
Differential Privacy and Neural Networks:
A Preliminary Analysis

Giuseppe Manco and Giuseppe Pirrò

ICAR-CNR, Italy
{manco,pirro}@icar.cnr.it

Abstract. The soaring amount of data coming from a variety of sources
including social networks and mobile devices opens up new perspectives
while at the same time posing new challenges. On one hand, AI-systems
like Neural Networks paved the way toward new applications ranging
from self-driving cars to text understanding. On the other hand, the
management and analysis of data that fed these applications raises con-
cerns about the privacy of data contributors. One robust (from the math-
ematical point of view) privacy definition is that of Differential Privacy
(DP). The peculiarity of DP-based algorithms is that they do not work
on anonymized versions of the data; they add a calibrated amount of
noise before releasing the results, instead. The goals of this paper are: to
give an overview on recent research results marrying DP and neural net-
works; to present a blueprint for differentially private neural networks;
and, to discuss our findings and point out new research challenges.

1 Introduction

Neural networks (NNs) have recently found many applications in several areas
of Artificial Intelligence, ranging from self-driving cars to language understand-
ing. This is both due to significant progresses in terms of techniques [3, 10] to
(pre)train complex networks including hundreds of layers (the so-called Deep
Networks) involving millions of units, and the availability of large and repre-
sentative datasets. However, information about individuals maintained by third-
parties raises concerns about the protection of user-privacy when analyzing such
data. Therefore, it emerges the need for techniques able to offer both utility to
the applications and rigorous privacy guarantees.

This problem has been attacked by combining competences from different
fields, viz. data mining, cryptography, information hiding, to cite a few. In 2006,
C. Dwork introduced the notion of differential privacy [7]. The idea behind dif-
ferential privacy (DP) can be summarized as follows: the removal or addition of a
single database item does not (substantially) affect the outcome of any analysis.
This can be mathematically guaranteed and thus any data contributor would
be more willing to take part into the database as her risk (in terms of privacy
violation) does not substantially increase. The main challenge is to release ag-
gregate information about the data while protecting the privacy of individual
contributors. While DP has been explored in a variety of machine learning and

data mining tasks ranging from regression analysis [21] to classification [2], its
usage in neural networks is still in its infancy [1]. The goals of this paper are
as follows: (i) providing an overview of techniques that combine DP and Neural
Networks; (ii) reporting on our own experience in this field; (iii) discussing pros
and cons of our approach and pointing out open problems.

The remainder of the paper is organized as follows. In Section 2 we introduce
some background. We give an overview on related research in Section 3. We
describe our approach in Section 4. We conclude in Section 5.

2 Background

We consider a dataset D of N tuples x1,xN where each tuple xi ∈ D has d+q
attributes xi = 〈x1i ,, xdi , y1i , ...y

q
i 〉. We assume without loss of generality that√∑d

i=1 x
2
id≤ 1. We model the general data analysis problem by considering

a function f , which given a tuple x∈D takes as input the tuple ’s attributes
x1i ,x

d
i and returns an output y1i , ...y

q
i as accurate as possible. The function

f(D,w) requires some model parameter w, and its accuracy is evaluated by
using some function E(D,w)=

∑
x∈D E(x,w) that compares the output of f

with the reference values. The goal is to find the optimal parameter models w∗

by solving the optimization problem w∗ = minimize
w

E(D,w).

2.1 Neural Networks

In terms of the general learning problem introduced before, the idea is to model
the function f(D,w) via Neural Networks. We will focus on the Multi Layer
Perceptron (MLP) [4] model. The MLP is a feed-forward neural network, that is,
a network where connections neither are allowed between units in the same layer
nor backward. Strictly speaking, a neural network models a nonlinear function
from a set of input variables xi, i ∈[1, d] to a set of output variables tl, l ∈[1, q]
controlled by a vector w of adjustable parameters.

The topology of a 〈d,m, q〉-layer network is given as follows. We assume that
each layer j∈{1, . . . ,m} is characterized by a size sj , two vectors z(j) and a(j)

and a matrix w(j) of weights. We assume that s0=d is the size of the input data
x ∈ Rd (i.e., number of units in the input layer), and sm=q is the size of the
output (i.e., number of units in the output layer). We refer to φ as the activa-
tion function for intermediate units and ψ for output units, respectively. The
relationships between these components are recursively define by the following
general formulas:

z
(0)
i (x,w) =xi

z
(j)
i (x,w) =φ

(
a
(j)
i (x,w)

)
a
(j)
i (x,w) =

n−1∑
k=1

w
(j)
i,k · z

(j−1)
k (x,w)

yq(x,w) =ψ
(
a(m)
q (x,w)

)

To keep notation uncluttered, we leave out bias terms and assume that

S=
∑m
j=1 sj and the vectors z and a span over RS where ai≡ a(h)v for some encod-

ing i = 〈h, v〉. This induces a partial order j≺ i which holds when i = 〈h+ 1, v〉
and j = 〈h, u〉. Thus, the weight matrices can be represented by a unique vector
w, where wi,j corresponds to the weight of the connection between nodes j and
i such that j ≺ i. This allows us to simplify the previous equations as:

zx,i =φi (ax,i)

ax,i =
∑
j≺i

wi,j · zx,j

where zx,i (resp. ax,i) represents the application of ai to x, φi represents the
activation function relative to unit i.

Training Neural Networks. After defining the topology, the problem that arises is
that of training the network, that is, learning the model parameters (weights and
biases) that minimize the error function E(D,w). This is typically done by using
some variant of the back-propagation algorithm [13] coupled with pre-training
techniques [10, 3] that have been successful for deep networks (ie., networks
including many layers).

2.2 Differential Privacy

Differential privacy captures the increased risk to one’s privacy that incurs by
participating into a database. It does so by offering to individual participants the
guarantees that the output of a query would also have been the same, with suf-
ficiently high probability, even if the record(s) of a participant were not present
in the database. Being differentially private is a property of the data access
mechanism and is unrelated to the presence or absence of auxiliary information
available to the adversary. Differential privacy works by introducing random-
ness [8].

Proposition 1 ((ε,δ)-Differential Privacy). A randomized function f guar-
antees (ε-δ)-differential privacy if for all data sets D and D′ differing on at most

one element, and all O ⊆ Range(f), it holds that: Pr[f(D)∈O]
Pr[f(D′)∈O] ≤ e

ε +δ

In the definition, ε>0 is a known privacy parameter that controls the strength
of the differential privacy guarantee: larger (resp., smaller) values of ε yields
weaker (resp., stronger) privacy. δ models the probability that the condition on
ε fails to hold. The definition of (ε-δ)-DP becomes more stringent as ε and δ
approach 0. Moreover, when ε is small, then eε ∼ 1 + ε. Since differential privacy
works in an interactive setting, the randomized computation f is the algorithm
applied by the data curator when releasing information. When δ=0 we talk about
ε-DP; however, (ε, δ)-DP behaves better when one needs to compose (ε, δ)-DP
mechanisms e.g., when multiple accesses to the database are required [11].

2.3 Achieving Differential Privacy

We shall now outline how to achieve DP in practice. For real-valued functions,
DP can be achieved by adding a calibrated amount of noise to the answer of a
query before releasing its results. The amount of noise depends on the sensitivity
of the function f , that is, how much the answer would change when an arbitrary
tuple in the input data is modified.

Definition 2 (Sensitivity). Given a function f :D → Rd, its sensitivity is:

S(f)=max
D∼D′

||f(D)− f(D′)||1.

where || · ‖|1 is the L1 norm; D∼D′ means that the database differ in one tuple.

Note that S(f) does not depend on the data but is a property of the function
f . S(f) captures the magnitude by which a single individuals data can change
the function f in the worst case, and therefore, the uncertainty in the response
that we must introduce in order to hide the participation of a single individ-
ual. The sensitivity of a function gives an upper bound on how much we must
perturb its output to preserve privacy. Other notions of sensitivity like smooth
sensitivity [17] guarantee (ε-δ)-DP by relating the amount of noise not only to
the query result but also to the database.

The Laplace Mechanism. The Laplace Mechanism is based on the idea of com-
puting the output of a function f , and then perturb each coordinate with noise
drawn from the Laplace distribution. The scale of the noise will be calibrated to
the sensitivity of f (i.e., S(f)) divided by ε, which represents the privacy budget.

Proposition 3 (Laplace Mechanism) For a function f :D → Rd, the mech-
anism that returns f(D)+z, where each zi ∈ z is drawn from Lap(S(f) | ε)
satisfies ε-differential privacy [7].

The Gaussian Mechanism. The Gaussian mechanism reduces the probability of
very large noise while guaranteeing (ε-δ)-DP.

Proposition 4 (Gaussian Mechanism) For a function f :D → Rd, the mech-
anism that returns f(D) + z, where each zi ∈ z is drawn from N (0, S(f)2σ2)1

with σ>exp(−(σε)2/2)/1.25 and ε<1, satisfies (ε-δ)-DP [8].

Non-numeric Queries. For non-numeric queries, achieving DP requires the def-
inition of some utility function to sample one of its outcomes according to the
probability distribution close to the optimum. This approach is referred to as
the exponential mechanism [8].

1 In this case the sensitivity makes usage of the L2 norm.

2.4 Composing Differentially Private Mechanisms

So far we have discussed the general approach to guarantee DP when consid-
ering a single access to the data. Nevertheless, one usually needs to perform
multiple application of DP-algorithms and thus accessing multiple times to the
data with the risk of increasing privacy breaches. Investigating the impact of
multiple data accesses requires to understand how DP mechanisms compose. In
other words, when accessing databases multiple times via differentially private
mechanisms, each of which having its own privacy guarantees, how much privacy
is still guaranteed on the union of those outputs? [11]

In what follows we focus on (ε-δ)-DP and report on the main research results
about composition by considering a scenario involving T=10K steps (data ac-
cesses). To guarantee that each data access is (ε-δ)-DP the standard deviation

in the Gaussian mechanism should be set as follows: σ =

√
log1/δ

ε [8].

Basic composition. This is the most simple way of investigating the impact of
multiple accesses to the data by the same mechanism. Basically, when one needs
to perform T steps, the overall process is (Tε, Tδ)-DP; in other words, the privacy
parameters of the individual mechanisms basically sum up [8]. By assuming
σ=4 and δ=10−5, each step is (1.2, 10−5)-DP and thus after 10K steps the
composition gives (12000, .1)-DP.

Advanced Composition. Advanced composition of (ε-δ)-DP mechanisms (see e.g.,
[9]) significantly improve the overall privacy cost. In this case we have that after
T steps the process is (ε

√
T log1/δ, Tδ)-DP. Thus after 10K steps the composi-

tion gives (360, .1)-DP.

Amplification by Sampling. The results of advanced composition is further im-
proved by sampling [12]. By considering a batch size q, each step is (2qε,qδ)-DP.
As an example if q is 1% of the data, with σ=4 and δ=10−5 we have that
each step is (.024,10−5)-DP. When composing T step we have (2qε

√
T log1/δ,

qTδ)-DP and thus for T=10.000 the process is (10, .001)-DP.

Optimal Composition. Kairouz et al. [11] recently provide lower bounds for com-
position. It is previously known that it is sufficient to add Gaussian noise with
variance O(T∆2log(1/δ)/ε2) to each step in order to ensure (ε,δ)-DP after T
steps. Authors show that this condition can be improved by a log factor. In
particular, if each step is (ε0,δ0)-DP, then the composition of T steps gives

(Tε0
2+
√

2Tε20log(e+
√
Tε20/δ̃),Tδ0 + δ̃)-DP assuming ε0≤0.9 and a slack δ̃ > 0.

Accountant mechanism. A different approach to keep track of the privacy spent
during the course of multiple access to sensitive data makes usage of an accoun-
tant mechanism [16]. This approach has been recently used by Abadi et al. [1]
to train neural networks under DP. Authors leverage the moments of the noise
distribution and a bound on the gradient values (via clipping) to obtain a more
refined result about the composition than the advanced composition. In this
case, the result after T steps and considering a batch size q becomes (2qε

√
T ,

δ)-DP. Thus, we have that fort T=10.000 steps and q=1% the overall process is
(1.25, 10−5)-DP.

3 An Overview of the State of the Art

In this section we review applications of DP for Deep Neural Networks by dis-
tinguishing between functional and non-functional approaches.
Functional Approaches. The general idea of differential privacy is to introduce
noise. However, it has been observed that it is not easy to adapt this approach in
some tasks like logistic regression (e.g., [21]). Chaudhuri et al. [5] came up with
a new way of achieving DP in these contexts: instead of perturbing the results of
the regression analysis, one can perturb the objective function and then optimize
the perturbed objective function. The overall idea is reported in Fig. 1.

The original idea of Chauduri has been further refined into the Functional
Mechanism (FM) [21]. The FM also perturbs the objective function of regres-
sion analysis and then release model parameters that minimize such perturbed
function. The approach has been applied to both linear and logistic regression;
in this latter case by resorting to a second order Taylor expansion of the error
function. Authors show that the amount of noise to be injected in order to guar-
antee DP basically depends on the number of dimensions of the input dataset.
The FM has been recently applied to train autoencoders under DP [18].

Loss Function

Compute
Gradient

f

Add noise to the
gradient

Compute the
update

Compute
Sensitivity

Release model parameters
that minimize

g

f
*w

~g

Loss Function

Polynomial
Representation

f

Add noise to the
coefficient of

Minimize

Compute
Sensitivity

Release model parameters
that minimize

~f

*f

~f

*f

*f
*w

(a) (b)

Fig. 1. Functional (a) and non-functional (b) approaches for learning with DP.

Non-Functional Approaches. Non-functional approaches determine the model
parameters that minimize the original loss function instead of its perturbed
and approximated version. In the context of neural networks, there are a few at-
tempts at using DP; these approaches are mainly based on line search methods
such as the (Stochastic) Gradient Descent (SGD). An overview of non-functional
approaches is provided in Fig. 1 (b). The idea is to start with some initial values
of the model parameters and then iteratively update these parameters follow-
ing the opposite direction of the gradient, after adding noise. We showed in
Section 2.4 how to determine the amount of noise in the Gaussian mechanism
under different types of composition. One of the early approaches in learning via
SGD and DP has been proposed by Rajkumar et al. [19]. This approach performs
Gaussian perturbation of the overall multiparty objective to achieve (ε-δ)-DP.
The goal is to compute gradient-based minimization of the objective function in
a differentially-private way. Privacy is achieved by perturbing the gradient infor-
mation with two sources of noise, the second being needed to avoid an attacker

to reconstruct the true minimizer (optimal weights) of the objective function. We
already mentioned the work by Abadi et al. [1] that use a SGD-based algorithm
and find a tighter bound on the composition of DP mechanisms than previous
approaches (e.g., [20]. As a side note, we shall also mention that the functional
approach described by Phan et al.[18] to train deep autoencoders also resorts to
the SGD to fine tune the parameters.

4 Neural Networks and Differential Privacy

In this section, we describe our experience in applying the functional mechanism
to the multilayer perceptron (see Section 2.1). Our algorithm involves the fol-
lowing four main phases: (i) find a polynomial representation of the objective
function; (ii) compute the sensitivity; (iii) add noise to the polynomial represen-
tation; (iv) minimize the perturbed objective function.

Polynomial representation of the objective function. We consider the fol-
lowing 2nd-order Taylor expansion of the error function E(D,w)=

∑
x∈D Ex(w).

Ê(D,w) ≈ E(D, ŵ) + (w − ŵ)T∇E(D, ŵ) +
1

2
(w − ŵ)T∇2E(D, ŵ)(w − ŵ)

where: ∇E(D, ŵ) ≡ ∂E
∂wi,j

|w=ŵ and (∇2E(D, ŵ))i,j ≡ ∂2E
∂wi∂wj

|w=ŵ are the Jaco-

bian and Hessian matrices, respectively. Denoting by gi,j (resp., hi,j) an element
of the Jacobian (resp., Hessian) matrix, we obtain:

gi,j =
∑
x∈D

δx,izx,j (1)

δx,i =z′x,i
∑
v:i≺v

δx,vwv,i (2)

hi,j =
∑
x∈D

bx,iz
2
x,j (3)

bx,i =z′′x,i
∑
v:i≺v

wv,iδx,v + (z′x,i)
2
∑
v:i≺v

w2
v,ibx,v (4)

Equation (1) and Equation (3) are defined recursively by considering the
values of δ and b of all units. Equation (2) and Equation (4) define such values
for internal units. Since the number of model parameters (weights and biases) of
the network can be very large computing the whole Hessian matrix is extremely
demanding from a computational point of view (it requires a quadratic number
operations). Hence, to reduce the computational cost we only consider diagonal
elements of the Hessian [6]. As for the output units, their output depends on
the specific loss function considered. As an example, when considering the Least
Squares Error, we obtain:

E(x,w) =
1

2

d∑
c=1

(yx,c − tx,c)2

yx,c =yc(x;w)

In the previous formula, yx,c is the c-th component given by the network
when giving as input the vector x and tx,c is the c-th target value. Hence, for
output units we have:

δx,i =(ψ(ax,i)− tx,i)ψ′(ax,i) (5)

bx,i =(ψ′(ax,i))
2 + (ψ(ax,i)− tx,i)ψ′′(ax,i)) (6)

Compute Sensitivity. In order to determine the amount of noise to be injected
into the polynomial representation derived in the previous section we need to
estimate its sensitivity. We have the following preliminary result.

Lemma 1. Let D, D′ be any two databases differing in at most one tuple, and

Ê(D,w) =
(∑

x∈D

∑
j≺i

δx,izx,j
)
wi,j +

1

2

(∑
x∈D

∑
j≺i

bx,iz
2
x,j

)
w

2
i,j

Ê(D′,w) =
(∑

x′∈D′

∑
j≺i

δx′,izx′,j
)
wi,j +

1

2

(∑
x′∈D′

∑
j≺i

bx′,iz
2
x′,j

)
w

2
i,j

the polynomial representation of the error function on D and D′, respectively.
Let x be an arbitrary tuple. We have that the sensitivity is:

||Ê(D,w)− Ê(D′,w)||1 ≤ 2
∑
j≺i

max
x

(
|δx,izx,j |+ |bx,iz2x,j |

)
Adding noise. After determining the sensitivity, and thus the amount of noise,
we shall now provide an algorithm for learning with DP. The algorithm is
sketched in Algorithm 1. It starts with an initialization of the weights (line
1) and then requires to obtain the Jacobian and (approximated) Hessian ma-
trices representing the building blocks of the polynomial representation of the
error function (line 2). At line 3 the noise is injected into such coefficients to
obtain a perturbed error function, which is then minimized (according to one of
the existing methods) in line 4. The final step consists in releasing the model
parameters (the set of weights w̃) that minimize it.

Theorem 5. Algorithm 1 satisfies ε-differential privacy.

Proof. Consider two neighbor datasets D and D′ that differ on the last tuple, xn
and x′n for D and D′, respectively. The proof proceeds by applying the definition
of differential privacy (see Definition 1).

Pr{Ẽ(w) | D }
Pr{Ẽ(w) | D′}

=
exp
(ε∣∣∣∣∣∣∑x∈D

∑
j≺i

(
δx,izx,j+bx,iz

2
x,j

)
−(δizj+biz

2
j)

∣∣∣∣∣∣
1

S(Ẽ)

)
exp
(ε∣∣∣∣∣∣∣∣∑x′∈D

∑
j≺i

(
δ
x′,izx′,j+bx′,iz

2
x′,j

)
−(δizj+biz

2
j
)

∣∣∣∣∣∣∣∣
1

S(Ẽ)

)
≤ exp

(ε

S(Ẽ)
||
∑
x∈D

∑
j≺i

(
δx,izx,j + bx,iz

2
x,j

)
−
∑

x′∈D′

∑
j≺i

(
δx′,izx′,j + bx′,iz

2
x′,j

)
||1
)

= exp
(ε

S(Ẽ)
||
∑
j≺i

(
δxn,izxn,j + bxn,iz

2
xn,j

)
−
∑
j≺i

(
δx′n,i

zx′n,j
+ bx′n,i

z
2
x′n,j

)
||1
)

≤ exp
(ε

S(Ẽ)
2
∑
j≺i

max
x

(
|δx,izx,j |+ |bx,iz2x,j |

))
(by Lemma 1)

≤ exp(ε)

Algorithm 1 FunctionalNetDP (Privacy budget ε)

1: Initialize w
2: g,h ← Polynomial representation of the loss function
3: Find g̃ and h̃ via addNoise(w,ε) /* Algorithm 2 */

4: Compute w̃=argmin
w

Ẽ(D,w)

5: return w̃ / set of weights that minimizes Ẽ(D,w) /

Algorithm 2 addNoise(Weights w, privacy budget ε)

1: Let D be the dataset
2: Let S(Ẽ) be the sensitivity of the polynomial representation fo the network.
3: Find g via eq. (1) and h via eq. (3) using D
4: g← g/(1, ||g||2/C) /* clip Gradient */
5: h← h/(1, ||h||2/C) /* clip Hessian */

6: g̃ ← g+Lap(S(Ẽ) | ε)
7: h̃← h+Lap(S(Ẽ) | ε)
8: return g̃ and h̃

4.1 Estimating the amount of Laplacian Noise

Algorithm 1 lays the foundation for achieving differential privacy. We have shown
in Lemma 1 that the amount of noise depends on the maximum (over all tuples)
sum of the coefficients of δ, z, and b. In turn, these terms depend on the choice of
the activation functions for the intermediate units (i.e., φ), output units (i.e., ψ)
and the value of weights (i.e., wi,j). We now provide a finer grained estimation
of the noise. Assuming that for both φ and ψ the logistic function σ(x)= 1

1+e−x

is used, then we have that σ(x) ∈ [0, 1], σ′(x) ∈ [0, 0.25], and σ(x)′′ ∈ [−0.1, 0.1].
Moreover, we assume that each wi,j ∈ [0, 1] and that for each dimension d of

the input tuple xd ∈ [0, 1]. At this point, to bound the amount of Laplace noise
needed, we need to bound the components

∑
j≺i |δx,izx,j | and

∑
j≺i |bx,iz2x,j | in

Lemma 1. Let m be the depth of the network. For each layer j ∈ {1, ...,m} we
denote by δj (resp., bj) the coefficient of a generic unit in the layer j. Moreover,
sj represents the number of units at layer j.

Lemma 2. The noise that the
∑
j≺i |δx,izx,j | component in Lemma 1 contributes

is ≤0.25m×
∏j=m
j=1 sj.

Proof. The idea is to analyze the layer-wise upperbound of δ and z when con-
sidering a generic tuple x. As for z we always have z∈[0, 1] (since we are using
the sigmoid activation function). As for δ we have:

δ ≤

{
0.25 if j =m (equation (5))

0.25m−j+1 ×
∏q=m
q=j sq j6=m (equation (2))

The maximum contribution occurs when j=1 in
∏q=m
q=j sq.

Lemma 3. The contribution of the
∑
j≺i |bx,iz2x,j | component in Lemma 1 is:

≤
j=m∏
j=1

sj

(
0.1m + 0.001625×m

)
Proof. Similarly to the previous case, we have that:

b ≤

0.1625 if j =m (equation (6))

0.1m−j+1 ×
∏q=m
q=j sq+

+(0.1)2(m− j)0.1625
∏q=m
q=j sq j6=m (equation (4))

The contribution is maximum when j = 1

Theorem 6. For a network of m layers with sj units in each layer, where j∈
[1, n], the amount of Laplacian noise to ensure differential privacy is:

≤ 2
(

0.25m
q=m∏
q=1

sq +

j=m∏
j=1

sj ×
(

0.1m + 0.001625×m
))

Proof. The idea is to substitute the bounds in the previous lemmas in Lemma 1.

The above analysis shows that the amount of noise to ensure differential privacy
is dominated by the number of units in the network.

5 Concluding Remarks and Future Work

We have reported on the usage of differential privacy in neural networks and dis-
cussed our preliminary findings in adding Laplacian noise to a low-polynomial
representation of the error function. We now discuss some crucial aspects of our
approach. First, we have shown via Lemma 1 that the sensitivity basically de-
pends on the topology of the network. The result about the sensitivity when
using the functional mechanism for neural networks is in stark contrast with
functional approaches tackling regression (e.g., [21]); in that case the sensitivity
was bound by the dimensionality of the input data. This comes as no surprise be-
cause of the fact that our approach involves a complex topology of interconnected
network units (neurons) while regression only makes usage of a single unit, in a
sense. To mitigate the impact of sensitivity we bound in Algorithm 2 the values
of the gradient and Hessian (lines 5 and 6) before adding noise. Finding a tighter
bound for Lemma 1 is in our research agenda.

Second, we pursued the simplest way to ensure DP by adding Laplacian noise
to the gradient and the Hessian coefficients (the coefficients of our polynomial
representation), and use the noisy version to perform the minimization (line 5
Algorithm 1). We note that the sensitivity in our case is irrelevant to the size
of the data set at hand. At the same time we note that the potential effect of
the noise can have different effects on the gradient and Hessian, respectively. In

this latter case, even a little amount of noise in the coefficients of the Hessian
matrix can lead to large changes on the parameters being updated, with the
extreme potential consequence that the Hessian matrix’s positive definiteness is
destroyed, which implies that a global optimal solution may not be attained at
all. One way to approach the problem would be to threshold the eigenvalues
of the Hessian to ensure positive definiteness; nevertheless, this method might
generate coefficients that are far from the original (pre-noise) coefficients. An-
other approach could be to leverage public data sets for the Hessian, that is,
datasets where participants voluntarily disclosed information and we use public
and private data sets to compute the gradient.

Third, Algorithm 1 works by approximating the Hessian to its diagonal com-
ponents as done by other approaches (e.g., [14]). Nevertheless, in some cases, the
approximation can be very rough leading to poor solutions. This problem may
be exacerbated by the noise addition. One way to overcome this problem could
be to resort to non-functional approaches.

In this context, an interesting aspect that has not yet been investigated in
the context of DP is the usage of 2nd order methods like the Hessian Free (HF)
technique [15]. The idea of HF is to approximate the error function around each
parameter up to second order (SGD-based methods only take into account the
first derivatives of the parameters). Operationally, the HF approach requires
gradient estimations, approximations of the Hessian (e.g., via Gauss-Newton
approximation) and its minimization. This latter step is usually done by using
the conjugate gradient (CG). The CG applies minimization along each dimension
of the parameter space separately and thus would require a number of iterations
equals to the number of dimensions of the parameter space to converge in general.
However, it usually makes significant progress toward a minimum in a much
lower number of iterations [15]. We see a number of research challenges for the
usage of DP in this setting, among which: (i) investigating the amount of noise
needed along each iteration of the HF and the properties of composition; and
(ii) comparing this approach with first-order methods (e.g., [1]).

Fourth, in this preliminary analysis, we have discussed privacy without con-
sidering utility. Our ongoing experimental evaluation shows that while our ap-
proach achieves strong privacy guarantees, when the size of the network grows2

the utility is heavily affected. To mitigate this issue, we are evaluating the impact
of privacy on utility when considering the HF technique.

References

1. M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and
L. Zhang. Deep learning with differential privacy. In Proc. of CCS, pages 308–318.
ACM, 2016.

2. C. C. Aggarwal and S. Y. Philip, editors. Privacy-Preserving Data Mining.
Springer, 2008.

2 Anecdotally, when considering more than 4 layers with hundreds of units per layer.

3. Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, et al. Greedy layer-wise training
of deep networks. Advances in neural information processing systems, 19:153, 2007.

4. C. M. Bishop. Pattern recognition. Machine Learning, 2006.
5. K. Chaudhuri and C. Monteleoni. Privacy-preserving logistic regression. In Ad-

vances in Neural Information Processing Systems, pages 289–296, 2009.
6. Y. L. Cun. Modeles Connexionistes de l’Apprentissage. PhD thesis, Universite’ de

Paris, 1987.
7. C. Dwork. Differential privacy. In ICALP, pages 1–12. Springer, 2006.
8. C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Foun-

dations and Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.
9. C. Dwork, G. N. Rothblum, and S. Vadhan. Boosting and differential privacy. In

Proc. of FOCS, pages 51–60. IEEE, 2010.
10. G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep

belief nets. Neural computation, 18(7):1527–1554, 2006.
11. P. Kairouz, S. Oh, and P. Viswanath. The Composition Theorem for Differential

Privacy. In ICML, pages 1376–1385, 2015.
12. S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and A. Smith.

What can we learn privately? SIAM Journal on Computing, 40(3):793–826, 2011.
13. H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin. Exploring strategies for

training deep neural networks. JMLR, 10:1–40, 2009.
14. Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient backprop. In

Neural networks: Tricks of the trade, pages 9–48. Springer, 2012.
15. J. Martens. Deep learning via hessian-free optimization. In Proceedings of the 27th

International Conference on Machine Learning (ICML-10), pages 735–742, 2010.
16. F. D. McSherry. Privacy integrated queries: an extensible platform for privacy-

preserving data analysis. In Proc. of SIGMOD, pages 19–30. ACM, 2009.
17. K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and sampling in

private data analysis. In Proc. of STOC, pages 75–84. ACM, 2007.
18. N. Phan, Y. Wang, X. Wu, and D. Dou. Differential privacy preservation for deep

auto-encoders: an application of human behavior prediction. In Proceedings of the
30th AAAI Conference on Artificial Intelligence, AAAI, pages 12–17, 2016.

19. A. Rajkumar and S. Agarwal. A differentially private stochastic gradient descent
algorithm for multiparty classification. In International Conference on Artificial
Intelligence and Statistics, pages 933–941, 2012.

20. S. Song, K. Chaudhuri, and A. D. Sarwate. Stochastic gradient descent with
differentially private updates. In Global Conference on Signal and Information
Processing (GlobalSIP), 2013 IEEE, pages 245–248. IEEE, 2013.

21. J. Zhang, Z. Zhang, X. Xiao, Y. Yang, and M. Winslett. Functional mechanism: re-
gression analysis under differential privacy. Proceedings of the VLDB Endowment,
5(11):1364–1375, 2012.

