster descriptions that play a leading role in
cluster updating. Experimental evaluation performed on several personal mailboxes
shows the effectiveness of our approach.

Keywords Email classification · Text mining · Clustering · Pattern discovery

G. Manco · E. Masciari
ICAR-CNR, 87036 Rende (CS), Italy

G. Manco
e-mail: manco@icar.cnr.it

E. Masciari
e-mail: masciari@icar.cnr.it

A. Tagarelli (B)
DEIS, University of Calabria, 87036 Rende (CS), Italy
e-mail: tagarelli@si.deis.unical.it

154 J Intell Inf Syst (2008) 30:153–181

Abbreviations

H.2.8 (Database Management) Database Applications–Data Mining
I.5.3 (Pattern Recognition) Clustering–Algorithms, Similarity

measures
I.5.4 (Pattern Recognition) Applications–Text processing
H.4.3 (Information Systems Applications) Communications

Applications–electronic mail

1 Introduction

The ever increasing popularity of the Internet has generated a huge traffic of
different kinds of email messages. Email is a powerful means originally conceived for
exchanging information across present-day networks. Also, it is rapidly evolving for
handling knowledge management activities, such as personal filing, work scheduling
and reminding. Huge amounts of emails received from users need to be effectively
and efficiently managed to meet the users’ expectations and requirements.

The problem of handling personal messages, newsletters and mailing-list messages
by distinguishing important messages from unsolicited ones has become pressing.
The activity of managing emails keeps users busy for a significant amount of their
time, thus raising the so-called problem of email overload (Whittaker & Sidner,
1996).

Many tools have been designed for supporting users in the organization of their
mailboxes: a typical example is represented by ad-hoc filters, i.e., rules that allow
a user to manage a message under specific constraints. However, such tools are
mainly human-centered, since users have to manually describe rules and keyword
lists that could be used to recognize the relevant features of messages. This task
has two main drawbacks: (1) inadequacy for a massive volume of emails, which may
contain too many distinct and possibly overlapping concepts; (2) lack of adaptation
to requirement changes that usually occur when users need to periodically reorganize
their mailboxes and filters.

In this scenario, handling email messages and classifying them is a challenging
application for Data Mining techniques. In particular, message classification can be
stated as a Text Mining problem: given a set of textual documents (i.e., message
contents), assign each document to a suitable cluster (i.e., mail folder) according to
their contents.

However, in contrast to plain texts, email messages exhibit some features that
characterize them: important structural properties (such as, sender, recipients,
date/time of delivery or reception) and two unstructured elements, namely subject
and content. The interaction between structured and unstructured components
can play a crucial role in the message characterization. Also, email messages may
contain further features (e.g., attachments) that in principle can provide significant
information for classification. However, such features need to be managed with ad-
hoc information retrieval techniques.

Moreover, the incoming messages from a mail server may be seen as a continuous
flow of documents. Different topics in such documents may appear (or renew) over
different periods of time. As a consequence, the management of incoming messages

J Intell Inf Syst (2008) 30:153–181 155

has to face the task of topic detection and tracking (Allan, Carbonell, Doddington,
Yamron, & Yang, 1998a; Allan, Papka, & Lavrenko, 1998b; Lavrenko et al., 2002;
Swan & Allan, 2000; Yang, Pierce, & Carbonell, 1998). In this context, the problem of
automatic message categorization can be seen as a problem of mining huge, possibly
infinite, streams of messages, thus triggering the need for efficient algorithms (i.e.,
algorithms exhibiting a complexity which is proportional to the size of the models
themselves and poorly influenced by the size of the data).

Related work. Current research has focused mainly on the detection of spam mes-
sages. In this context, the problem of characterizing and filtering junk (unsolicited)
information has been addressed by several classification techniques, which range
from Bayesian techniques (Androutsopoulos, Koutsias, Chandrinos, Paliouras, &
Spyropoulos, 2000; Drucker, Wu, & Vapnik, 1999) to support vector machines and
rule-based classifiers (Cohen, 1996; Hidalgo, López, & Sanz, 2000; Pantel & Lin,
1998).

A different target consists in assisting users by performing the more general
task of organizing her/his incoming messages into a set of predefined folders.
Several approaches, mainly based on machine learning techniques, have been de-
veloped (Boone, 1998; Crawford, Kay, & McCreath, 2001; Payne & Edwards, 1997;
Segal & Kephart, 1999). For example, in Segal and Kephart (1999) instance-based
text classification techniques are exploited to predict the most likely destination
folder for each incoming message. A similar approach is adopted in Mock (1999):
starting from a set of existing categories, messages are dynamically assigned to each
category on the basis of the relevance of their contents. In particular, messages
are assigned to a given category according to their ranking with respect to an
automatically generated query associated with that category.

The above techniques and systems perform a supervised classification task: mes-
sage folders preexist and the goal is to detect the most suitable folder for an
incoming message. To the best of our knowledge, a few efforts have been devoted to
unsupervised classification, i.e., the automatic construction of category-based folders
starting from a set of messages. Among them, we mention Scatter/Gather (Cutting,
David, Pedersen, & Tukey, 1992) which uses a complex intermixing of hierarchical
and partitional clustering. Also, the Athena system (Agrawal, Bayardo, & Srikant,
2000) provides a clustering algorithm based on the previously mentioned approach to
produce only cluster digests for topic discovery, and performs a message partitioning
on the basis of such digests using a Bayesian classifier.

A major problem in the above approaches is concerned with the maintenance of
the classification schemes. Indeed, the dynamic nature of email messages eventually
makes the discovered categories obsolete, thus triggering the need for constant
retraining to keep the schemes up-to-date.

Contribution. Computer-mediated communication systems are composed of two
main modules: User Agents (UA) and Message Transfer Agents (MTA). The main
purpose of UA tools is to provide assistance to users in writing and delivering
messages, while MTAs cope mainly with message transfer, according to transfer pro-
tocols. The problem of message classification can hence be formally stated as follows.
Given a MTA, define a UA which is able to integrate strategies suitably conceived
for handling email messages according to a number of dimensions sufficient to fulfill

156 J Intell Inf Syst (2008) 30:153–181

the expectations and requirements of a specific user. In particular, such strategies
should accomplish the following functionalities:

1. Organize messages coming from MTA and directed to a given user into homo-
geneous groups / hierarchies;

2. Redirect further incoming messages from MTA according to such an
organization;

3. Build and maintain reliable descriptions of the discovered message groups.

The above problems are strictly related and provide different perspectives in
the message classification problem. More precisely, points 1 and 3 can be referred
to as the problems of (1) automatically identifying folders similar by content, and
(2) assigning understandable labels which capture all the content specifics of such
folders. Problem 2 consists mainly in finding relevance criteria for each incoming
message with respect to a preexisting collection of message folders.

In this paper we propose a message classification system capable of automatically
organizing email messages stored in a mail server. We provide a unified framework
for dealing with all the above described aspects, by formalizing them substantially in
terms of clustering and pattern discovery techniques. A major novelty of our work is a
novel algorithm for the problem of incremental cluster maintenance. The algorithm
inserts a set of incoming messages into a predefined partition, and performs the
required refinements to the partition so that the resulting folders reflect the most
appropriate topics underlying the messages. Differently from traditional approaches
to incremental clustering (e.g., Fisher, 1987; Gennari, Langley, & Fisher, 1989),
the algorithm is specifically designed to exploit mainly summary statistics, without
considering the messages available within clusters. In addition, the algorithm has a
specific bias in trying to smooth the effects of the order-dependence of the data, via
a suitable combination of multiple clustering results.

We can summarize our approach to email classification into the three following
activities:

– Given an initial set M = {m1, . . . , mN} of messages in a MTA, a partition P =
{C1, . . . , Ck} of M is provided. The feature set to be used for representing email
messages is built around both structured and unstructured fields of the messages.

– We propose a technique for discovering cluster labels which is based on the novel
notion of discriminative cluster patterns. Discriminative cluster patterns highlight
all the characteristics of a given cluster, since they are expected to lie in a specific
cluster and at the same time not to lie in any other cluster.

– The initial partition is incrementally updated according to a (possibly infinite)
stream {mN+1, . . . , mn, . . .} of incoming messages. Viewed in this respect, each
message mi induces a new partition Pi that could contain a different number of
categories (i.e., folders).

Plan of the paper. The paper is organized as follows. Section 2 presents the basic text
preprocessing steps required to suitably model the message collection for the mining
phase. Section 3 formally introduces the mail classification problem, providing a
suitable definition of message similarity and illustrating a clustering methodology for
addressing the problem. Section 4 describes a pattern discovery strategy conceived
for extracting cluster descriptions reliably. The problem of incrementally updating
a clustering scheme is addressed in Section 5. Section 6 reports on the experimen-

J Intell Inf Syst (2008) 30:153–181 157

tal evaluation stating the effectiveness of our email classification system. Finally,
Section 7 contains concluding remarks and some pointers to open problems.

2 Preliminaries

In this section, we briefly review how to extract relevant information from a collec-
tion of messages. This requires a study of the representation of both structured and
unstructured features of a message.

2.1 Text preprocessing

When dealing with data containing textual information, a major issue is the selection
of the set of relevant terms, or index terms, i.e., the terms capable of best representing
the topics associated with a given textual content. In order to achieve this, some
standard text processing operations are used (Baeza-Yates & Ribeiro-Neto, 1999),
such as lexical analysis, removal of stopwords, stemming, lemmatization.

Terms have different discriminating power, i.e., their relevance in the context
where they are used. To weight term relevance, a common approach is to assign
high significance to terms occurring frequently within a document, but rarely with
respect to the remaining documents of the collection. The weight of a term is hence
computed as a combination of its frequency within a document (term frequency-TF)
and its rarity across the whole collection (inverse document frequency-IDF). We
denote by tf(w j, mi) the number of occurrences of term w j within message mi, and by
df(w j,M) the number of messages within a given message collection M that contain
w j. A term w j is denoted as an index term for M if l ≤ df(w j,M) ≤ u, where l and
u represent default threshold values. The ratio here is that terms appearing in a few
documents, as well as terms appearing in most documents, are less significant, and
hence they should be discarded.

A widely used representation model is the vector-space model (Baeza-Yates &
Ribeiro-Neto, 1999). Each message mi is represented as an m-dimensional vector wi,
where m is the number of index terms and each component wi[j] is the (normalized)
TF.IDF weight associated with a term w j:

wi[j] = tf(w j, mi) log(N/df(w j,M))√∑m
p=1

[
tf(wp, mi) log(N/df(wp,M))

]2

2.2 Message features

For each message we extract and store information concerning Sender, Recipients,
Date/Time, Subject, Attachment filename, and Content of the message. From the
above fields we can derive a feature vector x = (y w) that is composed of structured
and unstructured information.

158 J Intell Inf Syst (2008) 30:153–181

Structured information (denoted by y) is obtained from four fields, and comprises
the following features:

– Categorical: sender domain (e.g., yahoo.com), root domain of the most fre-
quent recipient (e.g., gov), weekday (binary), time period (e.g., early morning,
evening), attachment file extensions;

– Numerical: message length, number of recipients, number of attachments, num-
ber of messages received from the same sender.

Unstructured information (denoted by w) is mainly obtained from the Subject and
Content fields. However, such two fields contain information that, in principle, may
have different importance (as discussed in Kilander, Fahraeus, & Palme, 1997, Sect.
3.4): usually, a lot of redundant information that the Subject field does not contain
can be found in the Content field (e.g., it is likely that the subject contains keywords
of the message). For this purpose, it is more convenient to assign a parametric higher
importance to the subject of a message. The frequency of a term w j in a message mi

is hence computed as

tf(w j, mi) = λsij + cij,

where sij and cij denote the number of occurrences of w j within the subject and the
content of mi, respectively, and λ represents the importance factor of the subject.

The idea in the above formula is to weight a given term in the subject of the
message by “virtually” increasing the number of its occurrences proportionally to a
factor λ. Various definitions can be provided for λ. For instance, by setting λ = �σni�,
the importance factor is assumed to be proportional to the total number ni of
occurrences of the index terms appearing in the content of mi, i.e., proportional to
the content size. Alternatively, we can set λ = �σcij� + 1, thus binding the importance
factor to the occurrences of the same term within the content. In both cases λ ∝ σ ,
so we subsequently refer to σ as the ratio of importance of the subject.

3 Choosing an initial cluster partition

Clustering of messages aims at identifying homogeneous groups that will represent
folders in a reorganized mailbox. Formally, the problem can be stated as follows:
given a set M = {m1, . . . , mN} of messages coming from a MTA, find a suitable par-
tition P = {C1, . . . , Ck} of M in k groups (where k is a parameter to be determined),
such that each group refers to a homogeneous subset of messages, with an associated
label. The detection of homogeneous groups of messages relies on the capability of:

– Defining matching criteria for messages based on message contents;
– Exploiting suitable clustering and categorization schemes;
– Detecting suitable descriptions for each cluster.

We now elaborate each issue in turn.

3.1 Message similarity

The notion of homogeneity can be conceived by considering the similarities between
the message feature vectors defined in Section 2.1.

J Intell Inf Syst (2008) 30:153–181 159

Given two messages mi, m j, and their respective feature vectors xi, x j, the similar-
ity measure s(xi, x j) is defined as

s(xi, x j) = αs1(yn
i , yn

j) + ηs2(yc
i , yc

j) + γ s3(wi, w j).

In the above definition, s1 (resp. s2) denotes the similarity among the structured
parts composed by numerical (resp. categorical) features in the messages, and s3

takes into account the unstructured part of the message. More precisely:

– s1(yn
i , yn

j) and s2(yc
i , yc

j) are defined in terms of dissimilarity among objects. For
each y, we can separate the categorical features yc from the numerical features
yn, and define a dissimilarity measure for each of them as follows:

• d1(yn
i , yn

j) is the standard Euclidean distance;
• d2(yc

i , yc
j) = ∑q

p=1 wp · δ(yc
i [p], yc

j[p]).
In the latter formula, δ denotes the Dirichlet function (Huang, 1998), q is the
number of categorical features and wp is the weight associated with the pth
attribute.1 By exploiting the above dissimilarities, similarity functions can be
defined straightforwardly. For our purposes, we adopt a normalized inverse
exponential function, since intuitively it suffices to find a few correspondences
in the structured components to consider two messages as being quite similar.

– s3 can be chosen among the similarity measures particularly suitable for doc-
uments (Baeza-Yates & Ribeiro-Neto, 1999; Strehl, Ghosh, & Mooney, 2000).
We adopt the cosine similarity measure, since it captures an intuition of scale
invariant similarity which guarantees the same treatment of documents with
different size but similar content.

The values α, η and γ (falling within the range [0..1], and such that α + η +
γ = 1) are used to tune the influence of each part of the feature vectors to the overall
similarity. The assessment of convenient values for such parameters is particularly
important and is studied in more detail later in this paper.

3.2 Clustering algorithms

In our domain, a clustering approach particularly convenient is the hierarchical
one (Jain & Dubes, 1988; Jain, Murthy, & Flynn, 1999), since it allows the generation
of a hierarchy of topics (dendrogram), and hence of message folders. Figure 1 shows
an adaptation of the agglomerative hierarchical clustering algorithm to our problem
(AHC). Initially, each feature vector x is considered as a unique cluster; then, at each
iteration, the algorithm selects and merges the pair of most similar clusters. Similarity
among clusters is evaluated on the basis of their cluster representatives: it is worth

1The weight can be defined in order to guarantee that a greater similarity is obtained for objects that
differ in the most frequently used feature values, whereas a smaller similarity is obtained for objects

that differ in the most rarely used feature values. An example is wp =
nyc

i [p]+nyc
j [p]

nyc
i [p]·nyc

j [p]
, where nyc

i [p] is the

number of messages for which the p-th attribute has a value equal to yc
i [p].

160 J Intell Inf Syst (2008) 30:153–181

noting that a cluster representative is built on three centroid vectors corresponding
to textual, categorical and numerical feature vectors, respectively. The algorithm
exploits a measure (Q) of the validity of a clustering scheme to yield the “best”
partition corresponding to a level of the previously built dendrogram.

Formally, given a cluster partition P = {C1, . . . , Ck} of N messages, the quality
QP of the partition is computed as

QP = IntraSimP − InterSimP ,

where

– IntraSimP = 1
k

∑k
p=1

np

N

∑
x∈Cp

s(x, cp) denotes the intra-cluster similarity,

– InterSimP =
∑k−1

i=1

∑k
j=i+1 s(ci,c j)

1
2 k(k−1)

denotes the inter-cluster similarity,

– np is the number of messages assigned to cluster Cp, and cp is the associated
cluster centroid.

The np/N factor is used here to avoid the proliferation of singleton clusters. Also,
the inter-cluster similarity acts as a correction function to account for the over-
estimation of the intra-cluster similarity.

The algorithm of Fig. 1 has complexity O(N2), due to the cost of computing the
pair-wise similarities. To avoid such a drawback, we combine the AHC algorithm with
a partitional clustering technique in an integrated scheme. Essentially, the scheme
exploits the agglomerative hierarchical algorithm over a small arbitrary subset S
of messages to find initial cluster centroids. Such cluster centroids are then used to
build an initial cluster partition which can be further refined using a centroid-based
clustering algorithm. In particular, we can exploit the well-known k-Means algorithm,
that has the main advantage of requiring linear time and space while guaranteeing
a good quality of clusters (Steinbach, Karypis, & Kumar, 2000). An adapted version
of the k-Means algorithm is shown in Fig. 2. Here, unstructured feature vectors w
are assumed to be points inside the unit sphere. In such cases, the computation

Fig. 1 The AHC algorithm Input:
A set M = {m1, . . . , mN} of messages.

Output:
A set of cluster centroids {c1, . . . , ck}.

Method:
compute the feature vector x for each m ∈ M;
place each x j ∈ M in its own cluster, with c j := x j;
P(0) := {C1, . . . , CN}; t := 0;
repeat

t++;
compute pair-wise similarities s(Ci, C j) = s(ci, c j), ∀Ci, C j ∈ P ;
choose Ci and C j such that s(Ci, C j) is maximized;

C := Ci ∪ C j; P(t) :=
(
P(t−1) − {Ci, C j}

)
∪ C;

recompute the cluster centroid c = (cu cc cn) of C as follows:
μ := 1/|C| ∑x∈C w; cu := μ/‖μ‖;
cc is the mode vector of {yc|x ∈ C};
cn := 1/|C| ∑x∈C yn;

until |P(t)| = 1;
choose P(j) where j = argmax1≤i≤t QP(i)

;
return {c1, . . . , ck} where each ci is the cluster centroid of Ci in P(j);

J Intell Inf Syst (2008) 30:153–181 161

Fig. 2 The k-Means
algorithm

Input:
A set M = {m1, . . . , mN} of messages;
A set of k initial points {c1, . . . ck}.

Output:
A partition P = {C1, . . . , Ck} of M.

Method:
compute x for each m ∈ M;
repeat

for 1 ≤ j ≤ k do
build C j := {x|s(x, c j) > s(x, cl), 1 ≤ l ≤ k, j
= l};
recompute the cluster centroid c j = (cu

j cc
j cn

j) as follows:
cu

j := μ j/‖μ j‖, where μ j := 1/|C j|
∑

x∈C j
w;

cc
j is the mode vector of {yc|x ∈ C j};

cn
j := 1/|C j|

∑
x∈C j

yn;

compute cost(P) = ∑
C j∈P

∑
x∈C j

s(x, c j);

until cost(P) is maximized;
return P ;

of the cosine similarity is reduced to the computation of the inner product among
vectors (Dhillon & Modha, 2001).

The integration of the above two algorithms results in a scheme we called Hybrid
algorithm, which can be summarized in the following steps:

1. Sample a small random subset S = {m1, . . . , mh} ⊂ M, and compute x for each
m ∈ S ;

2. Call AHC on {x1, . . . , xh}, and return {c1, . . . , ck} as output;
3. Call k-Means on M exploiting c1, . . . , ck as initial centroids.

The result P = {C1, . . . , Ck} of step 3 is the desired cluster partition.
The convergence of the algorithm is essentially related to the convergence of

the partitional scheme. We combine the theoretical results provided in Dhillon and
Modha (2001); Huang (1998); Selim and Ismail (1984) to show the convergence of the
proposed scheme. The starting points are the following properties, which allow for an
optimal choice of the cluster centroids in the presence of numerical and categorical
features, respectively.

Lemma 1 (Selim & Ismail, 1984) Given a cluster partition {C1, . . . , Ck} of objects in
IRn, the sum of the Euclidean distances of each object from the center ci of its cluster
Ci is minimized when ci is the mean value of the objects in Ci, 1 ≤ i ≤ k.

Lemma 2 (Huang, 1998) Let U = U1 × U2 × . . . × Uq be a set of categorical domains,
where Up = {cp1, . . . cpnp} is the set of possible values for the category cp. Given a set
S = {y1, . . . , ym} ⊆ U of categorical vectors, the representative r ∈ U of S is such that
freq(r[p]|S) ≥ freq(cph|S) for each 1 ≤ p ≤ q and 1 ≤ h ≤ np, where freq(cph|S) =
1
m |{y ∈ S | y[p] = cph}|.

According to Lemma 1 and Lemma 2 we are now able to prove the soundness of
the stopping condition used in the k-Means algorithm.

Lemma 3 The function cost(P (t)), associated with a partition obtained at a generic
iteration t of the k-Means algorithm, is a non-decreasing function.

162 J Intell Inf Syst (2008) 30:153–181

Proof Consider the following three functions at a generic iteration t:

f (t)
u =

k∑
i=1

∑

x∈C(t)
i

s3

(
w, c(t)

i

)
,

f (t)
n =

k∑
i=1

∑

x∈C(t)
i

d1

(
yn, cn(t)

i

)
,

f (t)
c =

k∑
i=1

∑

x∈C(t)
i

d2

(
yc, cc(t)

i

)
.

Function f (t)
u is a non-decreasing function, as proved in Dhillon and Modha (2001).

Now, we firstly show that f (t)
n and f (t)

c are non-increasing. The claim then trivially
holds by simple algebraic manipulations. Concerning f (t)

c we have:

f (t)
c =

k∑
i=1

∑

x∈C(t)
i

d2

(
yc, cc(t)

i

)

=
k∑

i=1

(k∑
j=1

∑

x∈C(t)
i ∩C(t+1)

j

d2

(
yc, cc(t)

i

))

≥
k∑

i=1

(k∑
j=1

∑

x∈C(t)
i ∩C(t+1)

j

d2

(
yc, cc(t)

j

))

=
k∑

j=1

(k∑
i=1

∑

x∈C(t)
i ∩C(t+1)

j

d2

(
yc, cc(t)

j

))

=
k∑

j=1

∑

x∈C(t+1)
j

d2

(
yc, cc(t)

j

)

≥
k∑

j=1

∑

x∈C(t+1)
j

d2

(
yc, cc(t+1)

j

)
= f (t+1)

c

where the first inequality follows from the definition of cluster C(t+1)

j = {
xi|d2

(
yc,

cc(t)

j

)
< d2

(
yc, cc(t)

l

)
, 1 ≤ l ≤ k, l
= j

}
, and the last inequality follows from the defini-

tion of cc(t+1)

j (see Lemma 2). Analogously, by considering the definitions of d1 and cn

(see Lemma 1), we can show that f (t)
n ≥ f (t+1)

n .
Then, according to the definition of s1 and s2 and the overall similarity s, it can be

straightforwardly derived that

cost
(
P (t)) =

∑
Ci∈P (t)

∑

x∈C(t)
i

s
(

x, c(t)
i

)
≤

∑
Ci∈P (t+1)

∑

x∈C(t+1)
i

s
(

x, c(t+1)

i

)
= cost

(
P (t+1)

)

��
Theorem 1 (Selim & Ismail, 1984) The k-Means algorithm terminates for any input
data.

J Intell Inf Syst (2008) 30:153–181 163

Proof The algorithm essentially explores the set of all possible partitions. Since such
a set is finite, we only need to show that, as soon as a partition is considered twice,
the stopping condition is met. For this purpose, let us assume that there exist two
iterations t1 and t2 such that t1 < t2 but P (t1) = P (t2). According to the algorithm, the

sets
{

c(t1)
1 , . . . , c(t1)

k

}
and

{
c(t2)

1 , . . . , c(t2)
k

}
coincide, and hence cost(P (t1)) = cost(P (t2)).

From Lemma 3, for each t such that t1 ≤ t ≤ t2, the value cost(P (t)) is constant, thus
it satisfies the stopping condition. ��

4 Extracting cluster descriptions

In the email classification context an important task is the assignment of meaningful
descriptions to message clusters. Intuitively, this can be accomplished by selecting
the most “informative” terms which appear in the messages of a given cluster. In
particular, a good cluster description should explain the content of the messages in a
cluster while maintaining a strong distinction with respect to the other cluster labels.

A trivial solution consists in ranking the terms of a cluster by decreasing TF. IDF
values, and then choosing the top-n terms. The main drawback of such an approach
is due to the informative content of the TF. IDF weighting function. Indeed, each
TF. IDF value takes into account the frequency of a term across the whole message
collection but it does not deal with the frequency of the same term within different
clusters.

The relationship between a cluster C and a label L can be modeled to as an
implication rule L ⇒ C having the following properties: (1) L = 〈w1w2 . . . wh〉 is a
sequence of terms which must be discriminative for cluster C; (2) the rule must be
strong. In the following we discuss these properties.

A term w is a discriminative term with respect to a cluster C if w appears with high
frequency in C but with low frequency in any cluster C′
= C. Let cfC(w) denote the
cluster frequency, i.e., the number of messages of C in which w appears.

Definition 1 Given a partition P = {C1, . . . , Ck} and a minimum-support threshold
min_sup, term w is a discriminative term for cluster Ci ∈ P if the following conditions
hold:

1. cfCi
(w) ≥ minsupCi

, and
2. cfC j

(w) < minsupC j
,∀C j ∈ P, C j
= Ci.

where minsupC j
= min_sup × |C j| denotes the minimum number of messages sup-

porting terms with respect to cluster C j.

The above definition states a strong requirement: a term cannot be discriminative
in any cluster other than the one under consideration. Intuitively, this requirement is
specified in order to obtain well separated clusters. However, other definitions which
relax the previous one can be provided. For instance, we could replace condition

2 with the following:
cf C j

(w)

|C j| <
cf Ci

(w)

|Ci| , ∀C j ∈ P, C j
= Ci (i.e., a term cannot be more
discriminative in any other cluster than the cluster Ci under consideration).

The notion of discriminative term can be extended to a sequence of terms, i.e.,
a pattern p = 〈w1w2 . . . wp〉, by requiring that p is frequent in the cluster and that

164 J Intell Inf Syst (2008) 30:153–181

each wi in p is discriminative. This guarantees that the anti-monotonicity property—
subsets of discriminative itemsets are discriminative as well—holds, and hence allows
the adoption of any standard algorithm for pattern mining. Notice that a weaker
notion could be adopted, requiring that the conditions of Definition 1 hold for the
frequency of p. The weakness in this definition is that the anti-monotonicity property
does not hold anymore.

We compute frequent discriminative patterns by exploiting the FP-growth al-
gorithm (Han, Pei, & Yin, 2000). FP-growth exploits a trie structure, called FP-
tree, to represent all the necessary information for mining frequent itemsets in a
highly condensed way. This representation has two main advantages. First, it allows
to overcome the difficulty of selecting a good minimum-support threshold for the
dataset under consideration; indeed, itemsets satisfying different support thresholds
can be extracted from subtrees of an original tree, built over the data using a
relatively low support threshold. Second, expensive candidate generation and test
phases can be avoided, since all the frequent patterns can be directly extracted from
the trie. Moreover, the adoption of the FP-tree is particularly suitable (e.g., compared
to the prefix-tree of the Apriori algorithm) when the set of messages is dense (i.e.,
when messages share several features) as it likely holds with clustered data.

Example 1 As a running example, consider the following scenario in which twelve
messages (represented as bags-of-words) are partitioned in three clusters. Assume
that min_sup = 50%, thus minsupC1

= 3, minsupC2
= 2, minsupC3

= 2. The algo-
rithm for detecting discriminative terms works as follows. Initially, discriminative
terms are detected: C1 : {b , f }, C2 : {d, g, h, c}, C3 : {l, p, m}. Next, for each cluster,
an FP-tree is built over the corresponding discriminative terms.

J Intell Inf Syst (2008) 30:153–181 165

Then, discriminative patterns are generated for each cluster. In the following, the
representation of each pattern also denotes its support inside brackets. For cluster
C1, we have:

f : { f (4), b f (4)}, b : {b(5)}.
The discriminative patterns for cluster C2 are:

C : {c(2), hc(2), gc(2), dc(2), ghc(2), dhc(2), dgc(2), dghc(2)},
h : {h(3), gh(3), dh(3), dgh(3)},
g : {g(3), dg(3)}, d : {d(3)}.

Finally, for cluster C3 we have:

m : {m(2)}, p : {p(3), lp(2)}, l : {l(3)}.

Note that patterns containing term {q} are not generated, although they might be
frequent. Indeed, term {q} is not discriminative, since it is frequent in all the clusters
under consideration.

The above technique enables the detection of a set of candidate labels, as a set
of discriminative patterns that characterizes each cluster. Since we are interested in
characterizing a cluster C with a rule L ⇒ C, where L represents a discriminative
pattern, we need a strategy for selecting the strongest discriminative pattern among
those discovered. A traditional way of measuring the strength of a rule is given by its
confidence, which can be adapted to our context as follows.

Definition 2 Given a discriminative pattern p for a cluster C ∈ P , the strength of the
rule p ⇒ C is defined as

R(p ⇒ C) = cfC(p)

df(p)
,

where df(p) counts the number of messages in partition P in which pattern p occurs.

The measure is high when cluster frequency is comparable to document frequency:
as a consequence, labels with higher confidence are more likely to characterize the
cluster.

Even if confidence is taken into account, still there are situations where multiple
choices can be made, e.g., when two labels exhibit the same confidence. More specif-
ically, given two discriminative patterns pi, pj computed for cluster C, the following
strength conditions can be devised, which make pi preferable to pj (denoted by
pi ≺ pj):

1. R(pi ⇒ C) > R(pj ⇒ C);
2. R(pi ⇒ C) = R(pj ⇒ C), but pi ⊃ pj;
3. R(pi ⇒ C) = R(pj ⇒ C) and no inclusion holds between pi and pj, but

cf C(pi) > cf C(pj);

166 J Intell Inf Syst (2008) 30:153–181

Input:
A cluster C and a cluster partition P in which C appears;
A minimum-support threshold min_sup.

Output:
A discriminative pattern L as the label of C.

Method:
compute F0 = {w1, . . . , wh} := gen_discriminative_terms(C, min_sup);
call FP-tree construction algorithm on (C,F0) to build FP-treeC ;
call FP-growth algorithm on FP-treeC ;
let F = {p1, . . . , pl} be the set of frequent discriminative patterns found;
return L = findStrongest(F);

Function gen_discriminative_terms(C, min_sup) : F = {w1, . . . , wh};
F := ∅;
for all w ∈ C do

if (discriminative(w, C, min_sup))
F := F ∪ {w};

return F ;

Function findStrongest(F) : L = {p} ∈ F ;
choose pattern p s.t. �p′ ≺ p, p′ ∈ F ;
return p;

Fig. 3 The cluster_labeler algorithm

4. If none of the above conditions is satisfied, then the choice is made on the basis
of the lexicographic order.

The scheme of our approach to cluster labeling is reported in Fig. 3.

Example 2 In our running example, we measure the strength of each discriminative
pattern with respect to the corresponding cluster. For instance, in C1 patterns 〈 f 〉
and 〈b f 〉 exhibit the maximum strength. Now, according to condition 2, we can note
that 〈b f 〉 ≺ 〈 f 〉: thus, we set the label for C1 as LC1 = 〈b f 〉. Similarly we have LC2 =
〈dghc〉, whereas LC3 = 〈lp〉.

5 Updating clusters

Another interesting aspect in email management is related to the periodic updating
of clusters mainly due to the assignment of new incoming messages according to
a current organization. Since new messages may concern topics not covered by
preexisting clusters, the cluster maintenance problem cannot be considered as a
traditional problem of supervised classification: rather, it refers to the problem of
deciding when a new message exhibits substantially different features from the ones
in the current clusters, and whether an overall reorganization of such clusters has to
be planned.

Periodically (e.g., daily or weekly) reclustering the whole collection of messages
could apparently represent a feasible solution to address the above problem. How-
ever, a number of practical considerations reveals the limitations of such a solution.
Reorganizing a set of messages according to a preexisting cluster partition and a
set of new incoming messages has to be faster than reclustering them from scratch.
Intuitively, if a mailbox contains thousands of documents, a reorganization should
benefit as much as possible from the preexisting organization. Therefore, discarding
previous knowledge results in a waste of performance and higher maintenance costs.
Also, obsolete messages may not be available at the time reorganization is required.

J Intell Inf Syst (2008) 30:153–181 167

Nevertheless, an overall reclustering needs to take into account the contribution of
such messages.

In this context, the problem of incrementally updating a clustering scheme is partic-
ularly challenging. Here it is stated as follows: given an initial partition P0 and a (pos-
sibly infinite) stream S = {B1, . . . ,Bh, . . . ,Bk, . . . ,Bi} where B j = {m j1 , . . . , m jn j

} is
a collection (burst) of messages that are available at timestamp j, the goal is the
computation of new partitions Pi such that

1. Pi is computed according to Pi−1 and Bi;
2. Pi does not rely on B j, for each j < i;
3. Pi is order-independent: that is, considering a different stream S ′ = {B1, . . . ,

Bk, . . . ,Bh, . . . ,Bi} in which two bursts hold in a different timestamp than in S ,
then Pi is the same both in S and in S ′.

Conditions 1 and 2 state that the computational complexity of an incremental
clustering algorithm should not depend on the size of the input data. On the other
hand, condition 3 states that the result is deterministic, i.e., it does not depend from
a particular order in the data. In practice, it is difficult that conditions 2 and 3 are
both satisfied. Indeed, since messages can only be processed once, their comparison
with new incoming messages is only possible by exploiting summaries and statistics.
Indeed, the analysis of the main features of the preexisting organization are the basis
of our approach.

Figure 4 sketches an algorithm for incrementally updating a clustering scheme
according to the following strategy. For each message m ∈ B, the best fitting of m in
P is computed. More precisely, each message is processed by tentatively placing it
into each of the existing folders and evaluating the quality of the resulting candidate
partition; if no folder is evaluated as suitable for the given message, then a new
folder containing the message is placed into the partition. Observe that the InterSimP
component in the quality criterion QP (see Section 3.2) is conceived to avoid the
proliferation of new small or even singleton clusters. Notice also that QP can be
incrementally maintained, thus making the cluster assignment procedure fast and
effective for each new incoming message.

Each message mi leads to a variant P∗
i of the original partition. Hence, a final

candidate partition P ′ is generated by merging all the variants. In Fig. 4, P ′ is
computed by means of the � operator, which is defined as follows. Let P1 =
{C1

1, C1
2, . . . , C1

k1
} and P2 = {C2

1, C2
2, . . . , C1

k2
} be two partitions computed starting

from two incoming messages. By construction, either k1 = k or k1 = k + 1, and
the same happens for k2. Define Ci = Ci

k+1 if ki = k + 1, and Ci = {} otherwise.
Then, P1 � P2 = {C1

1 ∪ C2
1, C1

2 ∪ C2
2, . . . , C1

k ∪ C2
k} ∪ C1 ∪ C2. In practice, we merge

the changes made to the original partition. The � operator is associative, as it can
be easily verified.

As a final step, a refinement of the updated cluster partition is performed by
detecting both clusters that can be merged and clusters that need splitting. The
refine_clusters procedure is thus aimed at overcoming problems which are
related to cluster instability. The basic idea is to exploit knowledge extracted
from cluster labels in order to identify those clusters whose labels suggest split-
ting or merging operations. Two clusters are merged when their labels share
common terms, in particular when they exhibit the maximum overlapping with
respect to the average label length. On the other side, a cluster with a high

168 J Intell Inf Syst (2008) 30:153–181

Input:
A partition P = {C1, . . . , Ck} of M in k clusters;
A set B = {m1, . . . , mb } of incoming messages;
A minimum-support threshold min_sup.

Output:
A partition P ′ = {C1, . . . , Ck′ } of M ∪ B in k′ clusters, where k′ ≥ k.

Method:
for all mi ∈ B do

compute P∗
i = best_quality_partition1≤ j≤k+1{add_member(P, mi, j)};

P ′ := ⊔b
i=1 P∗

i ;
P ′ := refine_clusters(P ′, min_sup);
return P ′;

Function add_member(P = {C1, . . . , Ch}, m, j) : P ′;
P ′ := P ;
if j ≤ h

C′
j := C j ∪ {m};

P ′ := P − {C j} ∪ {C′
j};

else
build a new cluster Ch+1 := {m};
P ′ := P ∪ {Ch+1};

return P ′;
Function best_quality_partition({P1, . . . ,Pn}) : Pu;

for all QPi
, 1 ≤ i ≤ n, do

compute the partition quality QPi
;

return Pu, where u = arg max1≤i≤n{QPi
};

Function refine_clusters(P, min_sup) : P ;
let Pu be the set of clusters involved in the last update, and
let Pn ⊆ Pu be the set of new (singleton) clusters;
for all C ∈ Pu−Pn do call cluster_labeler(C,P−Pn, min_sup);
for all C ∈ Pn do call cluster_labeler(C,P − Pn ∪ {C}, min_sup);
compute δ (the average relative support of the label of a cluster in P − Pn);

let Ps :=
{

C ∈ Pu−Pn | |cover(LC)|
|C| < δ

}
;

/* splitting */
while (Ps
= ∅) do
S := ∅; S ′ := ∅;
for all C ∈ Ps do

C1 := cover(LC); C2 := C − C1;
if (cluster_labeler(C2)
= ∅)

Pu := (Pu − {C}) ∪ {C1, C2};
Ps := Ps − {C};

P := P ∪ Pu;
/* merging */
compute ε (the average size of the label of a cluster in P);
while (find_merge(P, ε)
= ∅) do

let {C∗
i , C∗

j } be the clusters to be merged;
set LC := LC∗

i
∩ LC∗

j
;

P := P − {C∗
i , C∗

j } − {C};
return P ;

Function find_merge(P, ε) : S ⊆ P ;

{C∗
i , C∗

j } := arg maxCi,C j∈P
{ |LCi

∩LC j
|

|LCi
∪LC j

| ≥ ε

}
;

return S = {C∗
i , C∗

j };

Fig. 4 The incremental update algorithm

heterogeneity is typically unable to exhibit a label representing the contents of most
of the messages. The latter feature is formalized by the concept of anti-cover of a
cluster label.

Formally, the cover of a cluster C (denoted as cover(LC)) is the set of mes-
sages supporting the cluster label. The anti-cover of a cluster then represents

J Intell Inf Syst (2008) 30:153–181 169

the portion of cluster which does not share that cluster label. In principle, the
insertion of new messages can degrade the representativity of the cluster label, by
increasing the size of the anti-cover. The splitting steps in the refine_clusters
procedure progressively selects a cluster exhibiting a large degree of degradation
and, if its anti-cover has a suitable label, then splits such a cluster into two sub-
clusters. The first sub-cluster contains all the messages covering the cluster label,
whereas the second one contains the anti-cover and is labeled by the new com-
puted label.

We relate the degree of worsening of a cluster with the support of the cluster label.
Let us denote by δ the average relative support of a cluster:

δ := 1

|P |
∑

Ci∈P

|cover(LCi)|
|C| .

The insertion of new messages may cause a higher variability with respect to δ in
the clusters involved by the update. Thus, a suitable measure of the degradation of a
cluster is the comparison of the cover of a cluster with such an average value.

The splitting phase only affects those clusters for which a suitable label can
be extracted from the anti-cover. If the anti-cover is too heterogeneous, then the
clustering is not split. On the other hand, the procedure for assigning the cluster
membership of each newly arrived message in general prevents a high heterogeneity
in the anti-cover. Indeed, if a message happens to be quite different from the other
messages within the cluster, then the add_member procedure will more likely assign
the message to a new singleton cluster.

While splitting only acts on the updated clusters, the general updating procedure
may produce too many singleton clusters. In order to prevent the proliferation
of several unnecessary singleton clusters, we further add a merging step, which
recursively detects two clusters exhibiting a high overlap in the cluster label, and
merges such clusters. The whole merging step is governed by the ε parameter, defined
as

ε := 1

|P |
∑

Ci∈P |LCi |
maxCi∈P |LCi |

.

and representing the average (normalized) size of a cluster label.
Note that in refine_clusters any call of the cluster_labeler algorithm

involves only those clusters that need (re)labeling at a specific point in time. In
particular, when a singleton cluster needs labeling then the remaining singleton
clusters have to be ignored. This is suggested by the concrete possibility that two
new singleton clusters (i.e., clusters which are created during the last message burst
processing) have similar contents and potentially overlapping labels.2

It is worth noting that the incremental update algorithm terminates for any
input burst of messages. Indeed, the proof relies on the observation that the
refine_clusters procedure explores only a finite number of possible configu-
rations during the splitting and merging steps.

2In this case, each of such clusters should be labeled at different times since, according to the
definition of discriminative term, two clusters cannot be associated to the same label.

170 J Intell Inf Syst (2008) 30:153–181

6 Experimental results

Experiments were mainly aimed at evaluating the conformance of the results of clus-
tering to the most appropriate folder organization, and at evaluating the dependence
of the proposed framework from the set of parameters which are needed to tune the
system. In particular, for the latter point it is important to determine the optimal
choice of the parameters which guarantee the highest accuracy in describing the
correspondence between clusters and appropriate folders.

Our email classification system was tested against distinct private collections of
messages for which a predefined “ideal” classification was devised. Table 1 describes
the datasets we considered in the evaluation. It is worth noticing that publicly
available email data is not easy to obtain as other data sources, for obvious privacy
concerns. Also, traditional text datasets (e.g., the standard Reuters collection) do
not properly reflect both the nature of typical user mailboxes and the modalities of
managing the messages by individual users.

In the datasets under consideration, the total number of terms contained within
the body of all messages was 773,862 with an average size of 488 terms per message.
The shortest message was composed of 15 terms, whereas 4,757 was the count
of terms in the longest message. After removal of stopwords and stemming, term
selection was accomplished by trying different combinations of the preprocessing
parameters. Table 2 shows how the features of the Mailbox no. 2 collection change
according to such parameters. Clustering experiments (described in detail in the next
subsection) revealed that optimal preprocessing is accomplished by setting l = 0.02
and u ∈ [0.3, 0.4].

The experimental evaluation was structured in three parts. In the first part
(Section 6.1), we evaluated the impact of the parameters to the quality of clustering.
The second part (Section 6.2) was concerned with the effectiveness of cluster
labeling, finally we aimed at evaluating the effectiveness of the update algorithm
in Section 6.3.

6.1 Evaluating clustering results

The experiments described in this section were carried out on the Mailbox no. 2
collection, whose messages are related to different topics. Example topics are
Clustering Algorithms, Decision Trees, Neural Networks, Genetic Programming, Web
Data Classification, Multi Agents Systems, W3C News. From this collection, an ideal
partition composed of 67 folders was inferred. We evaluated the quality of the
clusterings obtained by adopting the standard F-measure (Baeza-Yates & Ribeiro-
Neto, 1999) (FM in the following).

FM is defined starting from a contingency table in which each column represents
a cluster Ck in a discovered partition P = {C1, . . . , Cr}, and each row represents a

Table 1 Mail collections as
test datasets Dataset No. of folders No. of messages

Mailbox no. 1 34 251
Mailbox no. 2 67 1,585
Mailbox no. 3 30 1,000

J Intell Inf Syst (2008) 30:153–181 171

Table 2 Statistics about index terms for Mailbox no. 2

index terms σ = 0 σ = 0.15 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.5

Total 362,258 / 586,269 / 660,295 / 807,160 / 954,658 / 1,102,602 /
285,101 430,816 478,756 573,707 669,002 764,881

(Distinct) total 2,550 / 2,558 / 2,558 / 2,558 / 2,558 / 2,558 /
1,472 1,483 1,483 1,483 1,483 1,483

Avg freq. 228.55 / 369.89 / 416.59 / 509.25 / 602.31 / 695.65 /
Per message 179.87 271.81 302.05 361.96 422.08 482.57
(Distinct) avg 115.84 / 116.52 / 116.52 / 116.52 / 116.52 / 116.52 /
Freq. per message 93.19 93.92 93.92 93.92 93.92 93.92
Freq. in the 4 / 3 6 / 4 6 / 4 8 / 4 8 / 4 10 / 4
Shortest msg
Freq. in the 2,302 / 4,032 / 4,607 / 5,757 / 6,907 / 8,062 /
Longest msg 1,545 2,712 3,097 3,884 4,829 5,774
(Distinct) freq. in 4 / 3 5 / 4 5 / 4 5 / 4 5 / 4 5 / 4
The shortest msg
(Distinct) freq. in 659 / 661 / 661 / 661 / 661 / 661 /
The longest msg 483 486 486 486 486 486

Each element reports two values (separated by symbol ‘/’) referring to setting (l = 0.01, u = 0.5) and
setting (l = 0.02, u = 0.3), respectively

class Ch in an ideal partition I = {C1, . . . , Ci}. Each element (h, k) in the contingency
table corresponds to the number of messages that were associated with cluster Ck

and actually belong to the class Ch. Formally, given a collection M, FM is defined as:

FM =
i∑

h=1

|Ch|
|M| max

k=1...r
F(h, k)

where

F(h, k) = (1 + β2)P(h, k)R(h, k)

β2 P(h, k) + R(h, k)

and R(h, k) and P(h, k) are the usual definitions of precision and recall measures
relative to cluster Ck and class Ch:

R(h, k) = |Ck ∩ Ch|
|Ch| P(h, k) = |Ck ∩ Ch|

|Ck|
In the above formula, the parameter β weights the relative importance of precision

with respect to recall. In our experiments, it was set to r/ i. Indeed, if r > i, (that is,
the number of clusters is higher than the number of ideal folders), precision has a
bias toward high values. Hence, it is reasonable to assign it a lower weight in the
formula. By contrast, if r < i, precision tends to be low (indeed, each cluster is likely
to contain messages from more than a class), and hence the overall quality should
better account for it.

To summarize, F(h, k) measures the correspondence between class Ch and cluster
Ck. The correspondence is low when F(h, k) = 0 and is high when F(h, k) = 1. The
FM measure associates each cluster k to the class h with highest correspondence, and
measures the weighted sum of such correspondences. Again, FM ≈ 0 results in a low

172 J Intell Inf Syst (2008) 30:153–181

Fig. 5 Accuracy vs. subject
weight: a AHC, b Hybrid

correspondence between the clustering and the partition, whereas FM ≈ 1 results in
a high correspondence.

In an initial set of experiments, we analyzed the impact of the subject weight to
the clustering results. Recall that the importance factor σ denotes the weight to be
assigned to the Subject field, as described in Section 3. Figure 5 shows that the quality
of a clustering is affected by σ , and is maximized when 0.15 ≤ σ ≤ 0.20. Values
outside these bounds negatively affect the quality of clustering.

We also compared the performances of the Hybrid algorithm with the results
achieved by means of a traditional hierarchical clustering. Clearly, applying Hybrid

�Fig. 6 Clustering quality exploiting structured features. Each row compares AHC (left-side) with
Hybrid (right-side), for each of the best settings of preprocessing parameters: a,b u = 0.4, σ = 0.15;
c,d u = 0.4, σ = 0.2; e,f u = 0.3, σ = 0.15; g,h u = 0.3, σ = 0.2

J Intell Inf Syst (2008) 30:153–181 173

174 J Intell Inf Syst (2008) 30:153–181

leads to a significant improvement in the clustering quality, provided that similarity
parameters are properly tuned. Indeed, the best results were obtained by giving
higher importance to the unstructured part of the message (as somehow expected),
and lower importance to the structured part of the message. Figure 6 reports cluster-
ing quality results by significantly varying the parameters controlling the structured
features. We observed that the usage of numerical features provides no significant
benefit. On the other hand, categorical features can positively affect the clustering
quality, provided that a suitable weight (10 ÷ 20%) is assigned to such features. In
general, the advantage of applying the hierarchical algorithm over a portion of the
original dataset for computing the initial centroids yields a significant improvement
in the quality of results.

The proposed message clustering approach is sensitive to several parameters,
so in principle it may be hard to tune it in practice. However, the experimental
evaluation clearly fixes the margins for the similarity parameters. To summarize,
significant values for the structured features were found in α ∼= 0.1, 0.1 ≤ η ≤ 0.2.
Unstructured features are instead governed by the bounds l ∼= 0.02, 0.3 ≤ u ≤ 0.4
and 0.15 ≤ σ ≤ 0.20.

Obviously, there is no guarantee that such values are effective in every scenario:
in particular, different users could exhibit different attitudes which are reflected by
different values of the various parameters. Under this perspective, the experimenta-
tion described in this section can be conceived as a tuning methodology. Moreover,
it is worth emphasizing that a clustering task is preliminarily performed to build an
initial partition which is next incrementally refined as soon as new incoming messages
are available. Hence, by studying the appropriateness of the initial clustering to a
predefined set of folders, one can tune the various parameters for the next stages of
classification.

6.2 Evaluating cluster descriptions

Orthogonally to the evaluation of clustering results discussed above, it is worth
making some remarks on how cluster_labeler works. In a sense, the intention
should be that of evaluating how our cluster labeling approach is capable of capturing
the actual specifics of any cluster within a given collection. Unfortunately, a rigid
evaluation of cluster labels is intrinsically difficult, as it is eventually conditioned
by subjective factors when choosing proper descriptions for clusters. Therefore, we
conducted an evaluation which is limited to highlighting some behavioral aspects of
our cluster labeling technique.

The benefits of using cluster_labeler can be experienced by a user as he/she
acquires specific knowledge of the topics covered within a given folder. In principle,
TF. IDF ranking can help in characterizing topics. Nevertheless, according to the
proposed pattern discovery technique, such topics should be better reflected by the
labeling rule which is both the most discriminative and interesting for the associated
cluster. Indeed, a labeling rule may involve not only terms with high TF. IDF values,
but also emerging terms which are not characteristic of any cluster than the one under
consideration.

As an example, Table 3 reports the descriptions associated to (some) clus-
ters extracted from Mailbox no. 2 collection. For each cluster C, we compared
the discriminative pattern L, which forms the labeling rule L ⇒ C, with a label

J Intell Inf Syst (2008) 30:153–181 175

Table 3 An example cluster descriptions

Cluster (Stemmed) term TF. IDF value Discriminative pattern

C1 kdnugget 0.66 kdnugget
kdd 0.16
tm 0.15
html 0.10
mine 0.09

...
C3 wekalist 0.55 wekalist

list 0.28
weka 0.15
waikato 0.13
nz 0.13

...
C10 mine 0.50 mine, text, market, student

text 0.18
web 0.16
market 0.13
test 0.11

...
C17 mine 0.43 support, decis

ml 0.41
support 0.37
decis 0.36
cfp 0.07

...
C22 cfp 0.49 cfp

issu 0.18
special 0.18
workshop 0.15
comput 0.12

C23 ml 0.50 ml, geneticalgorithm, geneticprogram
geneticalgorithm 0.33
geneticprogram 0.33
rule 0.14
associ 0.12

...

composed as a list of terms with the highest TF. IDF values.3 As we can observe, the
sequence of terms in a discriminative pattern is included in the related TF. IDF top
list. However, labels computed by cluster_labeler exhibit some specifics. For
example, although clusters C17 and C10 share the first term in their respective TF. IDF
top list, the term “mine” appears only in the discriminative pattern of C10 (indeed,
it has a higher frequency in C10 than C17). A similar behavior can be observed in
clusters C17 and C23 concerning the term “ml”.

Also, the term “student” appears in the discriminative pattern of C10, but it has
not a high TF. IDF rank. This makes evident an additional advantage in using the

3We set the length of TF. IDF top list to 5, and the minimum-support threshold to 30%.

176 J Intell Inf Syst (2008) 30:153–181

proposed cluster labeling procedure: the independence from the size of the labels.
Indeed, the length of a label does not need to be user-specified, but is determined by
the number of terms which compose the discriminative pattern provided as a result
of the algorithm. This avoids any user effort to size the description of each cluster.
As a consequence, cluster labeling turns out to be the outcome of an automatic task
of pattern discovery rather than the effect of a subjective tagging which may either
underestimate or overestimate the identification of cluster topics.

6.3 Evaluating cluster maintenance

In this section, we evaluate the effectiveness of the message classifier across a tempo-
ral window. More precisely, learning from an initial (training) message partition P , a
classifier is tested on a stream of incoming messages S .

The effectiveness of the update algorithm is evaluated by properly adapting
the classic notions of precision and recall. When considering continuous streams
of messages, the set of categories is not fixed, since new clusters may be formed
according to new messages whose topics may have not yet been covered in the
current partition. Thus, the above notions need to be tuned to such a dynamic
context. In particular, at a given timestamp, we consider the set {C1, . . . , Ck} of
preexisting categories, and an emerging category Cnew which can be envisaged from
the new burst of messages.

Given an incoming message m, we denote with class(m) the assignment of m to
a class in the ideal partition, and with cluster(m) the assignment of m within the
partition computed by update. The following contingencies can be computed:

– T Pex,i = {m|class(m) = Ci, cluster(m) = Ci}, for each Ci ∈ P , is the set of mes-
sages correctly classified into the existing folder Ci;
T Pnew = {m|class(m) = Cnew, cluster(m) = Cnew} is the set of messages correctly
assigned to a new folder.

– F Pex,i = {m|class(m) = C j, cluster(m) = Ci}, for each Ci ∈ P , is the set of mes-
sages incorrectly classified into the existing folder Ci;
F Pnew = {m|class(m) = C j, cluster(m) = Cnew} is the set of messages to be classi-
fied into existing folders but incorrectly assigned to a new folder.

– F Nex,i = {m|class(m) = Ci, cluster(m) = C j}, for each Ci ∈ P , is the set of mes-
sages to be classified into Ci but incorrectly assigned to another existing folder
C j
= Ci;

Fig. 7 Temporal distribution of message stream based on the Mailbox no. 2 collection

J Intell Inf Syst (2008) 30:153–181 177

Fig. 8 Performance of
update on the Mailbox no. 2
collection

F Nnew = {m|class(m) = Cnew, cluster(m) = Ci} is the set of messages to be classi-
fied into new folders but incorrectly assigned to existing folders.

We can now define the measures which capture respectively the notions of
“soundness” and “completeness” of an incremental categorizer:

i-Precision = |T Pex| + |T Pnew|
|T Pex| + |T Pnew| + |F Pex| + |F Pnew|

i-Recall = |T Pex| + |T Pnew|
|T Pex| + |T Pnew| + |F Nex| + |F Nnew|

Intuitively, i-Precision (resp. i-Recall) is the proportion of messages correctly
classified with respect to the total count of assignments decided by the system (resp.
expert).

In the following, we show the experiments performed on the Mailbox no. 2
collection. For this collection, the temporal window was divided in bursts, each of
which corresponding to a week. Figure 7 shows the distribution of messages over 27

0 1 3 5 7 9 11 13 15 17 19 21 23 25 27
0

10

20

30

40

50

60

70

80

week

C
lu

st
er

s/
E

di
t o

pe
ra

tio
ns

clusters
split
merge

1 3 5 7 9 11 13 15 17 19 21 23 25 27
0

1

2

3

4

5

6

7

week

E
di

t o
pe

ra
tio

ns

split
merge

Fig. 9 Number of split/merge operations (compared to the total number of clusters) on the Mailbox
no. 2 collection

178 J Intell Inf Syst (2008) 30:153–181

weeks, with an average of 54 messages per week. The performance of the update
algorithm, across a 27-week period, is reported in Fig. 8. As we can observe, except
for the low peak corresponding to week ten, both i-Precision and i-Recall are always
above 90%, with average values equal to 95.3 and 98.5%, respectively.

The efficiency of the update algorithm is mainly affected by the number of
restructuring (split/merge) operations. As mentioned in Section 5, in principle such
operations could involve the entire set of messages. However, Fig. 9 shows that
the number of restructuring operations is limited in the bursts under evaluation. In
particular, the left-side graph compares the number of restructuring operations with
the number of clusters generated. As we can see, the latter is poorly affected by such
operations. The right-side graph details the restructuring operations, and shows the
influence of the merge operations is quite limited, since their number is always less
than the number of split operations.

We also compared the update algorithm with the naïve Bayesian classifier, which
has been widely used for text classification and has been shown to give very good
performance (Domingos & Pazzani, 1997; Lewis, 1998; Lewis & Gale, 1994; Lewis &
Ringuette, 1994; McCallum & Nigam, 1998; Mitchell , 1997). Such a classifier does not

Random set Training size Test size

1 985 15
2 922 78
3 904 96
4 877 123
5 855 145
6 812 188
7 754 246
8 698 302
9 655 345
10 568 432
11 550 450
12 520 480

a b

Fig. 10 Prediction performance of a update vs. b naïve Bayesian classifier on the Mailbox no. 3
collection

J Intell Inf Syst (2008) 30:153–181 179

support incremental classification. Hence, a fair comparison has to be accomplished
by fixing a predefined set P of categories (clusters), and by analyzing the behavior
of such algorithms solely with respect to such a set. In practice, the assignment
contingencies related to new folders (i.e., T Pnew, F Pnew, and F Nnew) have to be
ignored in the computation of i-Precision and i-Recall measures.

Figure 10 shows how the incremental update algorithm provides a substantial
improvement with respect to the naïve Bayesian classifier, especially from the
i-Precision point of view. In these experiments we used several message sets ran-
domly chosen from the Mailbox no. 3 collection.

The motivation behind the performance improvement is due to a different strategy
for deciding the class assignment for each new message. The naïve Bayesian classifier
evaluates the conditional probability that a message belongs to different folders and
assigns it to the folder with the highest conditional probability. Such a probability
relies on the posterior probability of a message conditioned on a folder, which is
computed by assuming the class conditional independence. The latter means here
that the occurrence of a term, when referred locally to a given folder, is statistically
unrelated to the occurrences of any other term. In practice, this assumption implies
that there are no dependence relationships among the terms contained in the
messages. Therefore, the naïve Bayesian classifier does not take into account the
co-occurring dependence between terms. By contrast, the partition quality criterion
used by the update algorithm allows for the computation of intra- and inter-cluster
similarities which both depend on the degree of term co-occurrence among messages.

7 Conclusions

We presented a unified framework for addressing the problem of email categoriza-
tion. The contribution was threefold and covered the following issues: classifying
messages similar from a content point of view, updating a current message organi-
zation according to new incoming messages, and extracting significant descriptions
for the message folders.

We studied how to suitably represent email messages by means of unstructured
and structured features, and how to exploit them in a mixed hierarchical–partitional
clustering scheme for building a mailbox partitioning.

To maintain a preexisting message organization, we conceived an incremental
update strategy which benefits from the exploitation of both internal partition–
quality criteria and reliable syntheses of the message folders. Such synthesized
information is based on the extraction of discriminative labels obtained by means
of pattern discovery techniques. The novel concept of discriminative term allows the
identification of those terms which reflect the content of messages within a given
cluster, and are at the same time a suitable characterization of the cluster.

We showed how the proposed data mining techniques were effective in ac-
complishing the overall process of folder creation/description/maintenance. Several
experiments on different private mail collections were performed to assess the
quality of the results provided by our techniques.

Nevertheless, some issues have still not been addressed. For instance, an inter-
esting open problem is concerned with investigating the possibility of managing
the organization of messages according to both their contents and the preferences

180 J Intell Inf Syst (2008) 30:153–181

of the corresponding recipient. Actually, when users interact with a mail service,
they provide a substantial amount of information about their preferences and
requirements: how they react when receiving new messages, how they would group
messages belonging to the same conversational thread, which messages they consider
as priority based on their current workload, and any advantage they experience in
using the service. Therefore, the organization of a collection of email messages could
be improved by tracking and analyzing user behavior.

References

Agrawal, R., Bayardo, R., & Srikant, R. (2000). ATHENA: Mining-based interactive management
of text databases. In Proceedings of the International Conference on Extending Database Tech-
nology (EDBT) (pp. 365–379). Konstanz, Germany.

Allan, J., Carbonell, J., Doddington, G., Yamron, J., & Yang, Y. (1998a). Topic detection and
tracking pilot study: Final report. In Proceedings of the DARPA Broadcast News Transcription
and Understanding Workshop (pp. 194–218).

Allan, J., Papka, R., & Lavrenko, V. (1998b). On-line new event detection and tracking. In Proceed-
ings of the ACM SIGIR International Conference on Research and Development in Information
Retrieval (SIGIR)(pp. 37–45). Melbourne, Australia.

Androutsopoulos, I., Koutsias, J., Chandrinos, K., Paliouras, G., & Spyropoulos, C. (2000). An
Evaluation of naive Bayesian anti-spam filtering. In Proceedings of the Workshop on Machine
Learning in the New Information Age (pp. 9–17). Barcelona, Spain.

Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern Information Retrieval, ISBN-0-201-39829-X.
New York: ACM.

Boone, G. (1998). Concept features in re: Agent, an intelligent e-mail agent. In Proceedings of the
International Conference on Autonomous Agents (pp. 141–148). Minneapolis: ACM.

Cohen, W. (1996). Learning rules that classify e-mail. In Proceedings of the AAAI Spring Symposium
in Information Access. Stanford, California.

Crawford, E., Kay, J., & McCreath, E. (2001). Automatic induction of rules for e-mail classification.
In Proceedings of the Australasian Document Computing Symposium (pp. 13–20). Coffs Harbour,
NSW Australia.

Cutting, D., David, K., Pedersen, J., & Tukey, J. (1992). Scatter/gather: A cluster-based approach
to browsing large document collections. In Proceedings of the ACM SIGIR International
Conference on Research and Development in Information Retrieval (SIGIR) (pp. 318–329).
Copenhagen, Denmark.

Dhillon, I., & Modha, D. (2001). Concept decompositions for large sparse data using clustering.
Machine Learning, 42, 143–175.

Domingos, P., & Pazzani, M. J. (1997). On the optimality of the simple Bayesian classifier under
zero-one loss. Machine Learning, 29(2/3), 103–130.

Drucker, H., Wu, D., & Vapnik, V. (1999). Support vector machines for spam categorization. IEEE
Transactions on Neural Networks, 10(5), 1048–1054.

Fisher, D. (1987). Concept acquisition via incremental conceptual clustering. Machine Learning, 2,
139–172.

Gennari, J., Langley, P., & Fisher, D. (1989). Models of incremental concept formation. Artificial
Intelligence, 40, 11–61.

Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns without candidate generation. In Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD).
Dallas, Texas (pp. 1–12). New York: ACM.

Hidalgo, J., López, M., & Sanz, E. (2000). Combining text and heuristics for cost-sensitive spam
filtering. In Proceedings of the Computational Natural Language Learning Workshop (CoNLL)
(pp. 99–102). Lisbon, Portugal.

Huang, Z. (1998). Extensions to the k-Means algorithm for clustering large data sets with categorical
values. Data Mining and Knowledge Discovery, 2(3), 283–304.

Jain, A., & Dubes, R. (1988). Algorithms for clustering data, Prentice-Hall advanced reference series.
Englewood Cliffs, New Jersey: Prentice-Hall.

J Intell Inf Syst (2008) 30:153–181 181

Jain, A., Murthy, M., & Flynn, P. (1999). Data clustering: A review. ACM Computing Surveys, 31(3),
264–323.

Kilander, F., Fahraeus, E., & Palme, J. (1997). Intelligent information filtering. Technical report,
Department of Computer and Systems Sciences, Stockholm University. Available at http://
www.dsv.su.se/∼fk/if_Doc/IntFilter.html.

Lavrenko, V., Allan, J., DeGuzman, E., LaFlamme, D., Pollard, V., & Thomas, S. (2002). Relevance
models for topic detection and tracking. In Proceedings of the Conference on Human Language
Technology. San Diego, California.

Lewis, D. D. (1998). Naive (Bayes) at forty: The independence assumption in information retrieval.
In Proceedings of the European Conf. on Machine Learning (ECML) (pp. 4–15). Berlin
Heidelberg New York: Springer.

Lewis, D. D., & Gale, W. (1994). A sequential algorithm for training text classifiers. In Proceedings of
the ACM SIGIR International Conference on Research and Development in Information Retrieval
(SIGIR) (pp. 3–12). Berlin Heidelberg New York: Springer.

Lewis, D. D., & Ringuette, M. (1994). A comparison of two learning algorithms for text catego-
rization. In Proceedings of the Symposium on Document Analysis and Information Retrieval
(SDAIR) (pp. 81–93).

McCallum, A., & Nigam, K. (1998). A Comparison of event models for naive Bayes text classifica-
tion. In Proceedings of the AAAI Workshop on Learning for Text Categorization (pp. 41–48).
Madison, Wisconsin.

Mitchell, T. (1997). Machine Learning, Computer Sciences Series. New York: McGraw-Hill.
Mock, K. (1999). Dynamic email organization via relevance categories. In Proceedings of the IEEE

International Conference on Tools With Artificial Intelligence (ICTAI) (pp. 399–405). Chicago,
Illinois.

Pantel, P., & Lin, D. (1998). SpamCop: A spam classification and organization program. In Pro-
ceedings of the AAAI Workshop on Learning For Text Categorization (pp. 95–98). Madison,
Wisconsin.

Payne, T. R., & Edwards, P. (1997). Interface agents that learn: An investigation of learning issues in
a mail agent interface. Applied Artificial Intelligence, 11(1), 1–32.

Segal, R., & Kephart, J. (1999). MailCat: An intelligent assistant for organizing e-mail. In Proceedings
of the International Conference on Autonomous Agents. Seattle, Washington (pp. 276–282). New
York: ACM.

Selim, S. Z., & Ismail, M. A. (1984). K-Means-type algorithms: A generalized convergence theorem
and characterization of local optimality. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 6, 81–87.

Steinbach, M., Karypis, G., & Kumar, V. (2000). A comparison of document clustering tech-
niques. In Proceedings of the ACM SIGKDD International Workshop on Text Mining. Boston,
Massachusetts.

Strehl, A., Ghosh, J., & Mooney, R. (2000). Impact of similarity measures on web-page clustering.
In Proceedings of the AAAI workshop on artificial intelligence for web search, Austin, Texas (pp.
58–64). California: AAAI.

Swan, R., & Allan, J. (2000). Automatic generation of overview timelines. In Proceedings of the
ACM SIGIR International Conference on Research and Development in Information Retrieval
(SIGIR). Athens, Greece (pp. 49–56). New York: ACM.

Whittaker, S., & Sidner, C. (1996). Email overload: exploring personal information management of
email. In Proceedings of the Conference on Human Factors in Computing Systems (CHI) (pp.
276–283). New York: ACM.

Yang, Y., Pierce, T., & Carbonell, J. (1998). A study on retrospective and on-line event detection.
In Proceedings of the ACM SIGIR International Conference on Research and Development in
Information Retrieval (SIGIR) (pp. 28–36). Melbourne, Australia.

http://www.dsv.su.se/~fk/if_Doc/IntFilter.html
http://www.dsv.su.se/~fk/if_Doc/IntFilter.html

	Mining categories for emails via clustering and pattern discovery
	Abstract
	Introduction
	Preliminaries
	Text preprocessing
	Message features

	Choosing an initial cluster partition
	Message similarity
	Clustering algorithms

	Extracting cluster descriptions
	Updating clusters
	Experimental results
	Evaluating clustering results
	Evaluating cluster descriptions
	Evaluating cluster maintenance

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

