
Rialto: A Knowledge Discovery Suite for Data Analysis

Giuseppe Mancoa,⇤, Pasquale Rullob, Lorenzo Galuccic, Mirco Paturzoc

a
ICAR-CNR, Via Bucci 41c, 87036 Rende (CS) - Italy

b
Dip. di Matematica e Informatica, Universitá della Calabria, Via Bucci 30b, 87036 Rende

(CS) - Italy

c
Exeura S.r.l., Via P.A. Cabrai, 87036 Rende (CS) - Italy

Abstract

A Knowledge Discovery (KD) process is a complex inter-disciplinary task, where

di↵erent types of techniques coexist and cooperate for the purpose of extract-

ing useful knowledge from large amounts of data. So, it is desirable having

a unifying environment, built on a formal basis, where to design and perform

the overall process. In this paper we propose a general framework which for-

malizes a KD process as an algebraic expression, that is, as a composition of

operators representing elementary operations on two worlds: the data and the

model worlds. Then, we describe a KD platform, named Rialto, based on such

a framework. In particular, we provide the design principles of the underlying

architecture, highlight the basic features, and provide a number of experimental

results aimed at assessing the e↵ectiveness of the design choices.

Keywords: Knowledge Discovery Process, Data Mining, Business Analytics

Platforms

1. Introduction1

Knowledge Discovery (KD) is the process of extracting novel, potentially use-2

ful, and ultimately understandable patterns in data (Han and Kamber, 2001). A3

KD process involves several steps, including data acquisition, data pre-processing,4

⇤Corresponding author
Email addresses: manco@icar.cnr.it (Giuseppe Manco), rullo@mat.unical.it

(Pasquale Rullo), lorenzo.gallucci@exeura.eu (Lorenzo Galucci),
mirko.paturzo@exeura.eu (Mirco Paturzo)

Preprint submitted to Expert Systems with Applications April 22, 2016

data mining and data post-processing. In general, each step requires a variety of5

algorithms and techniques, such as SQL queries to manipulate data in the pre-6

processing phase, di↵erent learning methods in the data mining step, or model7

visualization metaphors in the post-processing phase.8

Though the main e↵orts in the KD community have been so far devoted to9

the development of e�cient mining algorithms and techniques, some standard-10

ization initiatives, aimed at solving the KD problem as a whole, have been pro-11

posed. As an example, the Cross Industry Standard Process (CRISP) method-12

ology (Shearer, 2000), where data mining is set in the larger context of KD, is13

considered a de facto standard methodology used by industry data miners. A14

more formal attempt to define a general and unified framework is the 3-World15

model proposed in (Johnson et al., 2000). Here, a KD process is seen as a16

”multi-step process where the input of one mining operation can be the output17

of another” and a data mining algebra is proposed.18

Thus, in the perspective of a unified approach, a data mining system should19

provide support to the entire KD lifecycle within a unique, integrated environ-20

ment, providing suitable features to enable the construction of a KD analysis21

as an interactive and an incremental process. To this end, there is a number of22

requirements that an integrated KD environment should meet, including:23

• capability to gather data from diverse data sources, such as databases,24

Excel, CSV files, etc. (data acquisition)25

• availability of a wide variety of techniques to reduce data preprocessing ef-26

forts (nearly 80% of the time that an analyzer spends on analytics projects27

is during preprocessing)28

• richness of mining algorithms and techniques29

• availability of e↵ective model and data visualization tools, for decision30

making and informed data manipulation, respectively31

• extensibility, i.e., open architecture to be easily customizable with new32

specific tasks.33

2

Additional requirements that a KD system should fulfill in order to cope34

with real-world applications include:35

• Usability : a KD process can be extremely complex with several interacting36

components. In order to e�ciently design and build such a process, the37

supporting KD environment should provide a GUI allowing for a simple38

and interactive creation of the analysis process, obtained by assembling a39

number of elementary tasks according to a given logical flow. Furthermore,40

it should enable the user to visually explore data and models.41

• Multiple data types : while classical KD approaches mainly deal with re-42

lational data, the need to deal with unstructured data is lately growing43

(Sebastiani, 2002). Indeed, textual data represent the large majority of44

stored digital information and is growing at a much faster rate than busi-45

ness quantitative data. As a consequence, text mining applications have46

been steadily increasing in the last few years (see, e.g., (Vilares et al.,47

2015), (Hristovski et al., 2008)). Besides texts, other data types like time48

series (chung Fu, 2011), graphs (Borgelt, 2009), streams (Gaber et al.,49

2005; S., 2005) have lately gained increasing popularity.50

• Big Data: a KD tool should be able to e�ciently deal with mass-memory51

resident data and provide mechanisms to scale up to large real-world do-52

mains.53

Today, a large number of KD tools exists, with both commercial and open54

source licenses, e.g., (Hall et al., 2009; Berthold et al., 2009). KD systems are55

diverse in design and implementation. Many commercial KD tools available in56

the market result from the integration of data mining methods into commercial57

statistical tools, e.g., SPSS and SAS, while others, such as Oracle Data Mining,58

result from the integration of data mining solutions into business intelligence59

products. A few tools, such as KNIME (Berthold et al., 2009) and IBM SPSS60

Modeler (formerly Clementine), were natively designed to provide full support61

to the KD lifecycle, giving the possibility of executing the entire KD process62

3

within a unique, integrated environment, thus eliminating the need for context63

switching. Surveys on KD tools can be found in (Mikut and Reischl, 2011; Chen64

et al., 2007).65

In this paper we present Rialto, a KD platform assisting the designer dur-66

ing the entire KD lifecycle. Rialto relies on a visual interaction which enables67

the construction of a KD process as a workflow representing a composition68

of elementary operators on two worlds: the data and the model worlds (the69

2W Model). Thus, a workflow consists of nodes that are either tables (data), or70

models or tasks (operators). Tables are unnormalized relations, as Event Collec-71

tions for managing complex data types, such as texts, itemsets, etc., are allowed.72

Operators are implemented as plug-ins of the platform. In order to facilitate73

the work of the analyst, Rialto o↵ers a broad variety of pre-packaged plug-ins74

covering all phases of the KD process (from data acquisition to model deploy-75

ment). In addition, new ad hoc Java-based plug-ins can be created whenever76

needed (extensibility). To this end, Rialto provides an integrated development77

environment which enables and simplifies code generation.78

Currently, Rialto works on both relational data and texts. Data mining is79

supported by plug-ins for classification (including decision trees, Naive Bayes,80

rule induction), regression, clustering and association mining. As far as texts81

is concerned, text-specific plug-ins are available for preprocessing, classification82

(Complement Naive Bayes (Rennie et al., 2003), Olex (Rullo et al., 2009) ,83

OlexGa (Pietramala et al., 2008) and Max Entropy (Nigam et al., 1999)), and84

topic detection based on the Latent Dirichlet Allocation (LDA) model (Blei85

et al., 2003). Ongoing work is devoted to extensions to deal with data streams86

as well as spatio-temporal data.87

Rialto is also equipped with plug-ins allowing the analyst to inspect both88

data and models, thus taking advantage of descriptive statistics, explanatory89

charts, and models visualizations metaphors.90

Finally, Rialto exhibits features, such as the bridge mechanism, for the ef-91

ficient and transparent manipulation of large amounts of data. E�ciency and92

scalability are ensured by a workflow execution engine relying on parallel exe-93

4

cution strategies along with e↵ective bu↵ering policies and management of data94

in main memory.95

In short, the contributions of the paper can be summarized as follows.96

• We propose an algebraic model, namely the 2W model, for specifying data97

mining queries and, more in general, a KD process. The 2W Model is a98

variant of the 3W model which emphasizes the underlying philosophy of99

combining several forms of knowledge and the cooperation among solvers100

of di↵erent nature, in a more general setting.101

• We introduce an e↵ective architecture which implements the 2W model102

and visually models data mining queries as interactions among the two103

worlds. Rialto relies on two key aspects: closure and extensibility. These104

aspects are directly derived from the specification of the 2W model, and105

they are the essential tools to achieve the combination of deductive infer-106

ences along with inductive mechanisms and statistical methods. However,107

Rialto also exhibits some important aspects beyond those: some architec-108

tural choices are specifically introduced to enable the optimized execution109

of data mining queries. In addition, a strong emphasis is given to visual110

inspection and support for the choice of the optimal data/model manipu-111

lation operator.112

The paper is organized as follows. In Section 2 we provide a description of113

the 2W Model. In Section 3 we give an overview of Rialto. In Section 4 we114

describe the architecture of Rialto. In Section 5 we show two case studies based115

on Rialto. In Section 6 we evaluate Rialto against a number of both functional116

and architectural requirements, and perform a number of experimental analyses117

aimed at assessing the e↵ectiveness of the proposed architecture. In Section 7118

we describe a number of features we are currently working on and, finally, in119

Section 8 we provide some concluding remarks.120

5

2. The Foundation: Modeling KD Processes as Algebraic Processes121

There is a sort of standard framework upon which complex data analyt-122

ics applications can be approached (Manco et al., 2008). Notably, analytical123

questions posed by the end user need to be translated into several tasks such124

as choose analysis methods, prepare the data for application of these methods,125

apply the methods to the data, and interpret and evaluate the results obtained.126

The interaction of these tasks requires combining several forms of knowledge and127

the cooperation among solvers of di↵erent nature: we need to support deduc-128

tive inferences along with inductive mechanisms, in conjunction with statistical129

methods. Historically, there has been an e↵ort to express this combination130

in a unified framework (Imielinski and Mannila, 1996): either by integrating131

data mining algorithms with the underlying database systems (Chaudhuri et al.,132

2002; Giannotti et al., 2004); or by providing ad-hoc extensions of SQL (Imielin-133

ski and Virmani, 1999; Wang et al., 2003; Ortale et al., 2008). We can devise134

however a unifying picture where we consider the Knowledge Discovery process135

as an algebraic process, with some primitive data types and instances which can136

be manipulated by means of a set of basic operators.137

The impact of such an algebraic framework can be summarized in two main138

aspects which we expect the framework will support. First, in an e↵ort to139

combine reasoning and mining, it is important to treat results of data mining140

on a par with data objects which can be further manipulated. Second, suitable141

combinations and compositions of known mining tasks can enable more poweful142

mining computations and findings. In essence, the principle upon which these143

aspects can be enabled is the closure capability.144

The current literature has studied the foundational aspects of this algebraic145

view of the KD process. In particular, the 3-Worlds Model (3W in the following)146

(Johnson et al., 2000; Calders et al., 2006) introduces and develops this abstract147

view as a mathematical structure where three entities, namely data, intensional148

models and extensional models, can interact by means of algebraic operators.149

In the following we will describe a variant of the 3W, which we refer to as the150

6

2-World Model (2W). In this model, a KD process can be especified as the151

interaction between two apparently separate worlds, the data world (D-world)152

and the model world (M-world).153

The D-world consists of a set of entities to be analyzed, with their properties154

and mutual relationships. Following (Johnson et al., 2000; Calders et al., 2006),155

we assume that the D-world D is made of all possible nested relational tables156

that can be defined over an infinite attribute set A = {A1, . . . , Am, . . .}, where157

each Ai is associated with a domain dom(Ai).158

The M-world consists of the intensional representations of the patterns re-159

lating the elements of the D-World, expressed through specific languages (rules,160

mathematical properties, etc.). In (Johnson et al., 2000; Calders et al., 2006),161

M is populated by region tables, i.e., relational tables where attributes can162

only be associated with the special region domain. In particular, a region can163

be described in terms of a description of its members, i.e., region membership164

criteria. The simplest criteria can be devised as constraints over a subset of165

attributes in A. For example, A 5 ^ B > 6 intentionally represents the set166

of all tuples t defined over a relation r[A,B] such that t[A] 5 and t[B] > 6.167

Thus, an example model can be defined over the scheme given by the attributes168

{Condition, Classification}, and a possible instance is represented by the169

table r defined as:170

Condition Classification

A 5 ^B > 6 C = 1

A < 5 C = 0

171

It is easy to see how the above table encodes a decision tree, where each row172

represent a path and in particular the Condition attribute represents the path,173

whereas the Classification attribute represents the label associated with that174

path.175

Within the 2W, we deliberately choose a more general setting, and we do176

not specify directly models as region tables. Rather, we assume that a model177

m is any mathematical structure characterized by178

7

• two schemas S, S0 ⇢ A and S ⇢ S0; intuitively, S is the set of attributes179

upon which m is built, and S0 \ S is the set of attributes describing the180

result of the application of m to a tuple t over S;181

• an entailment `S operator such that, for each tuple t defined over S,182

m `S t if t satisfies m;183

• an extension operator ⌧ such that, for each t entailed by m, ⌧m(t) = t0,184

where t0 is a tuple defined over S0, such that t0[S] = t.185

We notice that the above two operators subsume the basic properties that mod-186

els should have: the capability of bounding tuples (entailment), and the capa-187

bility to annotate tuples according to these bounds (extension).188

The table r illustrated above is a special case of this formalization, where189

S = {A,B} and S0 = {A,B,C}. Also, the entailment ` holds if there is any190

region in Condition which is satisfied by t, and ⌧r(t) extends t with the value191

of the region associated with Classification. For example, if t = h3, 6i then192

⌧r(t) = h3, 6, 0i because the entailment is satisfied by the second row of r, and193

the corresponding Classification region is C = 0. In the following we refer194

to hS, S0,`S , ⌧i as the schema of a model.195

Thus, in our formalization a 2W database is a tuple hD,Mi, where D is a set196

of relations in D, and M is a set of models in M . A knowledge discovery process197

can hence be formalized as a transition from a 2W database hD,Mi to another198

one hD0,M0i, through a number of suitable operators. In particular, the closure199

between the two worlds D and M is achieved by means of the following set of200

classes of operators (see Figure 1):201

• Filtering operators are self-injecting relationships. They take a set of enti-202

ties as input and produce a new set of entities, generating data from data203

(for pre-processing purposes) and models from models. Thus, a generic204

data filter operator is of the form205

�D : Dn ! Dm

8

Figure 1: The 2W Model

while a generic model filter operator is of the form206

�M : Mn ! Mm.

• Mining operators relate data entities to model entities, thus enabling tran-

sitions from the D-world to the M-world. A generic mining operator (rep-

resenting a mining algorithm) is of the form

µ : D ! M.

The result of the application of µ to a data entity d is a model, which207

describes a pattern holding over d.208

• Application operators can be seen as a sort of reverse mining operators,

generating a data entity from the application of a model to another data

entity, i.e.

↵ : D ⇥M ! D

Applying a model m to a data entity d essentially means making the209

intensional properties of m explicit in extensional form: e.g., by associ-210

ating each tuple in a table with the most likely target class according to211

the model, or by enumerating the frequent patterns appearing within the212

9

tuple. The only requirement is that schemes are compatible, i.e., given213

d 2 D with scheme X and m 2 M with scheme hS, S0,`, ⌧i, then S ✓ X.214

Now, every data mining query can be represented by means of a composition215

of the above operators, and a KD process as a transition of 2W databases216

through data mining queries. For an instance, a typical learn-and-test process217

can be represented as the transition218

h{d}, ;i

! h{d, dTrain , dTest}, ;i

! h{d, dTrain , dTest}, {m}i

! h{d, dTrain , dTest , dc}, {m}i,

(1)

where each transition is determined by the application of some of the above

described operators, notably:

hdTrain , dTesti:=�(split)
D (d)

m:=µ(dTrain)

dc:=↵(m, dTest)

Here, �(split)
D (d) represents a data filtering operator which splits d into two parti-219

tions. In turn, m is the model learned by the execution of a mining algorithm µ220

over dTrain (e.g., a decision tree), and dc is the data entity obtained by applying221

the model m on the test set dTest .222

As another example, a process inducing a decision tree DT from a data set d,223

by using the learning algorithm µDT , and then transforming DT into a set of224

rules, is synthetically represented by the expression �DT2Rules
M (µDT (d)), where225

�DT2Rules
M is a suitable model filtering operator.226

Compared to the 3Wmodel, the 2Wmodel exhibits some substantial similar-227

ities and di↵erences, as shown in table 1. First, the Model world does not entail228

an extensional representation in our simplified view. As a matter of fact, the229

extensional representation of a model corresponds to a set of tuples associated230

with the regions they belong to. Since we implicitly embed these associations231

10

3W 2W

Data Nested relational tables Nested relational tables

Models Region tables Any mathematical structure with entail-

ment and extension

Both intensional and exten-

sional representation

No extensional representation

Data operators Nested relational algebra Generic (any function Dn 7! Dm
)

Model operators Dimension algebra Generic (any function Mn 7! Mm
)

Mining operators Regionize, loop Generic (any function D 7! M)

Model to data Populate Generic (any function D ⇥ M 7! D with

compatible schemes)

Table 1: Comparison of 3W and 2W.

within the entailment and extension operators, we don’t need to di↵erentiate be-232

tween intensional and extensional representation. The di↵erentiation, although233

useful from a theoretical point of view, is of little interest from a practical point234

of view.235

Second, we regard the operators �D, �M , µ and ↵ as black boxes, whereas236

the 3W world only allows a pre-specified set of basic operators, upon which237

to derive more complex operators by means of compositions. In particular,238

the operators �D in 3W represent all the nested relational algebra operators,239

and �M is any operator composing and decomposing regions. Also, the only240

mining operators in (Calders et al., 2006) are the regionize and loop operators.241

These operators are useful from a theoretical point of view, since they allow to242

investigate the expressive power of the overall algebra: that is whether any data243

mining algorithm can be expressed by means of a combination of this minimal244

set of operators. However, it is extremely unpractical to rely on such operators245

from an application viewpoint. This is the main reason why we decided to keep246

the operators at an abstract level, as functionals within the two worlds. The key247

point in the 2W is that objects in di↵erent worlds can interact, and that there248

11

is a way of mapping an object within D to an object within M , and viceversa.249

Finally, another substantial di↵erence, is the choice of the mining models.250

As we already mentioned, the 3W focuses on region tables, and regions are only251

expressible as sets of linear inequalities. As Calders et al. (2006) declare, “this252

limitation means that the results of some data mining operations might not be253

expressible, as they require more complex mathematical objects. Straightforward254

examples are, e.g., non-linear regression methods, support vector machines, and255

clustering methods resulting in non-linear regions, etc’ [...]. Therefore, the de-256

scription of the output of some data mining tasks requires more sophisticated257

constraints than the ones used in the paper’ ’. By contrast, in the 2W we choose258

to describe models in a more general setting, i.e., as mathematical structures259

equipped with the entailment and extension operators, the former providing260

the capability of bounding tuples, and the latter to annotate tuples according261

to these bounds. In this respect, the 2W model should be able to express data262

mining queries involving di↵erent models.263

Rialto was designed with the 2W philosophy in mind, and the architectural264

choices are aimed at injecting the underlying algebra within a visual and inter-265

active environment. In the following we explore the basic features of such an266

environment.267

3. An Overview of Rialto268

The framework we propose is a graphical environment for designing and269

managing KD processes as algebraic expressions based on the 2W Model. These270

are defined by means of workflows, whose nodes represent either tables, models271

or tasks:272

• Tables represent entities of the D-world. A table is a set of tuples, char-273

acterized by attributes. Attribute domains can be either primitive or274

complex data types. In particular, an attribute can be an Event Collec-275

tion (see Section 4.2.1), used to e�ciently handle complex objects, such as276

itemsets, sequences, time series, texts, etc. In general, Event Collections277

12

can be used for the e�cient storing of sparse data sets (i.e., with only a278

few nonzero features).279

• Models represent entities of the M-world.280

• Tasks represent the algebraic operators of the 2W Model - thus, we have281

tasks of type filtering, mining and application.282

The screenshot of an example learn-and-test workflow is shown in Figure 2.283

It essentially represents a KD process similar to the one showin in equation 1284

above. This workflow starts with an acquisition task from a CSV file (a kind285

of filtering task), whose data is imported within Rialto and stored in table Ac-286

quiredDataTable. Each row in this table represents a pre-classified example.287

Then, a number of pre-processing steps are performed. In particular, the above288

table is first submitted to a filter node in charge of managing null values. The289

resulting table NoMissingValuesTable is then processed by another filter node,290

namely, Discretize, in charge of discretizing the values of attribute Age, so gen-291

erating DiscretizedAgeTable (note that both the above filters transform tables292

into tables). Now data is ready for mining and, then, the EC4.5 algorithm (an293

extension of C4.5 (Quinlan, 1987)) is run by using the holdout method. To this294

end, the input table DiscretizedAgeTable is split into a training set and a test295

set (HoldOut Testset). The former is used to induce the model (a decision tree,296

in this case) represented in the workflow by the hexagonal shaped node. The297

latter (i.e., the test set) is used to test the accuracy of the induced model. This298

is done by using the application task Prediction Join (visually, the model node299

and the test table HoldOut Testset are fed to the prediction join node). The300

resulting table Predicted, enabling comparison of the predicted labels with those301

of the ideal classification, is finally exported as a CSV file.302

As mentioned above, every task node in a workflow represents an operator303

of the 2W Model (filtering, mining, application), and is implemented as a Java304

plug-in (so any transformation on tables and models can be performed, as no305

predefined operators are in the 2W Model). However, in order to make it easier306

for the analyst the construction of workflows, Rialto o↵ers a broad variety of307

13

F
ig
u
re

2
:
A
n
ex

a
m
p
le

le
a
rn

in
g
w
o
rk
fl
o
w

14

pre-built plug-ins covering all phases of the KD process. For an instance, for308

the purpose of data acquisition, Rialto provides plug-ins for di↵erent data types309

and format, namely, Ar↵, CSV, Xls, texts, and tables from relational databases310

through JDBC. Among the pre-processing plug-ins, SQL filters can be used311

to create tables from other tables. Data mining is supported by a number of312

plug-ins for classification, regression, clustering and association mining. Since313

Rialto works also on textual data, text-specific plug-ins are available for pre-314

processing (feature extraction, feature selection, concept recognition, etc.), text315

classification (Complement Naive Bayes (Rennie et al., 2003), Olex (Rullo et al.,316

2009) , OlexGa (Pietramala et al., 2008) and Max Entropy (Nigam et al., 1999)),317

and topic detection based on the Latent Dirichlet Allocation (LDA) model (Blei318

et al., 2003).319

One peculiarity of Rialto is that, in the logic of an open and extensible ar-320

chitecture, not only tasks of the 2W Model are implemented as plug-ins, but321

every functionality in Rialto is implemented as a plug-in. For instance, Ri-322

alto o↵ers several plug-ins (not appearing in workflows - for this reason called323

behind-the-scene, as opposed to tasks that are on-the-scene plug-ins) whereby324

the analyst can e↵ectively and easily examine and inspect both data and models,325

taking advantage of descriptive statistics, explanatory charts, models visualiza-326

tion metaphors.327

One of the fundamental behind-the-scene plug-in types in Rialto is that of328

bridges. A bridge is a component in charge of supporting the mapping of the329

table logical primitives into their physical level, thus providing a decoupling330

mechanism between logical data and its physical storage.This way, the bridge331

mechanism makes plug-ins independent from table implementations. A bridge332

is either a main memory bridge, used for ”small” tables, or a mass memory333

bridge, the latter relying on a relational DBMS. The bridge mechanism ensures334

both transparency and e�ciency of data retrieval and storing.335

Table 2 provides a summary of the di↵erent classes of plug-ins. In its current336

release, Rialto features over 100 pre-packaged plug-ins.337

This notwithstanding, new ad hoc plug-ins may be needed from time to time338

15

Table 2: Summary of the di↵erent classes of plug-ins

Plug-in type Note

Task Implements 2W Model operators - Appears in workflows

Model visualizer Applies to models - Does not appear in workflows

Data visualizer Applies to tables - Does not appear in workflows

Statistical tool Applies to tables - Does not appear in workflows

Bridge Applies to tables - Does not appear in workflows

to fulfill the specific needs of the application at hand, e.g., an acquisition task339

to get data from a legacy system, or a new model visualizer. At this aim, Rialto340

provides an exhaustive Java-based application programming interface allowing341

for quick access to the main methods. This way, a user can easily implement,342

say, a new model induction algorithm, a new data visualization metaphor or a343

new bridge, and store it in the plug-in archive of Rialto.344

Finally, e�ciency and scalability of the Rialto platform are ensured by a345

workflow execution engine relying on parallel execution strategies along with346

e↵ective data handling policies. Rialto provides support for three kinds of paral-347

lelism: parallel execution of independent workflow branches, parallel table scan348

and pipelining. Data handling relies on techniques for the e�cient management349

of data in main memory and e↵ective bu↵ering strategies.350

4. System Architecture351

The general architecture of the system is shown in Figure 3. Here, we can352

observe two basic modules, namely, GUI (Graphical User Interface) and CORE.353

The former implements the required functionalities for visual workflow compo-354

sition, as well as data/model explorations. The latter is responsible for the355

e�cient execution of workflows.356

Besides these two modules, there are several other components that can be357

plugged into the system. Data and model visualizers are bound to tables and358

models, respectively, and are aimed at performing data and model explorations.359

16

Bridges are bound to tables, and are in charge of implementing a decoupling360

mechanism between logical data and physical memory (see Section 4.2.4 for361

more details). Tasks are implementations of the 2W Model operators.362

The extensibility is provided through Rialto SDK, a software development363

kit allowing users to implement, build and integrate their own plug-ins into364

their repositories. Plug-ins in Rialto are based on Java and can be developed365

through the Rialto integrated development environment (IDE) which enables366

and simplifies code generation. The current release of Rialto includes over 100367

plug-ins, covering all phases of the KD process.

Figure 3: Rialto Architecture

368

We next analyze each architectural component in turn, starting from the369

GUI.370

4.1. Graphical User Interface371

The basic functionalities of the user interface are aimed at modeling KD372

analyses by means of workflows. To this purpose, Rialto implements a visual373

interaction metaphor for representing data, models and tasks, along with their374

interactions. In addition, Rialto provides suitable features to enable the con-375

struction of a KD analysis as an interactive and an incremental process, e.g.,376

statistical visualization facilities to inspect, during pre-processing, data prop-377

erties, as well as tools for models inspection and performance measurement378

17

(like classification accuracy, or statistical relevance) during post-processing. In

Figure 4: Workbench

379

particular, the user interface provides three di↵erent perspectives:380

• workflow perspective, used to create, configure and connect nodes;381

• data perspective, which enables exploratory analyses;382

• model perspective, which allows inspecting and visualizing models.383

4.1.1. Workflow Perspective384

Figure 4 shows a screenshot of the Rialto workbench. The Workflow Edi-385

tor Area (WEA) is the heart of the workbench. Here, a workflow is designed386

by exploiting a graphical editor, where a user can create, position, move and387

connect nodes. Nodes can also be moved around in the WEA with a drag-and-388

drop operation. Additional functionalities available in the Workflow Perspective389

are: the workflows navigator allowing the user to navigate and display on the390

WEA the workflows which are currently open; the plug-ins view which lists all391

18

the available nodes that can be instantiated in a workflow through drag-and-392

drop operations; the macronodes view, which lists all available macronodes (i.e.,393

pieces of workflows); the bridge view allowing to select a bridge to be attached394

to a given table (recall that each table has a bridge associated - see Section 4.2.4395

for more details).396

Figure 5: Table View

4.1.2. Data Perspective397

In the Data Perspetive, the analyst can get insights into the elements of the398

D-world, i.e., tables (see Figure 5). To this end, he/she can perform exploratory399

analyses by means of ad hoc visualization and statistical tools as well as sim-400

ple data manipulation tasks (such as ordering or filtering values). The data401

perspective can be accessed by double-clicking on a table node.402

4.1.3. Model Perspective403

Similarly to data, models can also be explored by clicking on the respective404

nodes in a workflow. Model visualizers allow for a visual inspection of the405

19

Figure 6: Clusters representation

underlying model in order to understand its features. An example visualization406

for a clustering model is shown in Figure 6, where the properties of Cluster 3407

and Cluster 4 are represented in terms of population frequencies (leftmost pie408

charts), and attribute value distributions (sex, marital status, job, 3-age).409

4.2. Tables410

Data in Rialto is stored within tables. From an abstract point of view, a411

table represents a set of entities characterized by properties. Properties are as-412

sociated with a data type, which can be simple (nominal, ordinal, numeric) or413

complex (string, event collection). Nominal properties are characterized by an414

enumerable set of admissible values, which exhibit no order. By contrast, ordi-415

nal properties exhibit a standard order, and they are internally represented as416

integers. Finally, numeric properties can be exploited for representing results of417

measurements of real-life phenomena, and are implemented as double. Strings418

are exploited in Rialto to represent information that is not relevant to the anal-419

ysis: in practice, a string is any sequence of bytes that are not manageable by420

the core system.421

20

Figure 7: Event Collections

4.2.1. Dealing with complex data: Event Collections422

Modeling of complex properties is usually mandatory in real-world applica-423

tions, which typically require to deal with complex structures, e.g., itemsets,424

texts, sequences, time series. Within Rialto, we introduced a data type which425

can subsume several complex properties: the Event Collection (EC). An EC is426

essentially a set of events, where each event is a complex structure characterized427

by a set of predefined contexts, and a context is associated again to a data type.428

Thus, ECs in principle embody a recursive structure (a table within a table),429

where events correspond to sub-entities, and contexts represent the related sub-430

properties. Figure 7 illustrates the above ideas: each event has three contexts,431

namely, context1 which is numeric, context2 which is an EC, and context3 which432

is nominal. It is easy to see how an EC can be used to model, e.g., itemsets433

(which are essentially event collections were events expose a single nominal con-434

text), time series (where events are characterized by a timestamp and a value)435

or even textual data. In the latter case, a document can be mapped to an EC of436

terms. Textual events can be characterized by contexts such as n-gram length,437

frequency within the document, and so on.438

4.2.2. Manipulating Tables439

Following the philosophy of an open architecture, tables can be accessed440

and managed by means of system APIs. In practice, a table can be created by441

specifying the metadata information and the underlying storage manager (or442

21

bridge, explained later in this section). The following code fragment specifies a443

table with 4 attributes, and then generates a row which is added to the table:444

Code Fragment 1: Table specification

445

1446

2 TableMetadataBuild metadataBuilder =447

3 new TableMetadata.Builder();448

4 metadataBuilder.add(new StringAttribute(”Name”));449

5 metadataBuilder.add(new DoubleAttribute(”Height”));450

6 metadataBuilder.add(new IntegerAttribute (”Age”));451

7 metadataBuilder.add(new NominalAttribute(”SEX”, ”F”, ”M”, ”F”));452

8 final TableMetadata tableMetadata = metadataBuilder.build () ;453

9 Table table = bridge.generateTable(tableMetadata);454

10 final Row newRow = table.getNewRow();455

11 newRow.setValue(0, ”John”);456

12 newRow.setValue(1, ”1.74”);457

13 newRow.setValue(2, 30);458

14 newRow.setValue(2, ”M”);459

15 table .appendRow(newRow);460
461

We can notice from the example that the library functions for creating and462

manipulating tables are quite straightforward.463

4.2.3. Table Visualization and Statistical Tools464

Besides the pre-defined tools, new user-defined visualization and statistical465

tools can be built over tables thank to the open architecture of Rialto. For an466

instance, a statistic relative to a table is specified by instantiating its evaluation.467

Specifically, a statistic implements the following Java interface:468

469

public interface Statistic extends RialtoPlugin {470

void check(TableMetadata)471

throws RialtoException ;472

void evaluate(Table) ;473

Object getValue() ;474

}475
476

The first method is aimed at checking the compatibility of the statistic with the477

metadata associated with the underlying table. The second method computes478

22

the statistic, which can be fetched by using the third method. Notice how the479

interface exploits the TableMetadata, Table and Value components from the480

core, which are detailed later in this paper. As an example, Code Fragment 2481

is a simplified version of the Average statistic.482

Code Fragment 2: the Average statistic

483

1 public class Average extends ParametersOwner implements Statistic {484

2485

3 @ParameterName(”Attribute index”)486

4 @ParameterAttributeIndexDecorator(acceptableTypes = { AttributeType.DOUBLE,487

,! AttributeType.INTEGER })488

5 @ParameterMandatoryDecorator489

6 public final PluginParameter<Integer> attributeIndex = createParameter();490

7491

8 private transient double value ;492

9493

10 @Override494

11 public void check(TableMetadata metadata) throws RialtoException {495

12 for (final Attribute attribute : metadata) {496

13 if (AttributeType.DOUBLE == attribute.getAttributeType()497

14 || AttributeType.INTEGER == attribute.getAttributeType())498

15 return ;499

16 }500

17 throw new RialtoException(”Table has no numeric attributes .”);501

18 }502

19 @Override503

20 public void evaluate(Table table) {504

21 int count = 0;505

22 value = 0;506

23507

24 for (final Row row : table) {508

25 value += row.getValue(attributeIndex.getValue()) ;509

26 count++;510

27 }511

28 value = value / count;512

29 }513

30514

31 @Override515

32 public Object getValue() {516

33 return value ;517

34 }518

35 }519
520

23

Within Code Fragment 2, we can see how parameters are specified within521

plug-ins by means of the Java Annotation technology. The same technology is522

used to map the specific user interface components to the parameters: in our523

case, the annotation concerning acceptable types forces the interface to allow524

the sole selection of either integer or double attributes.525

Table charts can be embedded within Rialto in a similar fashion, by providing526

classes which implement the following interface:527

528

public interface Chart extends Visualizer {529

void check(Metadata) throws RialtoException;530

JComponent getChart();531

DataCharts getDataChart();532

void setTable(Table) ;533

}534
535

In practice, a chart in Rialto is an object capable of providing both a DataChart536

and a JComponent. The first element represents the relevant summary informa-537

tion which can be extracted from the associated table, whereas the JComponent538

is a Java Swing Object implementing the visualization metaphor for the infor-539

mation contained within DataChart. As an example, the DataChart associated540

with a Pie Chart subsumes a table with the frequency of each value relative541

to the attribute under consideration, and the JComponent represents the panel542

where the Pie is built starting from the DataChart. One key feature of the Data543

Perspective is the capability to ease the filtering process by materializing data544

manipulations, which are directly performed within the data perspective, in a545

visual fashion.546

4.2.4. Table Bridges547

Bridges are used to store tables and guarantee e�cient and transparent548

access to their data. In practice, a bridge can be regarded as a decoupling549

mechanism between logical data and its storage, thus making tasks independent550

of the physical implementation of tables. Every table in a workflow has a bridge551

attached to it and, vice versa, each bridge may have one or more attached tables.552

The scenario is exemplified in Figure 8, where three di↵erent bridges are used553

24

Figure 8: Bridegs within a workflow

behind the scene to physically store the contents of the four tables available554

within the workflow. Each bridge is implemented as a plug-in of the platform.555

Looking at Rialto from a data perspective, we can see that bridges create556

a two-level architecture: a first, abstract logical level where tables and models557

are semantically represented and manipulated. A second, physical level where558

tables are physically hosted in ad hoc structures. Rialto supports both main559

memory and mass memory bridges, thus making it possible to handle data sets560

of very large size.561

A main memory bridge is essentially a component which provides a physical562

representation of a table as a matrix. Thus, a table bridged on main memory is a563

collection of rows represented as arrays of double values, where each value repre-564

sents either a numeric type or an index to a complex (nominal, string, EC) value,565

hosted in a specialized data structure. With reference to the Code Fragment566

1 shown in Section 4.2.2, the bridge.generateTable method creates one such a567

table in main memory. The operations on the row access the array representa-568

tion and store the values accordingly. By contrast, a mass memory bridge relies569

on a relational DBMS and exploits relational tables for storing and accessing570

data. Current mass memory bridges include both commercial DBMSs, namely,571

Oracle and MS-SQLServer, and Open DBMSs, namely, Postgres, MySQL and572

H2. Again, with reference to the data manipulation primitives of Section 4.2.2,573

operations on the table are translated into SQL statements, which are mediated574

25

by an appropriate bu↵ering strategy. Within a bridge, data structures and in-575

dexing methods are used to guarantee e�cient implementation of the primitives576

for accessing and manipulating table components. For example, the access to577

an Event Collection (which can be seen as a non-normalized relation) can be578

optimized by relying on ad hoc structures based, for example, on inverted index579

structures.580

The internal bridge behavior is exposed via easy APIs, enabling “fluent”581

declaration of complex filtering/sorting/randomization/etc. operations and, at582

the same time, optimal execution with respect to resources from the underlying583

storage medium. As an example, suppose that you want to manipulate table584

customerTable, by (a) selecting only rows having attribute age lower than 30,585

(b) excluding rows with one or more event in event collection debts, and (c)586

sorting the resulting rows by descending values of attribute income. In Rialto587

this is expressed as in the following code snippet:588

589

Table customerTable = ...590

TableMetadata metadata = customerTable.getMetadata();591

IntegerAttribute age = metadata.getAttribute(”age”);592

EventCollectionAttribute debts = metadata.getAttribute(”debts”);593

DoubleAttribute income = metadata.getAttribute(”income”);594

TableView myView = customerTable.having(age).lessThan(30)595

.having(income).missing() .sortBy(descending(income));596
597

Here, we build a TableView object, which can be seen as a “normal” table in a598

workflow, except it is not materialized.599

4.3. Models600

Semantically, a model is an mathematical structure which subsumes inten-601

sional properties of a set of objects. Within the 2W, the objects are identified602

through entailment, whereas the properties are described through extension.603

Essentially, such properties can be induced by means of a specific mining al-604

gorithm, and can also be externalized by characterizing an entity according to605

26

whether such properties hold for it. Models can be categorized as follows: De-606

scriptive Models, which include Clustering and pattern models, and Predictive607

Models, which include classification, regression and outlier models.608

In Rialto, a model exhibits a specific signature as follows:609

• A table schema, which characterizes the set of objects to which the model610

itself applies;611

• A build operator, which implements a specific induction strategy;612

• A PMML representation, which can be used to instantiate the model itself.613

The hierarchy of all possible models which can be instantiated is shown in Figure614

9. Here, we can see that each node (representing a type of model) provides a615

number of methods which actually represent the extension property, and that616

can be exploited by the application tasks in order to apply a model to a table617

(as detailed later in the section).618

4.3.1. Model Visualizers619

Besides the pre-defined visualizers, new additional visualization tools can620

easily be integrated by exploiting an abstract representation of model features621

based on an extended PMML representation. That is, models are described by622

using an appropriate XML representation, and visualizers take this representa-623

tion as input to produce the desired visualization. This way, new visualizers can624

be created (as plug-ins of Rialto), independently of the algorithms producing a625

specific model. The general interface that a custom plugin should implement626

is similar to the Chart interface, with the only di↵erence that the checking is627

relative to a model rather than a table:628

629

public interface ModelVisualizer extends Visualizer {630

void check(Model) throws RialtoException ;631

JComponent generateComponent();632

}633
634

27

Figure 9: Model Hierarchy

4.4. Tasks635

As we have seen in the previous sections, the algebraic operators of the 2W636

Model appear in a workflow as nodes of type tasks, that are implemented as637

Java plug-ins. Next we give some details about the di↵erent types of tasks.638

Filtering tasks. They allow to acquire, export and modify tables and639

models. More specifically:640

• Acquisition for importing tables or models from external sources. For641

example, we can exploit a CSV Acquisition task in order to acquire the642

content of a CSV file within a Rialto table, or a PMML representation of643

a decision tree into a model.644

• Export for exporting tables and models to external destinations. For ex-645

ample, a CSV export task can pour the content of a table into a CSV646

28

file, and a PMML model export can produce an XML file containing the647

abstract representation of a given model.648

• Table filtering, for modifying tables into new tables with derived infor-649

mation. Example filtering tasks are selections of rows or columns, trans-650

formation of values, joining of multiple tables according to some criteria.651

SQL operations are supported natively within a SQL Filter, which per-652

forms a specified SQL query on the input table to produce a table where653

the result of the query is stored.654

• Model filtering used to perform model post-processing. For example, a655

tree-based model can be transformed into a rule-based model.656

Mining tasks relate tables to models. Mining tasks are responsible for657

invoking the build() method of the Model class (see top node in the hierarchy658

of Figure 9) according to a specific building strategy, namely, by simple mining,659

hold-out or cross-validation.660

Application tasks enrich a table of entities with the properties which can661

be derived from the given model. By default, we devise two main application662

tasks, namely Prediction Join and Description Join. The basic idea is that a663

table and a model can only join if the underlying schemas are compatible (that664

is, the schema of the model is a subset of the schema of the table). The Pre-665

diction/Description distinction depends on the operators which can be used to666

enrich each entity with new properties. For example, a prediction join can be667

applied to a table and a classifierModel produces a new table where the meta-668

data associated with the table is enriched by a further nominal attribute, which669

corresponds to the class which can be computed by the model on the tuples of670

the table. By contrast, a dependency join applies to a table and a Dependen-671

cyModel returns a table with a series of binary attributes, where each attribute672

corresponds to the pattern associated with the model, and a true/false value673

which denotes whether the pattern holds for the specific row under considera-674

tion.675

676

29

Again, the open architecture enables the definition of ad hoc tasks which can677

implement user-specific operations. Structurally, the signature of a task requires678

that a Task specifies some input and output ports, the metadata associated with679

each port and the implementation of the execute() method. Code Fragment 3680

describes the code snippet for an example task that takes two tables as input,681

and returns as output a new table resulting as the merge of the input tables.682

Code Fragment 3: An example Task

683

1 public class MergeTables implements Task {684

2685

3 @Input(name = ”First Table”)686

4 @Order(0)687

5 private Table firstTable ;688

6689

7 @Input(name = ”Second Table”, optional = true)690

8 @Order(1)691

9 private Table secondTable;692

10693

11 @Output(name = ”Output Table”)694

12 @Order(0)695

13 private WriteableTable outputTable;696

14697

15 @PreconditionCheck698

16 public void check() {699

17 if (secondTable != null700

18 && !firstTable .getMetadata() != secondTable.getMetadata()) {701

19 throw new RialtoException(”Metadata di↵er on the input tables ”);702

20 }703

21 }704

22705

23 @Override706

24 public TableMetadata[] getAllTargetMetadata() {707

25 return new TableMetadata[] {708

26 firstTable .getMetadata(). createBuilder () . build ()709

27 }710

28 }711

29 @Override712

30 public void execute() {713

31 for (Row row: firstTable) {714

32 Row newRow = outputTable.getNewRow();715

33 newRow.copyFrom(row);716

34 outputTable.appendRow(newRow);717

30

35 }718

36 for (Row row: secondTable) {719

37 Row newRow = outputTable.getNewRow();720

38 newRow.copyFrom(row);721

39 outputTable.appendRow(newRow);722

40 }723

41 }724

42 }725
726

4.5. Core727

The Core component provides three basic functionalities, namely, Workflow728

Execution, Data Handling and Parallelization.729

Workflow execution . Rialto includes an engine for the e�cient execution730

of workflows. The workflow execution layer implements scheduling policies and731

bu↵ering strategies. The latter are aimed at “on the fly” processing of data732

streams.733

Data Handling . Rialto includes techniques for the e�cient management734

of data in main memory (under both main memory and mass memory bridges,735

in the latter case relative to the portions of data which is bu↵ered into main736

memory). To this end, lossless data compression techniques, namely the LZ737

(Lempel-Ziv) algorithms (Ziv and Lempel, 1977), are used.738

Parallelization . Rialto provides support for three kinds of parallelism:739

parallel execution of independent workflow branches, parallel table scan and740

pipelining. Parallel execution of workflow branches is quite straightforward,741

and it is enabled by static analysis of the workflow graph. Within parallel table742

scan, large tables are automatically partitioned and each packet is assigned to743

a di↵erent processor. The underlying paradigm here is that of processing single744

packets and then merging the produced results. To this purpose, Rialto provides745

a native object, namely TaskExecutionSupport, which can be exploited within746

tasks or statistics. This object autonomously implements the most suitable747

policy for processing a table, provided that a native method for processing single748

rows is provided. Code Fragment 4 shows a naive task implementing the copy749

of an input table to an output table. We can observe two components here: an750

31

alternate version of the execute method, which uses a TaskExecutionSupport751

object, and a local object implementing a RowProcessorBuilder interface. The752

latter basically defines a method for processing an input row and producing an753

output row out from it. Within the execute method, a request is issued to the754

taskExecutionSupport object to scan the input table, process all rows using the755

RowProcessor object, and write the results to the output table. The policy for756

scanning the table and writing the results is totally transparent, as it is handled757

at system level by packetizing the table and processing each packet in parallel.758

With reference to Code Fragment 3, it is possible to rewrite the execute759

method by exploiting the same row processor and a TaskExecutionSupport ob-760

ject. In practice, lines 29-38 of the method can be replaced by the lines761

762

taskExecutionSupport.scan(firstTable) .with(new MyRowProcessorBuilder()).writingTo(outputTable);763

taskExecutionSupport.scan(secondTable).with(new MyRowProcessorBuilder()).writingTo(outputTable);764
765

thus demanding the management of the of the operations to the kernel (and766

thus exploiting the native parallelism).767

Note that argument of scan can be any table which is “readable”: for example768

a table view generated through the bridge APIs would fit as well. The following769

code snippet is a refinement of the previous one, where tables are randomized770

prior to start the scan.771

772

taskExecutionSupport.scan(firstTable .randomize()).with(new773

,! MyRowProcessorBuilder()).writingTo(outputTable);774

taskExecutionSupport.scan(secondTable.randomize()).with(new775

,! MyRowProcessorBuilder()).writingTo(outputTable);776
777

Pipelining can be seen as an enhancement of the above strategy. Within778

pipeling, each row of a table is forwarded to the next task as soon as it has been779

processed by the current task. Pipes can be assigned to multiple processors.780

Pipelining is relative to tasks, and not all tasks can support it. It is up to781

the user to specify (and guarantee) whether the task can be piped, by overriding782

the method canBePiped. With reference to Code Fragment 4, it is possible to783

enable pipelining simply by adding the following:784

32

785

@Override786

public boolean canBePiped() {787

return true ;788

}789
790

When Rialto detects that two or more task instances, having workflow connec-791

tions, can work in pipe, the latter are automatically replaced by a single virtual792

task joining their behavior, but avoiding the burden of maintaining temporary793

tables working as “bu↵ers” between tasks. This can be especially e↵ective when794

such temporary, intermediate tables are very large.795

Code Fragment 4: A simple task which seamlessly processes rows

in parallel by exploiting Rialto’s API

796

1797

2 ...798

3 @Override799

4 // Core task method: Rialto expects the whole task logic is called from here800

5 public void execute(final TaskExecutionSupport taskExecutionSupport) {801

6 // The following line asks for copying the whole input table802

7 // to output table via MyRowProcessorBuilder; Rialto automatically803

8 // handles input/output bu↵ering , task parallelization , and so on.804

9 taskExecutionSupport.scan(getInputTable()) .with(new805

,! MyRowProcessorBuilder()).writingTo(getOutputTable());806

10 }807

11808

12 private static final class MyRowProcessorBuilder implements RowProcessorBuilder {809

13 @Override810

14 public RowProcessor buildNew() {811

15 return new AbstractRowTransformer() {812

16 @Override813

17 public void process(final Row inputRow, final Row outputRow) {814

18 // In this simple example output row is copied from input row, so it has the same content,815

19 // but Rialto API can be used to manipulate output accordingly816

20 outputRow.copyFrom(inputRow);817

21 }818

22 }819

23 }820

24 }821
822

33

5. Expressivenes by examples: Rialto in Action823

The purpose of this section is to show how Rialto works on di↵erent classes of824

applications. To this end, we provide one case study on customer segmentation,825

and another on text classification.826

5.1. Case Study 1: Marketing Campaigns827

ACME Household Cleaning Supplies manufactures and sells a wide array of828

household cleaning supplies over the Internet. They have a very large customer829

base for which they have gathered information about customers through prod-830

uct registration cards and customer satisfaction surveys. Annually, ACME mails831

holiday cards with a promotional voucher for a free sample product. In order832

to reduce mailing costs and estimate the total cost of the promotion, ACME833

wants to know which customers in their database are most likely to redeem834

the vouchers. To this end, the workflow depicted in Figure 2 was developed.835

Data Acquisition. The first step in almost every data mining workflow is the836

importing of historical data. ACME’s data is contained in a comma-delimited837

file, which can be imported using the CSV Acquisition task.838

Data Preparation. Rialto comes prepackaged with many of the most common839

preprocessing tasks. For the purpose of this case study, a first data preparation840

task is concerned with missing values. To do so, we use the Missing Values841

statistical tool in Rialto. Once executed, Rialto determines that there are 431842

missing values in the WORKCLASS attribute and 433 missing values in the843

OCCUPATION attributes. Now that we have identified that the data is miss-844

ing values, we apply the Fill Missing Values task to automatically populate845

the missing data. To this end, Rialto uses the most common values found in846

WORKCLASS and OCCUPATION to replace the missing values. The second847

data preparation task is that of putting data in buckets. Indeed, ACME tracks848

the ages of their customers. ACME’s sales department thinks of customers in849

the following age groups: under 25, 26 to 35, 36 to 60, and 61+. There are850

several ways to place this data into buckets, one of which is utilizing Rialto’s851

34

Custom Discretize task.852

Data Mining. Now that data is prepared, we want to perform data mining on853

it to see if an accurate predictive classifier for ACMEs marketing campaign can854

be created. By using the Hold Out task, we separate data into a training set855

and a test set, the latter allowing us to validate the accuracy of results. The856

EC4.5 algorithm (an extension to the commonly used C4.5 algorithm) is then857

run to produce a predictive classifier for ACME customers.858

Model application. To test the quality of the learned model, the Prediction Join859

task is applied to the test set. Then, the Confusion Matrix is computed, along860

with the statistical accuracy of the model. Also, the resulting table Table5,861

where the predicted labels are compared with those of the ideal classification,862

is exported as a CSV file.863

Once the trained classifier is available, it can be applied to determine which864

new customers should receive the promotional mailer. To this end, a new work-865

flow, to be deployed over Rialto server, is constructed. Of course, the predictive866

classifier expects the data to be prepared in the same manner in which it was867

trained. Therefore, data representing new customers must again be discretized868

using the same ranges as the original data. ACME can now use classification869

results to assess the cost of running a promotion with new customers. Now,870

instead of sending out the promotions to all the new customers, ACME can871

confidently send out the promotion to 169 of the total 1500 new customers. A872

savings of eighty-nine percent!873

5.2. Case Study 2: Text Classification874

The application scenario is as follows. We want to induce a model for classify-875

ing a set of medical abstracts from the OHSUMED data collection (Hersh et al.,876

1994), a subset of the bibliographic database MEDLINE consisting of peer-877

reviewed medical literature maintained by the National Library of Medicine.878

To this end, we have available a subset of pre-classified documents, along with879

two learning algorithms, namely, Complement Nave Bayes (Rennie et al., 2003)880

and MaxEntropy (Nigam et al., 1999). Our goal is to compare how well they881

35

perform, in order to select the best one (over the given data).882

The OHSUMED subset we use for training is the collection consisting of the first883

13,929 documents, from the 50,216 medical abstracts of the year 1991, labelled884

by the 23 diseases categories of the C codes of the Medical Subject Headings885

(MeSH) thesaurus (REF).886

The KD process consists in the acquisition of the training documents, their pre-887

processing, models learning by CNB and MaxEnt and, finally, comparison of888

the induced models. The collapsed learning workflow (i.e., where table nodes889

are hidden) implementing this process is shown in Figure 10.890

Data Acquisition. The input documents are represented as lines of a CSV file.891

Each line contains the document text (string) and the class labels. Data are892

acquired through CSV Acquisition task. Since features spaces in text categoriza-893

tion are typically very large (the high dimensionality problem) and, in addition,894

each document contains only a small subsets of features, it turns out that a895

document vector is normally largely sparse (i.e., too many 0s occur). Thus, a896

standard feature vector representation of texts would be highly ine�cient. To897

overcome this drawback, the terms of each document are stored by an event898

collection (see Section 4.2.1)899

Data Preparation. For the purpose of this study, we consider the following900

pre-processing steps:901

• N-gram Extraction includes both stop-words and stop-tokens removal, and902

n-grams of up to 3 stem words are generated. This choice originates from903

the observation of the presence, in the medical vocabulary, of long phrases904

such as “immunologic deficiency syndromes”. Of course, the meaning of905

“immunologic deficiency syndromes” is very di↵erent from that of “defi-906

ciency” alone.907

• Concept Extraction (CE) is performed by using the subset of the MeSH908

thesaurus made of the concept hierarchy having the 23 diseases categories909

(C codes) as roots. The advantage of CE is that, for example, terms910

like “arrhythmia” and “heart aneurysm” can merge into the most general911

36

concept “heart diseases”, thus getting a stronger feature, able to better912

discriminate between the MeSH “cardiovascular diseases” category and913

the others.914

• Feature Selection (FS) is performed by selecting the 500 highest scoring915

terms (a term is either a ngram or a concept) according to the Information916

Gain function (Forman, 2003). The advantage of applying FS to both917

grams and concepts is that of selecting discriminating terms with both918

statistical and semantic qualities (Lewis, 1992).919

Preliminarily to the above steps, the Remove Attributes filter is applied to elim-920

inate the attribute Document Name (it has no e↵ect on classification perfor-921

mance). After Ngram Extraction and Concept Extraction have been executed in922

parallel, the ngram-based and the concept-based document representations are923

merged by the Tables Join node, so as each document is represented in terms924

of both ngrams and concepts (both stored by event collections). The Ngram925

Extraction filter is set through a configuration mask providing stop-words and926

stop-tokens lists, maximum ngrams length, etc.. The Concept Extraction filter927

is set through a configuration panel whereby the MeSH thesaurus is provided928

(as an XML file).

Figure 10: Compact representation of a workflow comparing two text classification algorithms

929

Data Mining. This step is performed by using both the Complement Nave930

37

Bayes and MaxEntropy text classification algorithms. To validate and com-931

pare the predictive capabilities of the induced models, five-fold cross validation932

is performed. Overall classification performance are determined by calculating933

Precision, Recall, and F1-measure metrics.934

5.3. Discussion935

The two case studies above were aimed at giving a flavor of how KD processes936

can be accomplished by using Rialto. To this end, we used some of the pre-937

packaged plug-ins for data acquisition, pre-processing, mining, etc., and showed938

how they were connected to create KD workflows (one working on relational939

data and one on texts). As we have seen, both workflows were characterized by940

quite standard tasks: acquisition from CSV files, classification models induction941

performed by classical algorithms (i.e., C4.5, Complement Naive Bayes and942

MaxEntropy, the latter two for text classification), and data preparation, which943

confirmed to be the most time consuming phase of KD - in particular, text pre-944

processing in Case Study 2 consisted of five elementary tasks (from Attribute945

Removal to Feature Selection - see Figure 10). Though not reported in the above946

description for space reasons, the results of the two analyses can be inspected947

by several view plug-ins, displaying data and models in diverse ways. For an948

instance, one could display the table (not shown in Figure 10) obtained by949

joining the output tables of the Ngram Extraction and Concept Extraction950

tasks to inspect the bag of n-grams and the bag of concepts representing each951

processed document (both bags stored as attributes of type Even Collection).952

Di↵erent variants of the above workflows could be created in order to improve953

the quality of the respective analyses. For instance, frequency analysis could954

be performed in Case Study 2, to keep the highest frequent terms, simply by955

adding a suitable node to the workflow of Figure 10 (Rialto provides plug-ins for956

the computation of the most important frequency measures). Or, for another957

example, more advanced feature extraction techniques, such as those based on958

dependency graphs (Abdulsahib and Kamaruddin, 2015), (Vilares et al., 2015),959

could be carried out to make machine learning methods better generalize. This960

38

goal could be achieved by replacing in the workflow of Figure 10 the n-grams961

extractor node by a node implementing dependency-graph-based techniques.962

Both these examples show how the plug-in based architecture of Rialto makes963

the construction of a KD analysis a simple process, where tasks (nodes) can be964

assembled, removed, replaced, so allowing for quick and interactive changes to965

the analysis.966

6. Discussion and Evaluation967

We refer to (Chen et al., 2007), which identifies the following dimensions968

along which a data mining system should be evaluated (see also Section 1):969

• Managing large data volumes : is the tool capable of manipulating large970

data volumes? Does this require changes in the architecture?971

• Acquisition from data sources: can the tool gather data from diverse data972

sources, such as databases, Excel, CSV files, etc.?973

• Mining models: is the choice of mining algorithms available in the tool974

rich enough to support real-world data mining applications?975

• Data preprocessing : does the tool o↵er support to pre-process data before976

applying mining algorithms? Is there some guidance in the process?977

• Data visualization: has the tool some e�cient data visualizations, in order978

to support decision making and informed data manipulation?979

• Open Architecture: is the tool extendable? Is the architecture open? Is980

there a development environment?981

• Open Community : is there a thriving user community? Does it have the982

ability to develop new features and/or fix bugs?983

Figure 11 provides a picture of the positioning of Rialto relative the above-984

mentioned dimensions.985

39

Description

Managing large amounts of data

Bridges paradigm allows Rialto to transparently use mass

memory or databases, thus allowing the processing of large

data volumes without changing the system architecture.

Acquisition from data sources

Rialto acquires dataset in CSV, Excel, ARFF, and others.

Rialto also exploits the JDBC API, allowing import of

data from database management systems (DBMSs) such as

Oracle, MySQL, SQL Server, PostgreSQL, and many

others.

Mining models

Rialto provides several algorithms for classification and

clustering, like SSEM, Naive Bayes, Maximum Entropy,

EC4.5, Rule Learner, CBOD, Travel CBOD, Dolphin,

Linear Regression, EM, K-Means, Association Miner.

Data preprocessing

Rialto provides a wide variety of functionalities for data

manipulation through a number of predefined plug-ins

implementing filter tasks. In addition, it o↵ers a number

of facilities at Data Perspective level, where the choice of

the available tools is guided through contextual menus.

Data visualization

The system o↵ers a number of graphical tools for data and

model visualization; new ad-hoc visualizers can be built

and integrated, if necessary.

Open Architecture

Rialto provides a powerful and intuitive API for

developing new plugins. Thus, new types of statistics,

tasks, models, visualizers, etc., are easily implemented.

The new plug-ins transparently take advantage of all the

mechanisms of parallelism, pipelining, and memory

management. The development environment of Rialto is

based on opensource Eclipse IDE.

Open Community

Rialto does not have an open community, as it is not

distributed in open source. However, it is widely used in

academic environments, and this involves a continuous

tool evolution, along with a growing availability of plugins.

Figure 11: Rialto Evaluation

40

6.1. Experimental Analysis986

In this section we report the experimentation performed with the aim of987

assessing a number of architectural choices a↵ecting the capability of Rialto to988

scale to large data volumes. To this end, there are some specific features we989

have analyzed:990

• How bridges a↵ect the performance. Since the architecture strongly relies991

on the idea of semantic abstraction, the coupling between the semantic992

part and the data engine has to be carefully analyzed. In particular, with993

data which are disk-resident, it is crucial to quantify the overhead with994

respect to memory-resident data, and to make sure that such an overhead995

is not a↵ected by the data size.996

• Pipelining. Since pipes can be assigned to multiple processors, it is worth997

measuring how enabling this feature within the tasks improves the overall998

performance.999

• Scalability of the parallel table scan. The TaskExecutionSupport compo-1000

nent provides mechanism for parallel processing of elementary user-defined1001

operations on tables. However, it introduces some overheads that need to1002

be quantified.1003

• Event Collections. These components are particularly suited for managing1004

high-dimensional data. We perform some comparative measurements on1005

memory usage and e�cient support to native filtering operations.1006

It is worth noticing that these choices are a direct consequence of the underlying1007

model, which enables modularity in the execution of data mining queries. Thus,1008

the experiments are aimed at demonstrating that those architectural choices1009

actually optimize the executions, and that they can be profitably exploited in1010

suitable query evaluation plans based on the underlying algebra.1011

Bridges. In a first set of experiments, we exploit a simple workflow which1012

loads a table and builds a model on such a table. We use a simple Naive Bayes1013

Model, which scans the input table to collect statistics. Figure 12 reports the1014

41

performance (time in ms) of three di↵erent bridges for increasing size of the input1015

data. We compare the Rialto’s in-memory bridge, and two SQL-based bridges.1016

One is based on the H2 open source java database engine1. We instantiate the1017

bridge using the in-memory table storing of H2. Thus, the H2 bridge is just1018

an alternative memory bridge which supports SQL queries natively. The other1019

SQL-based bridge relies on the widely known commercial MySQL engine2.1020

Figure 12: Bridges comparison - Rialto memory bridge (lower dotted line) vs H2 bridge (solid

line) and MySQL bridge (upper dotted line)

How we can see from the graph, there is a constant factor which di↵erentiates1021

the time performances of the di↵erent bridges (so, the overhead is not a↵ected1022

by the data size). Also, notice that the in-memory bridges su↵er of memory1023

limitations, as with the current experimental configuration they are only capable1024

of handling tables with at most 107 tuples, whereas the same limitation does1025

not hold for the MySQL bridge.1026

Pipelining. In a second set of experiments, we measure the e↵ectiveness of1027

1See http://www.h2database.com for details.
2See http://www.mysql.com.

42

pipelining. To this purpose, we setup a simple workflow which exploits the Naive1028

Bayes model built in the previous set of experiments, and applies it to a new1029

table. Thus, the piped tasks in this scenario are data acquisition followed by1030

predictive join (Naive Bayes is applied to the acquired table). Figure 13 shows

Figure 13: Time performance of piped execution (lower dotted line) vs sequential execution

(the three upper lines are those reported in Figure 12).

1031

the performance of the piped version of the tasks (bottom line) compared to the1032

sequential versions (where the predictive join is run after the input table has1033

been entirely created) obtained by using the same bridges of the previous ex-1034

periments. There are a few aspects that are worth being mentioned. First, the1035

pipelining clearly outperforms all other methods in terms of e�ciency. Further,1036

since intermediate tables can be deemed as volatile within a workflow, the frag-1037

ment of the workflow which makes use of pipelining is essentially independent1038

from the size of the input tables. This can be appreciated within the graph by1039

noticing that the pipe (bottom line) does not su↵er from memory limitations of1040

the other in-memory methods (lines in the middle): tuples are passed away as1041

long as they are processed, and hence the only memory requirement is the need1042

to store a single tuple.1043

43

Parallelism. The next set of experiments measures the speed-up of the par-1044

allel table scan. To this purpose, we implemented a filtering task which takes1045

a table in input, and produces the same table as output. Within the Row-1046

ProcessBuilder we inserted a delay mechanism which simulates time consuming1047

operations on a single row. The length of the delay is parameterized and ranges1048

from 0µs to 300µs in our experiments.1049

Figure 14: Parallel table scan speed-ups in main memory with 2-, 4-, 6- and 8-core processors

Figure 14 shows the speed-up achieved by running the task on di↵erent1050

architectures. The baseline is a processor with a single core, and the figure shows1051

the speed-ups with processors having number of cores equal to 2 (bottom line),1052

4, 6 and 8 (upper line). We can see that, in general, (1) the higher the delay,1053

the higher the speed-up with a given core configuration, and (2) the higher the1054

number of cores, the lower the speed-up. In particular, we can observe that the1055

highest speed-up is obtained with a 2-core processor (varying from 1.50 to nearly1056

2), while the maximum speed-up of the 8-core configuration is 6.75. In the left1057

upper corner, the figure shows the e�ciency in the exploitation of the di↵erent1058

core configurations. The e�ciency represents the percentage of proximity to1059

the ideal situation: intuitively, a 2-core configuration is 100% e�cient if it is1060

44

twice faster than the single-core configuration (speed-up=2). Similarly, 4-cores1061

should be 4 times faster, and so on. We can notice that e�ciency increases as1062

long as delay increases and, in general, e�ciency values are quite satisfactory -1063

ranging from 80% (8 cores) to 100% (2 cores).1064

Figure 15: Parallel table scan speed-ups in external memory with 2-, 4-, 6- and 8-core proces-

sors

Figure 15 shows the speed-up when an out-of-core bridge is exploited. The1065

situation in this case is more problematic, since the retrieval and saving of the1066

tuples clearly requires access to external memory. The speed-ups in this case1067

are halved and for increasing cores the e�ciency cuts significantly.1068

Event Collections. There are essentially two aspects we need to face, namely,1069

memory consumption and e�ciency of native filtering operations. In order to1070

stress the system on the above aspects and to measure its response, we exploited1071

some synthetic datasets, containing 10, 000 transactions each. A transaction1072

consists of a set of items in the form {i1, . . . in} where ij uniquely identifies1073

an item picked from an initial set I. These datasets simulate several real-life1074

situations, like e.g. purchase transactions, where I represents the set of pos-1075

sible items which can be purchased, and each transaction represents a set of1076

45

purchases relative to an individual; or textual data, where I represents a vocab-1077

ulary and a transaction represents a text document, irrespective of the order of1078

words. In the generation process, we vary the size of I from 102 to 106. Then,1079

each dataset is generated by repeatedly performing, for each transaction, the1080

following steps: (1) sample the size of the transaction through a Poisson distri-1081

bution with fixed � parameter, (2) sample a Multinomial distribution on I from1082

a Dirichlet distribution with fixed prior ↵, and (3) populate the transaction by1083

repeatedly samping from the multinomial distribution sampled in the previous1084

step.1085

The datasets were generated in a relational format as text files where each1086

line represents the pair (TransactionID, {ItemID}). We then built a workflow1087

which acquires the text file and builds a table T , where each row represents1088

a transaction. There are two alternative ways of representing the items of a1089

single transaction in T . Either as a binary tuple with fixed length |I|, or as1090

an event collection. We built two alternative versions of the workflow, were the1091

acquisition task was customized to produce either of the two representations.1092

Next, the workflow proceeds with a filtering task which aims at removing the1093

top 10% more frequent items.1094

The rationale of this workflow is twofold. First of all, by monitoring the1095

acquisition task, we can measure the memory usage in both representations.1096

The binary representation (referred to as Full Table in the following) acts as1097

a full matrix. By contrast, the representation of a transaction as an event1098

collection (referred to as EC) allows us to measure the compression ratio and1099

the possible overhead due to internal indices required for the event collection.1100

Figure 16 plots the memory usage after the loading of the transactions for both1101

representations. To this end, both the in-memory and the H2 bridges are used.1102

We can observe that the memory usage of the EC version of the table is low1103

and substantially independent from the size of the dataset I, whereas the Full1104

Table representation grows very fast with it (upper line). That is, ECs enable1105

an e↵ective and compact representation of very large sets of transactions.1106

Now, let us consider the filtering operation removing frequent items from1107

46

Figure 16: Memory usage when transactions are represented as (1) binary tuples with fixed

length (dotted line) and (2) event collections (solid line).

I. In principle, event collections should be more sensitive to such an operation:1108

removing a column from a table should be straightforward, whereas removing1109

an event from a collection requires searching for such an event. Thus, this1110

simple filtering operation is a good test for assessing the performance of ECs1111

manipulations. We can see the performance of the removal operation in Figure1112

17. Again, the scan of the EC representation is quite constant. By contrast,1113

removing a column on the Full Table representation requires to restructure the1114

metadata associated with the table, which is a costly operation when the number1115

of attributes is overwhelming high.1116

7. Ongoing Work1117

Besides the above described features, there are also a number of features1118

that we are currently working on in order to enhance the Rialto capabilities,1119

notably:1120

47

Figure 17: Filtering operation costs in case transactions are represented as (1) binary tuple

with fixed length (dotted line) and (2) event collections (solid line)

• Data Streams. In the current implementation, we assume that data within1121

Rialto is made of either tables or models. However, in the same paradigm,1122

we can extend such basic types to comprise data streams, i.e., memoryless1123

tables with a timestamp associated. In practice, in our model a stream has1124

the same features of a table (metadata and rows). However, the content1125

of the table changes over time and it is relative to a specific time window.1126

Under this perspective, the paradigm of tasks has to be reconfigured as1127

well, to enable transformation from streams to tables and models, and1128

viceversa.1129

• Spatio-temporal data. Besides the current types, we are working on ex-1130

tending attributes types to support spatial and spatio-temporal data. This1131

is especially important for complex applications that require the analysis1132

of geo-reference data or moving objects.1133

• Support to Hadoop. The simple form of parallelism which are provided1134

48

to the user, namely parallel table scan and pipelining, can be further en-1135

hanced by considering the current technologies. We are currently working1136

on extending the Rialto architecture to support the MapReduce program-1137

ming model, by developing bridges under the Hadoop framework.1138

8. Conclusions1139

In this paper we have first proposed a general framework for modeling KD1140

processes, named 2W Model, a variant of the 3W Model proposed in (Johnson1141

et al., 2000). According to this model, the essence of a KD process can be1142

regarded as the interaction between two separated worlds: the data and the1143

model world. This way, any knowledge discovery process can be formalized as an1144

algebraic expression, that is essentially a composition of operators representing1145

(pseudo)elementary operations on the two worlds.1146

Then, we have described a KD platform, called Rialto, which relies on the 2W1147

Model. To this end, it provides a visual interface whereby a KD process can be1148

modeled as a workflow, where each node is either a table (data world), or a model1149

(model world) or a task representing an operator allowing a transition between1150

the two worlds. Using this metaphor, Rialto provides support to all steps of1151

a KD process, from data acquisition to model exploration and deployment. In1152

addition, in order to cope with real-world analytical problems, where new ad1153

hoc, specific tasks may be needed, Rialto allows incorporation of new (Java)1154

plug-ins within an open architecture.1155

E�ciency and scalability are achieved thanks to suitable design choices in-1156

cluding bridges, event collections and parallelism. We have conducted a number1157

of experiments showing the e↵ectiveness of the proposed architecture to scale1158

to large volumes of data.1159

Download of Rialto can be found at http://www.exeura.eu/products/1160

rialto.1161

49

References1162

Abdulsahib, A. K., Kamaruddin, S. S., June 2015. Graph based text representa-1163

tion for document clustering. Journal of Theoretical and Applied Information1164

Technology 76 (1).1165

Berthold, M., et al., 2009. Knime: The konstanz information miner. SIGKDD1166

Explorations 11 (1).1167

Blei, D., Ng, A., Jordan, M., March 2003. Latent dirichlet allocation. Journal1168

of Machine Learning Research 3, 993–1022.1169

Borgelt, C., 2009. Graph mining: An overview. In: Proc. 19th Workshop on1170

Computational Intelligence. KIT Scientific Publishing.1171

Calders, T., Lakshmanan, L. V. S., Ng, R. T., , Paredaens, J., 2006. Expressive1172

power of an algebra for data mining. ACM Transactions on Database Systems1173

31 (4), 1169–1214.1174

Chaudhuri, S., Narasayya, V., Sarawagi, S., 2002. E�cient evaluation of queries1175

with mining predicates. In: Proc. 18th International Conference on Data1176

Engineering (ICDE’03). pp. 529–540.1177

Chen, X., Ye, Y., Williams, G., Xu, X., 2007. A survey of open source data1178

mining systems. Lecture Notes in Computer Science 4819, 3–14.1179

chung Fu, T., 2011. A review on time series data mining. Engineering Applica-1180

tions of Artificial Intelligence 24 (1), 164–181.1181

Forman, G., 2003. An extensive empirical study of feature selection metrics for1182

text classification. Journal of Machine Learning Research 3, 1289–1305.1183

Gaber, M. M., Zaslavsky, A., Krishnaswamy, S., 2005. Mining data streams: A1184

review. ACM SIGMOD Record 34 (2), 18–26.1185

Giannotti, F., Manco, G., Turini, F., 2004. Specifying mining algorithms with1186

iterative user-defined aggregates. IEEE Transations on Knowledge and Data1187

Engineering 16 (10), 1232–1246.1188

50

Hall, M., et al., 2009. The weka data mining software: An update. SIGKDD1189

Explorations 11 (1).1190

Han, J., Kamber, M., 2001. Data mining: concepts and techniques. Morgan1191

Kaufmann.1192

Hersh, W., Buckley, C., Leone, T., Hickman, D., 1994. Ohsumed: An interac-1193

tive retrieval evaluation and new large text collection for research. In: Proc.1194

17th ACM Int. Conf. on Research and Development in Information Retrieval1195

(SIGIR’94). pp. 192–201.1196

Hristovski, D., Friedman, C., Rindflesch, T. C., Peterlin, B., 2008. Literature-1197

based knowledge discovery using natural language processing. Information1198

Science and Knowledge Management 15, 133–152.1199

Imielinski, T., Mannila, H., 1996. A database perspective on knowledge discov-1200

ery. Communications of the ACM 39 (11), 58–64.1201

Imielinski, T., Virmani, A., 1999. MSQL: A query language for database mining.1202

Data Minining and Knowledge Discovery 3 (4), 373–408.1203

Johnson, T., Lakshmanan, L. S., Ng, R. T., 2000. The 3w model and algebra for1204

unified data mining. In: Proc Int. Conf. on Very Large Databses (VLDB’00).1205

pp. 21–32.1206

Lewis, D. D., 1992. An evaluation of phrasal and clustered representations on1207

a text categorization task. In: Proc. 15th ACM Int. Conf. on Research and1208

Development in Information Retrieval (SIGIR’92). pp. 37–50.1209

Manco, G., et al., 2008. Querying and reasoning for spatiotemporal data mining.1210

In: Mobility, Data Mining and Privacy - Geographic Knowledge Discovery.1211

Springer, pp. 335–374.1212

Mikut, R., Reischl, M., 2011. Data mining tools. Wiley Interdisciplinary Re-1213

views: Data Mining and Knowledge Discovery 1 (5), 431–443.1214

51

Nigam, K., La↵erty, J., McCallum, A., 1999. Using maximum entropy for text1215

classification. In: Proc. IJCAI-99 Workshop on Machine Learning for Infor-1216

mation Filtering. pp. 61–67.1217

Ortale, R., et al., 2008. The DAEDALUS framework: progressive querying and1218

mining of movement data. In: Proc. 16th ACM SIGSPATIAL Int. Symp. on1219

Advances in Geographic Information System. p. 52.1220

Pietramala, A., Policicchio, V. L., Rullo, P., Sidhu, I., 2008. A genetic algorithm1221

for text classification rule induction. In: Proc. European Conf. on Machine1222

Learning and Knowledge Discovery in Databases (ECMLPKDD’08). Vol. 52121223

of Lecture Notes in Computer Science. pp. 188–203.1224

Quinlan, J. R., 1987. Generating production rules from decision trees. In: Proc.1225

10th International Joint Conference on Artificial Intelligence (IJCAI’87). pp.1226

304–307.1227

Rennie, J. D., Shih, L., Teevan, J., Karger, D. R., 2003. Tackling the poor1228

assumptions of naive bayes text classifiers. In: Proc. Int. conf. on Machine1229

Learning (ICML’03). pp. 616–623.1230

Rullo, P., Policicchio, V., Cumbo, C., Iiritano, S., August 2009. Olex: e↵ective1231

rule learning for text categorization. IEEE Transactions on Knowledge and1232

Data Engineering 21 (8), 1118–1132.1233

S., M., 2005. Data Streams: Algorithms and Applications. Now Publishers Inc.1234

Sebastiani, F., 2002. Machine learning in automated text categorization. ACM1235

Computing Surveys 34 (1), 1–47.1236

Shearer, C., 2000. The crisp-dm model: The new blueprint for data mining.1237

Journal of Data Warehousing 5, 13–22.1238

Vilares, M., Fernandez, M., Blanco, A., November 2015. Supporting knowledge1239

discovery for biodiversity. Data and Knowledge Engineering 100, 34–53.1240

52

Wang, H., Zaniolo, C., Luo, C., 2003. ATLAS: A small but complete SQL1241

extension for data mining and data streams. In: Proc. Int. Conf. on Very1242

Large Databases (VLDB’03). pp. 1113–1116.1243

Ziv, J., Lempel, A., 1977. A universal algorithm for sequential data compression.1244

IEEE Transactions on Information Theory IT-23, 337–343.1245

53

