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Abstract

Fault prediction is an important topic for the industry as, by providing ef-

fective methods for predictive maintenance, allows companies to perform

important time and cost savings. In this paper we describe an application

developed to predict and explain door failures on metro trains. To this end,

the aim was twofold: first, devising prediction techniques capable of early

detecting door failures from diagnostic data; second, describing failures in

terms of properties distinguishing them from normal behavior. Data pre-

processing was a complex task aimed at overcoming a number of issues with

the dataset, like size, sparsity, bias, burst effect and trust. Since failure pre-
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monitory signals did not share common patterns, but were only characterized

as non-normal device signals, fault prediction was performed by using outlier

detection. Fault explanation was finally achieved by exhibiting device fea-

tures showing abnormal values. An experimental evaluation was performed

to assess the quality of the proposed approach. Results show that high-

degree outliers are effective indicators of incipient failures. Also, explanation

in terms of abnormal feature values (responsible for outlierness) seems to be

quite expressive.

There are some aspects in the proposed approach that deserve particu-

lar attention. We introduce a general framework for the failure detection

problem based on an abstract model of diagnostic data, along with a for-

mal problem statement. They both provide the basis for the definition of

an effective data pre-processing technique where the behavior of a device, in

a given time frame, is summarized through a number of suitable statistics.

This approach strongly mitigates the issues related to data errors/noise, thus

enabling to perform an effective outlier detection. All this, in our view, pro-

vides the grounds of a general methodology for advanced prognostic systems.

Keywords: fault detection, anomaly detection, outlier explanation, big

data, sensor data

1. Introduction

The capability of preventing faults is one of the main issues in nowadays

industry (Vachtsevanos et al., 2007). The failure of a component, indeed, may

cause the stoppage of an industrial system, with very negative consequences

on both the productive cycle and the integrity of the plant itself.
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Fault prediction is an area of research aimed at providing techniques for

forecasting failures based on the observation of sensor signals during the

normal working cycle of an industrial device. It represents the premise for

predictive maintenance, i.e., the task of preventing potential problems by

timely repairing or replacing the possible sources of failure before they actu-

ally happen. Preventive maintenance is opposed to corrective maintenance.

Fault prediction systems can be either based on a deductive, top-down

approach, or on an inductive, bottom-up approach (Vachtsevanos et al., 2007;

Lee et al., 2013). In the former case domain experts build a mathematical

model based on their knowledge about physical processes. This approach is

limited in practice by the high complexity of real systems. In the latter case,

a model is learned from past empirical observations. This approach relies on

data mining techniques and requires the capability of dealing with the huge

amounts of data that are usually sent by system monitoring sensors.

The Cobalt project, financed by Bombardier Transportation (one of the

world’s largest rail-equipment manufacturing companies) and carried out by

Exeura, deals with the inductive approach, with reference to a particularly

challenging application scenario: train predictive maintenance.

Trains are highly complex plants, comprising several electronic controlled

systems, whose growing complexity has sensibly increased maintenance issues

as well the potential opportunity of faults discovery and their prevention. In

this context, door failures on metro trains (the SSR fleet in the UK) play a

crucial role for Bombardier Transportation, because these failures result in

several operational inefficiencies, such as delays or trip cancelations. Thus, a

successful predictive maintenance process for train doors can help improving
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the operational performances of the fleets.

Therefore, the objective of the project was twofold:

• devising prediction techniques which, in the context of an event-based

monitoring of complex systems, are capable of early detecting door

failures in the near future;

• describing failures in terms of justification: that is, discovering the

properties distinguishing failures from the normal behavior.

Achieving the above goals is a very challenging task, essentially because

of the overwhelming amount of often misleading diagnostic data. There are

two main issues associated with these data:

• Diagnostic messages come at very high frequency compared to their

supposed mission (fault detection). Also, many of such messages are

simply informative of the status of the overall system or of a specific

components. The result is an overwhelming amount of data to be pro-

cessed and filtered. To give an order of magnitude of the data size,

consider as an example a single train Frecciarossa-10001. As stated by

SAP2, each Frecciarossa-1000 beams 5,000 messages per second. As-

suming a journey of 3 hours, the train emits 54M messages; if each

message consists of 10 bytes (2 for the monitored physical quantity

identification and 8 for the detected value in double precision float-

ing representation), then a single journey produces about 540MB. A

1http://www.trenitalia.com/tcom-en/Frecce/Frecciarossa-1000
2http://bit.ly/2dYYTw1
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train fleet is composed by several trains that operate almost every day,

even for multiple journeys a day. These numbers make the entire fault

detection process a Big Data Analysis task.

• Even more importantly, several diagnostic messages can have a low

discriminative capability, or they can even be misleading. Diagnostic

messages are generated automatically and they adhere to a certain

internal programming logic according to a top-down approach. Within

this logic, faults are hypothesized according to a given (static) behavior.

However, the reality is different and the programming logic may be not

faithfully representing the operating behavior of a component. For

example, if a given component is manually switched off, a sensor trying

to communicate with this component will continuously issue diagnostic

messages. However, that does not necessarily result in a system failure.

This is why, when designing a predictive system, there is the need to build

a reliable methodology capable of discriminating a potentially faulty status

from normal operational working statuses.

The paper is organized as follows. In Section 2 we describe the application

domain of door failures on metro trains. In particular, we give an overview of

the traditional predictive maintenance process, as well as of the data sources

recording historical diagnostic data. In Section 3 we provide the methodology

that has inspired our work. First, data abstraction and formal problem

formulation are given. Then, data pre-processing is described. Finally, both

fault prediction and fault explanation techniques are provided. In Section 4

the experimental evaluation work is presented. In Section 5 a description of

the architecture supporting the described methodology that was set up for
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the purposes of the project is given. We present the related work in Section

6. Finally, in Section 7 we draw our conclusions.

2. Scenario: Door Train Failures

Figure 1: Overview of the Overall Predictive Maintenance Process.

The focus of this experience is on door failures on metro trains.

2.1. The Predictive Maintenance Process

The traditional predictive maintenance process at Bombardier Trans-

portation is depicted in Figure 1. Trains in operation continuously generate

diagnostic messages that are composed by two types of data: events and

environmental measures (sensor measures). Events are triggered by software

components installed on the fleet, based on state information generated by
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sensors. More precisely, given a device d (i.e., a door), let S be the set of

sensors associated with d. Sensors in S feed a software component P with

their values (such as ambient temperature, cab condition, battery voltage,

derived passenger load and geographic location, etc.) and P , based on a

certain programming logic, will eventually trigger an event e (for simplicity,

in the following we will often say that events are issued by devices). The set

of sensor values that has determined e is called the environmental data of e.

When teams that operate and maintain trains identify a new problem

for which no alerts have been triggered, the analytical team is called to

conduct root cause analysis. To this end, it tries to detect patterns in

the event/measures data warehouse that can be used to identify and ex-

plain failures that caused the current problem. Patterns are then codi-

fied as automated alerts, and deployed on the Operational Analytics tool.

Alerts are triggered automatically when specific patterns are observed in the

event/measures data set.

When an alert is triggered and the related failure is expected in a sufficient

amount of time, the train manager can optimally schedule the maintenance

process. A train is sent to the workshop when its quality service is under a

certain threshold set by company policies. That is, a single component failure

may not correspond to the start of a repair procedure. If the failure can be

tolerated in terms of the legal constraints, technical needs and customer

safety and satisfaction, the train will still be kept in service. Only when

the train is unable to operate, it is sent to the workshop and, with a single

maintenance process, its whole set of problems is solved. We notice that,

in this scenario, there is no need for realtime predictions; on the contrary,
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short/medium-time predictions are suitable for the purpose.

Presently, however, there is a big problem to deal with: pattern encoding

is a manual process performed by the analytical team. This is a complex

and time consuming task that strongly relies on the experience of the domain

engineers. The alerts that are defined are in general boolean combinations

of a limited number of events, and their predicting capabilities are in general

rather poor. To overcome this drawback, project Cobalt has been launched

by Bombardier Transportation to explore how Big Data and Data Analytics

techniques can be deployed to automatically detect patterns in historical data

that can be used to identify, describe and predict failures.

2.2. Data Sources

There are three data sources identified for the application at hand. They

record historical data concerning a one-year period of analysis:

• Orbita: data set storing events and environmental measures about crit-

ical on-board systems. It comprises 4.5Gb of event data and 30Gb of

environmental data for the period being analyzed.

• Maximo: used to track component location (Asset Configuration), de-

tails of work performed (Work Orders) and component usage data

(Counters).

• Intraxis : used during the product introduction phase for recording fail-

ures with a financial impact (Service Affecting Failures - SAF’s).

As we will see in the next sections, these data collections provide the raw ma-

terial for creating a training set for the induction of a fault prediction model.
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In particular, the Orbita collection was used to get the diagnostic data, while

Intraxis was exploited to identify the failures with a direct financial impact

on the business (which are those of real interest). Finally, Maximo was used

for filtering out from Orbita false positive events generated during on-depot

tests, thus allowing the identification of failures that have really happened.

2.3. Data Issues

Diagnostic data in Orbita exhibited a number of issues potentially detri-

mental for the learning process, including:

• Size. The number of events was very high (see Table 1), as sensors may

trigger lots of events in a very short time frame of observation.

• Sparsity. Since events are associated with subsystems (i.e., devices),

not all environmental measures can be captured for all events. The

corresponding Event/Sensor matrix was therefore extremely sparse.

• Burst Effect. In some scenarios, some devices may trigger a large num-

ber of events at a high rate. These emissions, while not necessarily

related to failures, strongly unbalance the data distribution.

• Bias. Events are only issued when anomalous situations are detected

on the corresponding subsystems. In this respect, environmental data

is biased, as there is no information on the values of the sensors within

the state of normal activities.

• Trust. Events are triggered when a sensor detects a value beyond some

threshold, that is chosen by the sensor vendor according to some logic

that can be different from the actual use of the device.
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Data issues concerning the Maximo dataset were essentially related to

the low reliability of timestamps (e.g., ”end date” equal to ”start date”), so

that the link to diagnostic data in Orbita proved to be error-prone. On the

contrary, the Intraxis data set (which keeps track of failures with financial

impact) showed to be a high-quality, reliable data source.

The quantitative relationship between diagnostic events and failures is

shown in Table 1. Here, the data volumes relative to diagnostic events, as

well as the actual service affecting failures (SAF incidents), are reported.

We can see that even critical events (i.e., with high severity) are extremely

frequent when compared to actual failures. As we will see, this raises a

problem of class imbalance.

Span All events Critical events SAF Incidents

All systems 18,103,714 183,327 4,616

Specific to doors 8,072,327 27,318 84

Table 1: One year data volumes

3. Methodology

Like any knowledge discovery process, diagnostic data processing for fault

detection purposes basically involves four steps: acquisition, preprocessing,

model induction and model evaluation. Acquisition is aimed at importing

into the prediction system the history of both events and failures. Prepro-

cessing is intended to remove the noise within the acquired raw data and

improve their characteristics in favor of the definition of fault predictors and

fault explanation methods. To this end, suitable techniques like filtering,

summarization, feature selection, etc., can be exploited. Model induction is
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aimed at extracting the ”fault signature” from preprocessed data to predict

failures before they actually occur. Finally, model evaluation is intended to

assess the quality of the learned predictors.

In the next subsections we will first provide an abstract data model of

diagnostic data along with a problem statement. Then, we will describe

our approach to data preprocessing (data manipulation), fault detection and

fault explanation.

3.1. Data abstraction

Based on the previous description of the data sources, we next define a

formal data abstraction. There are three basic data types: failures, events

and environmental measures.

Given the set D of subsystems and a specific device di ∈ D, a failure is

a pair 〈di, t〉 expressing that a fault of di has occurred at time t. We denote

by F the set of all failures occurred in the given observation time.

Events are tuples defined over a number of attributes, including: type,

timestamp, subsystem (the door that has fired the event), disturbance, dura-

tion, severity (five severity levels, ”critical” being the maximum), and de-

scription (free text). We denote by E the set of events occurred in the given

observation time. Since event data is temporal, E can be regarded as a data

stream. Further, we denote by E (i) = [e
(i)
1 , . . . , e

(i)
mi ] the stream of events

issued by di ∈ D, i.e., events in E where subsystem = di.

Given di ∈ D, let S(i) = {s(i)
1 , · · · , s

(i)
qi } be the set of sensors associated

with di. Then, the set of environmental measures associated with event e
(i)
k ∈

E (i) is V(i)
k = {v(i)

k,1, · · · , v
(i)
k,qi
}, where v

(i)
k,1, · · · , v

(i)
k,qi

are the values generated

by sensors in S(i) at time tk, this being the timestamp of e
(i)
k . V(i)

k is called
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the context of e
(i)
k . Now we are in a position to define the following time

series:

1. 〈E (i),V(i)〉, where V(i) = {V(i)
k | k : e

(i)
k ∈ E (i)}, called the event history

of di. 〈E (i),V(i)〉 represents the stream of pairs 〈event, context〉 issued

by di ∈ D in the given observation time.

2. 〈E ,V〉 =
⋃
∀i:di∈D 〈E

(i),V(i)〉 representing the event history of all devices

is then given by observation time. This can be seen as a snapshot

tracking the evolving status and behavior of each device over time.

3.2. Approach and Problem Statement

The focus of the approach is the device di, for which we would like to

devise a fault prediction methodology. To this end, we start from the obser-

vation that the possibility for a fault to occur depends on the status of the

device, and that the status is progressively tracked through the events trig-

gered by the system. However, given a timestamp t, the time to failure t+ δ

does not depend only on the last event occurred, but on the event history

〈E (i)
W ,V(i)

W 〉 of di within a certain time-frame W .

The situation is illustrated in Figure 2, depicting a series of events hap-

pening during any given time period. Faults occur somewhere in the timeline.

Given a timestamp t, we associate with it an analysis frame W , meant to

collect information about the status of the device. Thus, our objective is to

predict the time to failure relative to t, given the event history 〈E (i)
W ,V(i)

W 〉.

However, there are some issues associated with this approach which need

to be tackled. First of all, the analysis frame associated with the target

timestamp has to be properly sized. A possible approach could be to consider
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Figure 2: Methodology of the approach.

the analysis frame comprising all events since the last failure. However, this

approach has the drawback that some events correlated with future failures

are lost. A better approach is one where the analysis frame is time limited,

rather than bound by a previous failure. In this case, if the time period being

considered is made long enough then all relevant events will be included in

the process of model development. Example strategies could perform the

prediction on a weekly or monthly basis (depending on the requirements of

the predictive maintenance).

The second issue is concerned with the target time upon which the pre-

diction is made. Again, several different choices can be made. A sliding

window approach would force the prediction on every possible event on the

timeline. This is shown in Figure 3. However, a problem we encountered

with this approach is the strong correlation between consecutive events. In

practice, the prediction on event c is correlated with the prediction on event

x, and as a consequence the resulting predictor has an extremely poor gener-

alization capability. We call this issue the data diversity problem, to denote

that several predictions do not rely on diverse faults. To relieve this prob-

lem, a better strategy is one providing for fixed consecutive milestones (i.e.,
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Figure 3: Sliding-window prediction.

timestamps) along the timeline.

Thus, fixed milestones, each associated with a time limited analysis frame,

seems to be in the overall the more advisable strategy.

However, the data diversity issue is not yet completely defeated, unless

we abandon the time-to-failure predictive approach: predicting the time to

failure, indeed, unavoidably triggers correlations in subsequent milestones.

To overcome this drawback, we then transform the time-to-failure problem

into the following binary problem: Given a milestone, how likely is it that a

fault will occur in a given observation window?

This is illustrated in Figure 4. Here, each milestone is associated with

both an analysis frame and an observation window. If a failure occurs within

this window, then the analysis frame is labeled as positive, otherwise it is

labeled as negative. Within the figure, the frame ending with event x is

positive, whereas the frame ending with event y is negative.

More formally, we define a milestone as a triple 〈t,W,O〉, where t is a

timestamp, W is the analysis frame and O the observation window. Further,

by 〈E (i)
W ,V(i)

W 〉 we denote the snapshot of di within the analysis frame W , i.e.,
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Figure 4: Fixed-observation window prediction.

E (i)
W = {e ∈ E|e.subsystem = di, e.timestamp ∈ W} and V(i)

W = {V(i)
k | k :

e
(i)
k ∈ E

(i)
W } is the stream of contexts (environmental measures) associated

with events in E (i)
W .

Detection: Given a milestone 〈t,W,O〉, can we predict whether a failure

will occur in O based on the statistical properties of 〈E (i)
W ,V(i)

W 〉?

Explanation: Given a failure 〈di, tk〉 and a milestone 〈t,W,O〉 such that

tk ∈ O, is it possible to devise a pattern characterizing 〈E (i)
W ,V(i)

W 〉? Here, a

”characterizing pattern” is any set of features that substantially differentiate

the elements of 〈E (i)
W ,V(i)

W 〉 from those of 〈E ,V〉.

3.3. Data Manipulation

Given a device di and a milestone 〈t,W,O〉, the basic idea is that the

event history 〈E (i)
W ,V(i)

W 〉 of di in the analysis frame W can be represented

as a single tuple summarizing the evolving status and behavior of di during

W . This is done by devising a number of statistics meant to characterize the

evolution of the series 〈E (i)
W ,V(i)

W 〉 in terms of simple patterns.

Table 2 summarizes the descriptive statistics relative to E (i)
W . They are

concerned with two attributes of the event data type (see Section 3.1): the

discrete attribute type and the continuous attribute duration. For an in-

stance, we can count the number of events of a given type occurred in the
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time interval W , or compute the harmonic mean of the duration of all the

events during W. Each statistic is computed in three different ways:

• By considering all events within W - e.g., count the number of events

occurred within W

• By assuming that W is partitioned into m fractions (for example, if W

is relative to a week then we can partition it into days of the week).

Then, for each f ∈ {1, . . . ,m} we consider the statistic relative to the

fraction f . For example, cnt(f) represents the number of all events

within the fraction f .

• By grouping events according to event type - e.g., cnt(T ) or cnt(f, T ).

Besides the standard concentration and dispersion measures, the rela-

tive average deviation is worth further comments. This statistic measures

deviations from a static trend, which can be indicative of a malfunction.

The typical situation is when the number of events increases progressively.

Capturing these deviations and measuring a degree of correlation with the

timeline turns out to be a crucial predictor for a forthcoming failure.

Similarly, Table 3 summarizes the descriptive statistics relative to V(i)
W -

the stream of environmental measures associated with events in E (i)
W . For each

sensor sh of di, statistics such as Kurtosis, interquartile range and number of

outliers were computed to indicate whether the values distribute evenly or ex-

hibit peaks (which, again, could denote malfunctions and hence forthcoming

failures).

As a result, the dataset deriving from the above data manipulations is a

table T where each row summarizes the status of a device di in the analysis
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Feature Description

cnt the number of events occurred during W .

rad(f) Relative Average Deviation
cnt(f+1)−cnt(f))

cnt(f)
: the rel-

ative increment of occurrences of events from the time

fraction f to the next one.

rad the arithmetic mean of rad(f) over all the fs.

rad corr the correlation between the periodic rad(f) and the

timeline.

h the harmonic mean of the duration of all the events

during W .

avg the arithmetic mean of the duration of events during

W .

med median of the duration of all the events during W .

var variance of the duration of events during W .

k Kurtosis Skewness Index of the duration of events dur-

ing W .

IQR Interquartile range (Q3−Q1) of the duration of events

during W .

e outl number of anomalous durations (durations below Q1−

1.5IQR or above Q3 + 1.5IQR) for all the events dur-

ing W .

Table 2: Event statistics

frame W of a milestone m =< t,W,O >. Hence, there is one tuple in T

for each pair 〈di,m〉, so that the cardinality of T depends on the frequency

of milestones. The attributes of T are of two types: the event attributes

describing the statistics of Table 2, and the context attributes describing

the statistics of Table 3 (applied to each sensor of each device). There is

an additional binary attribute (the class attribute) associated with a tuple

〈di,m〉 denoting whether the device di experienced a failure in the observation

window of m (this is done by exploiting the set F of all failures occurred in
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Feature Description

corr(sh) correlation coefficient of the values of sh with respect

to the timeline

e h(sh) harmonic mean of the values of s during W

e avg(sh) arithmetic mean of the values of sh during W

e med(s) median of the values of sh during W

e var(sh) variance of the values of sh during W

e k(sh) Kurtosis Skewness Index of the values of sh during W

e IQR(sh) Interquartile range of the values of sh during W

e outl(sh) number of outliers (values below Q1−1.5IQR or above

Q3 + 1.5IQR) observed by sh during W

Table 3: Environmental statistics

the given observation time).

The advantage of the proposed representation is that it helps to mitigate

most of the mentioned issues concerning data (see Section 2). First, the size

of the data set T is dramatically reduced, as each tuple in it is the aggregation

of all examples in the respective analysis frame. Second, the use of statistical

functions to summarise the properties of all such examples, tends to nullify

the effect of errors occurring in single original examples. Finally, aggregation

helps to mitigate both bias and sparsity issues.

3.4. Fault Detection

A failure can be associated with an abnormal status of a device (Vacht-

sevanos et al., 2007). There can be several possible causes for such an un-

expected behavior and the standard approach in trying to detect failures is

trying to detect potential patterns which recur among them. In practice, the

prediction is accomplished through a classifier capable of detecting patterns
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which characterize failures.

However, the situation we face in our scenario is characterized by an

extreme class imbalance, where failures are extremely rare. Besides excep-

tionality, failures seem to be characterized by different patterns, not only

with regards to normal behaviour signals, but even from each other. That

is, no failure seems to share common causes with other failures. This fac-

tor hampers the discovery of global patterns through failures, impeding the

ground truth retrieval needed by classification/regression models.

Thus, more suitable in our context is the adoption of an outlier detection

(Chandola et al., 2009; Aggarwal, 2013) framework exploiting the manipu-

lated data defined in Section 3.3. The definition of outlier given by Chandola

et al. (2009) is intended here in a broader sense. According to them, outliers

are unexpected recurrent behaviours (i.e. patterns) within the data (thus,

they likely represent a new, previously unknown class). However, there are

cases where common patterns, even if existing, are not observable, because

the size of the outlier sample is too small. This is the case of our sce-

nario, where failures have not enough statistical power to represent a proper

pattern. Therefore, we need to exploit the absence of recurrent patterns,

intended as deviation from normality, for predicting future abnormal be-

haviours. The reliability of this approach is underpinned by the proposed

aggregation-based data manipulation approach that, as discussed in Section

3.3, entails a strong error mitigation factor.

The main idea of our outlier detection approach is to devise a ranking

of rows according to their anomaly degree, so that rows with higher rank

represent the most probable and imminent system faults. The ranking is
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essentially based on observing how different a certain pair 〈device, milestone〉

is from all the other pairs in the data set T - that is to say, how anomalous is

the behavior of the given device in the associated analysis frame. Hopefully,

this altered behavior correlates with failures, thus allowing to achieve high

accuracy.

Thus, given a tuple x = 〈device, milestone〉 of T , representing the status

of the given device in a given time frame, we define

rank(x) = 1− p(x) ,

where p(x) represents the probability of x within the given domain. Higher

probabilities correspond to frequent working statuses (i.e. regular activi-

ties); by contrast, low probabilities represent exceptional situations, which

are hence more likely to correlate with anomalous behavior and consequently

imminent failures.

Values ranked with high values could in principle be either outliers, noise/errors

or new classes or categories. In our assumption, any strong deviation from

normality is considered as a failure, then outliers are considered failures.

Since the proposed methodology is composed by a strong-aggregation tech-

nique there is a high noise/error mitigation factor. Those outliers that still

produce anomalies are also considered failures and hence prediction errors, if

they do not correspond to an actual failure. Finally, novel classes are unex-

pected patterns, hence something that is different from the normal behavior:

for this reason, they are also considered failures.

Thus, the core of our approach is a methodology for estimating p(x). We

approach it in two steps.
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3.4.1. Mixture Modeling

In our setting, we hypothesize x as coming from one ofK possible different

normal (hence expected) working behaviors. That is to say, we can model

p(x) as a mixture

p(x) =
K∑
k=1

pk(x)πk , (1)

where pk(x) represents the probability of observing x as complying to the

k-th normal behavior, and πk is the prior probability of observing a device

associated with behavior k. In this framework, failures are outlier rows with

low degree of aggregation with these K components. The parameter inference

of Equation 1 can be performed via traditional mixture model estimations

such as an Expectation Maximization (EM) approach. We model p(x) as

a parametric function p(x|Θ), where Θ is the set of all parameters which

characterize the components. Let D = {x1, . . . ,xN} represent the training

data of observed devices. Then the likelihood of the data, given the model

parameters Θ, can be expressed as:

L(Θ;D) =
∏
i

p(xi|Θ)

The corresponding learning problem is finding the optimal Θ̂ that maxi-

mizes L(Θ;D). Following the standard mixture modeling approach (Demp-

ster et al., 1977), we can rewrite the likelihood, by exploiting Equation 1, as

follows:

L(Θ;D) =
∏
i

K∑
k=1

pk(xi|θk)πk

which can be optimized by resorting to the traditional EM algorithm, intro-

ducing a hidden binary matrix Z, where zi,k denotes the membership of the i-

th flat row to the k-th mixture component, with the constraint
∑K

k=1 zi,k = 1.
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Θ can be partitioned into {π1, . . . , πK , θ1, . . . , θK}, where θk is the parameter

set relative to the k-th component.

The complete-data likelihood of the model is:

p(D,Z,Θ) = p(D|Z,Θ) · p(Z|Θ) · p(Θ) (2)

where

p(D|Z,Θ) =
∏
i

K∏
k=1

pk(xi|θk)zi,k

pk(xi|θk) = N (xi|µk,Σk)

p(Z|Θ) =
∏
i

K∏
k=1

π
zi,k
k

Where N (·) is the normal distribution parameterized by mean µk and co-

variance matrix Σk.
3

p(Θ), in Equation 2, represents the prior relative to the parameter set Θ.

Inspired by (Figueiredo and Jain, 2002), we choose to model the latter as:

p(Θ) ∝
K∏
k=1

π
− 1

2

√
|θk|

k ,

with the interpretation that, for fixed K, the parameters πk allow an “im-

proper” Dirichlet-type prior. This enables a formulation of EM algorithm

which leads to the automatic detection of the optimal number K of mixture

3The gaussian model is not a limitation here, since the approach can be parameterized

to any suitable distribution. However, we found that the normal distribution provides a

reliable model even with those features representing counters (it is worth reminding that

a gaussian distribution suitably approximates a Poisson distribution for large counts).
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components. In fact, by standard manipulation of Equation 2, the Complete-

Data Expectation Likelihood (Dempster et al., 1977) is given by:

Q(Θ; Θ′) = E[logP (D,Z,Θ)|D; Θ′]

∝
∑
i

K∑
k=1

γi,k {log pk(x|θk) + log πk}

−
K∑
k=1

Nk

2
log πk

where Nk =
√
|θk|, and γi,k represents the posterior probability of choosing

component k, given xi. Optimizing Q(Θ; Θ′) with respect to πk under the

constraints
∑

k πk = 1 and 0 ≤ πk ≤ 1 yields:

πk =
max {0,

∑
i γ,k −Nk/2}∑K

k=1 max {0,
∑

i γi,k −Nk/2}
.

Here, the proposed prior admits an adjustment to the estimation of πk which

enables “annihilation”: a component not supported by a sufficient number

of flat rows is removed. Thus, we can start with an arbitrary large initial

number of mixture components, and then infer the final number K by letting

some of the mixing probabilities πk be zero.

The overall algorithm can be devised hence as an iterative two-step pro-

cess, where in the E step we estimate γ given the current values of Θ,

γi,k ∝ pk(xi|θk)πk

and in the M step we exploit the γ values to estimate the πk as above, and
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both µk and Σk as:

µk =
N∑
i=1

γi,kxi

σk =
N∑
i=1

γi,k(xi − µk)(xi − µk)T

3.4.2. Robust Outlier Detection

Applying the EM framework described in the previous section to the data

resulting from the preprocessing described in 3.3 exposes to two potential

issues, both related to the high dimensionality.

First, probability measures are not robust to high dimensionality. Tuples

exhibiting a high number of features indeed express an extremely low density,

which makes the precision in the computation of the rank problematic.

The second problem is the scalability of the inference process. In particu-

lar, the estimation of the covariance matrix is quadratic in the dimensionality

of the data. This can make the process extremely slow.

The solution to both issues is based on a bagging approach, inspired by

(Lazarevic and Kumar, 2005). In practice, rather than directly computing

the rank on the whole set of features, we combine several rankings computed

on small subsets of the features. This approach allows to better mitigate the

effects of high dimensionality on the computation of the density of a tuple. In

addition, each rank can be computed in parallel, thus substantially speeding

up the inference phase.

Formally, let x1, . . . , xn be the features of tuple x. Given S ⊂ {1, . . . , n},

the tuple xS represents the subset of x1, . . . , xn corresponding to the indices in
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S. Let A = {A1, . . . , Aq} be a set of q random samplings with replacement of

{1, . . . , n} such that |Aj| << n and A is complete, i.e.,
⋃q
j=1Aj = {1, . . . , n}.

Each Aj represents a subset of features upon which to build a ranker.

Then, all q rankers contribute to the final ranking:

rank(x) =1− 1

q

q∑
j=1

p(xAj
)

=1− 1

q

q∑
j=1

Kj∑
k=1

p(xAj
|θ(j)
k )π

(j)
k

(3)

Here, Kj represents the number of components detected for the mixture

associated with the Aj subset, and similarly π
(j)
k and θ

(j)
k represents the pa-

rameters associated with the k-th components of such a subset.

Thus, the choice to run the EM algorithm for a small subset of the set of

features allows to gain numerical stability in the estimation of the probability

distributions. Moreover, the process benefits from a statistically significant

improvement in the prediction accuracy, due to the combination of multi-

ple models. Finally, the computational cost can be dramatically reduced

by applying parallelism combined to MapReduce techniques. Each mapper

contains a ranker which is fed with a small projection of the whole data set,

while the reducer implements the collaborative voting procedure.

3.5. Fault Explanation

One of the most desired features in a fault prevention system is the in-

telligibility of the predictive processes for impending failures. This request

is supported by the need to define maintenance procedures that prevent the

device breaking during its working time.
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A predictive process of failure discovery is intelligible if it allows humans

to understand how and why failure predictions are determined, i.e., it pro-

vides a description of the device alteration that will shortly bring to the

occurrence of a fault. Such a description is a snapshot of the device status

in which the features that exhibit abnormal behavior are highlighted and

ranked, with respect to the average activity of the normal working opera-

tion. A description is then an ordered list of features which likely exhibit

abnormal values and hence are symptoms of abnormal behavior. This means

that a comparison of features is needed.

We rely on a two-step approach for building the rank. In the first step,

we select those features which are likely to characterize the outlierness of an

object deemed as an outlier by the process described in sec. 3.4. In a second

step, we provide a score for each such features, and provide a rank of those

features based on how untypical is their exhibited value.

In the first step, the objective is to find an explanatory subspace, that is

a subspace of the original numerical attribute space where the outlier shows

the greatest deviation from the other points. We based our approach by

encoding the notion of outlierness as separability (Micenková et al., 2013):

given a data point x deemed as an outlier, one can devise an artificial set of

points y oversampled from a gaussian distribution centered in x. Then, the

outlierness of x can be measured in terms of the accuracy in separating the

artificial points y from the other points in D. Having encoded the outlierness

as a classification problem, the explanatory subspace can hence be reduced

to feature selection relative to such a classification problem.

Figure 5 depicts the situation, where we can see a sample of data (depicted
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Figure 5: Outlierness as separation: attribute x separates the outlier values from all the

others.

as black in the picture) spanning over two attributes A and B. Then, an

outlier (depicted as red) is placed within the space. The blue points are

objects that are randomly generated based on the features exhibited by the

outlier value. We can see then that a separation line (colored green) can be

drawn perpendicular to axis of A, separating blue points from black points.

By contrast, it is not possible to draw a similar separating line on the axis of

B. As a consequence, the outlier can only be explained based on feature A.

The selection of the most appropriate features allows us to detect which

features characterize the outlierness. However, we also would like to rank

these features, based on the degree of outlierness of the value they exhibit.

Comparing semantically different features is difficult since each feature may

have different values at different scales. To the purpose of comparing such

features, it is mandatory to provide a normalization task where each feature

is mapped into a shared numerical domain.
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We approach this problem by providing a custom z-score normalization

for each attribute. In section 3.4 we modeled our data as normally dis-

tributed. Given a set of normally distributed values {x1, . . . , xn}, the pecu-

liarities of the normal distribution allows us to characterize the population

according to a tolerance interval, defined as:(
µ− z∗ σ√

n
;µ+ z∗

σ√
n

)
where µ is the average of the samples, σ their standard deviation and z∗ is a

range parameter for the interval. For example, when the range includes 99%

of the population, then z∗ = 2.576.

The (quasi) normalization transformation consists in computing the ti-difference

for each feature, defined as the absolute difference of the outlier value against

the normal behavior weighted over the feature’s tolerance interval in normal

activity:

ti-difference = |x− µ̂| ·
(
z∗

σ̂√
n̂

)−1

(4)

where µ̂ is the feature average considering only non-outliers, x is the value

of the feature for the outlier, n̂ is the number of non-outlier tuples and σ̂ is

standard deviation of the attribute considering only non outliers. Here, z∗ is

chosen so that the population would include all tuples but one. In principle,

since we are only focusing on a single outlier, we consider all values but one

as “normal” (and hence within the tolerance interval).

Thus features are scored by mapping the values within the same tolerance

interval, and observing their position with respect to such an interval. This

allows us to provide a rank and ultimately to focus on the most deviating

values.
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Figure 6: Ranking of attributes according to cumulative χ2 values.

4. Experimental Evaluation

The proposed approach was tested on a set of observations covering a time

span of one year (52 weeks, from January to December 2015) and relative to

door failures on metro trains (the SSR fleet in UK). The number of devices

(i.e., doors) was 58.

4.1. Data Manipulation

Starting from the data sources described in Section 2.2, we created a

dataset according to the data manipulation procedure described in Section

3.3. To this end, we set both the analysis frame W and the observation

window O of each milestone 〈t,W,O〉 equal to one week, so that milestones

had a weekly frequency. It turns out that the resulting table consisted of 51

tuples for each of the 58 devices (thus, 2,958 rows). Of such rows, just 84

were labeled as “positive” (i.e., represented failures).

Attributes were initially 11,893, describing the statistics of Section 3.3

for both events and sensors (see Table 2 and Table 3, respectively). This

number, however, turned out to be extremely large, and so we had to resort

to dimensionality reduction techniques in order to focus on the relevant at-

29



tributes only (Mladenic and Grobelnik, 1999; Zheng et al., 2004). Attribute

selection is a well-known problem in the scientific field of knowledge discovery,

which is worsened in this case by the high class imbalance. Some of the most

used techniques for choosing an optimal set of features are based on statistics

like Information Gain (IG), Odd Ratio or Chi-square (CHI) (Mladenic and

Grobelnik, 1999; Zheng et al., 2004). For highly skewed data, the class dis-

tribution is biased toward the majority class, so that most classifiers would

predict the most frequent class to obtain overall accuracy. However, in deal-

ing with highly skewed data, we are more interested in predicting the minor

class as to achieve a low false-negative rate while maintaining overall accu-

racy. According to (Tang and Liu, 2005), when the data is skewed, IG and

CHI choose more positive features (i.e., features characterizing the minority

class). Since our purpose was to detect positive features, we adopted CHI

and selected the attributes which scored highest. Figure 6 shows a ranking

of the attributes according to cumulative χ2 value. We can notice that, out

of the 11,893 features, only 300 attributes exhibited a significant score (black

vertical line in Figure 6).

The final dataset was therefore made of 2,958 tuples, each consisting of

300 features plus 1 class label. Of such tuples, 84 were labeled as positive

examples, and the remaining as negative ones.

4.2. Outlier detection

Figure 7 shows the results of the outlier detection process. The values

plotted in the graphs represent the distribution of the ranks. We can observe

that the majority of the values range within the interval [0, 0.15], and in

general values greater than 0.18 can be considered exceptional (w.r.t. the
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Figure 7: Distribution of ranks resulting from the outlier detection algorithm.

majority).

The evaluation of the results was performed by exploiting Cumulative

Gains Chart (see Figure 8). The approach considers the rank associated with

each tuple, and then evaluates whether thresholding such values allows us

to effectively detect actual failures. The Cumulative Gains Charts compare

the percentage of the overall number of doors failures (Y axis) against the

percentage of the total number of rows (X axis), sorted from the largest to

the smallest outlierness degree: a point p = (x, y) in the chart means that

within the set composed by the first x% rows there is the y% of the total

failures. Within the graphs of Figure 7, the green curve shows the theoretical

optimal performance (achieved by a hypothetical classifier capable of scoring

failures with the highest ranks). The red line shows the performance achieved

by a hypothetical classifiers which scores failures randomly. In particular, if
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we denote by g the function represented by the green line and by f the

Cumulative Gains Chart, then f(x)/g(x) represents the fraction of predicted

failures that are real failures. In turn, the random curve (the red one) assumes

that, given the first x% tuples in the ranking, x% outliers are detected, that

is, it corresponds to the main bisector of the space.

The first graph of Figure 8 shows the chart associated with the entire

dataset. Here, the area under the ROC curve of 0.781. We can notice a steep

initial behavior of the curve: a clear sign that all tuples with higher rank

correspond to actual failures.

The other three graphs show a zoom at 5% of the dataset, and they focus

on different threshold values. In particular, the second graph highlights that

all first 16 top outlier-ranked rows correspond to failures. Also, according to

the other graphs, the top 20 ranked tuples correspond to 19 actual failures,

and the 24 top rows show only 2 false positives.

The above experiments assume that the ranking is accomplished by ex-

ploiting all 2,958 tuples for building the model. However, we can devise a

different scenario, where the model is built periodically, and then it is ex-

ploited to compute the probabilities of incoming tuples and then to rank

them according to the previous model.

A second set of experiments was then accomplished by randomly splitting

the initial dataset with a proportion of 80% and 20%. The splits represent

a training and a test set, respectively. In particular, the training set was

composed by 2387 tuples with 73 failures, while the test set had 571 rows

and 11 failures. We notice that this random split is motivated by the need to

mitigate a “seasonal” bias, which might strongly affect predictions. Indeed,
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Figure 8: Cumulative gains chart (on the left side) and its zooms on the whole dataset
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Figure 9: Cumulative gains charts and corresponding outlierness degrees (in descending

order) on the test set

since our data covers only one year of observations, a chronological split

would entail predicting failures during winter exploiting information collected

in spring, summer and autumn.

The results shown in Figure 9 exhibit an even higher AUC (0.895 in the

picture) and, by selecting only the first 19 rows (out of 571 in the test set)

we are able to detect 8 failures representing 73% of the total. The figure

also shows a sorting of the outlierness values. In general, a cutting threshold

strategy can be devised based on the study of such a curve. Peaks within
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such a curve highlight abnormal values. Thus, choosing a threshold on this

curve based on the capabilities of actually monitoring can provide a suitable

strategy. The last graph shows that a threshold focused on 8 tuples out of

571, allows us to detect 4 actual failures, on a total of 11.

4.3. Explanation

The explanations of the outlierness degrees were obtained according to

the methodology proposed in Section 3.5: for each outlier, the ti-difference

was computed and drawn. Figures 10 and 11 plot the values of ti-difference

for the two top outliers (red line in the plots) and compares it to the values for

the non-outlier tuples (grey thick line in the plot). From that figure one can

notice that each outlier has several features exhibiting abnormal values (the

most ten relevant features of the two outliers are shown as box plots in the

figure). For the selected attributes, we can observe that the value exhibited

by the outlier (depicted in red) departs significantly from the values of the

normal tuples.

Thus, the general strategy for explaining the attributes can be devised as

follows. For each outlier:

• select relevant attributes by separation

• for each selected attribute compute the ti-difference

• plot values of ti-difference for the outlier tuple and for normal tuples

• select the attributes with most significant deviation in the ti-difference

and inspect them.
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Figure 10: Plot of the ti-difference for the top outlier and boxplots of the outlying at-

tributes according to ti-difference.

The resulting outlier visualization technique looks extremely promising, since

it allows for looking at once all unusual attribute behaviors and gathering, as

such, a larger choice of candidate causes for outlierness, while still retaining

focus on attributes having peculiar statistical behavior.

5. System Architecture

The implementation of the methodology relies on an architecture for data

manipulation, which was set up specifically for the purposes of the project.
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Figure 11: Plot of the ti-difference for the runner-up top outlier and boxplots of the

outlying attributes according to ti-difference.
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Figure 12 depicts the layers and tools of the architecture which are briefly

described below:

• The Apache Hadoop framework which comprises (1) the Hadoop Dis-

tributed File System for supporting high-throughput access to applica-

tion data; (2) HBase and Hive, for efficient data storing, summarization

and ad hoc querying. Within this layer, tables containing events and

environmental measures data are stored using an Hadoop cluster run-

ning an HBase database accessed through the Hive relational interface.

• A data processing layer which exploits the Apache Pig dataflow frame-

work for creating MapReduce programs used with Hadoop. Within

this layer, data stored within the HBase are manipulated by means of

Pig scripts in order to obtain a condensed (flattened) representation of

the information concerning devices according to the aggregate features

devised in sec. 3.3. The phases which involve this layer are the most

time consuming in the whole process, due to high demand of computa-

tional resources. In this respect, a salient property of Pig programs is

that their structure is amenable to substantial parallelization, which in

turn enables Pig to scale out to many machines and handle very large

data sets in a reasonable execution time.

• An analytical layer which exploits the analytical tools R (a free soft-

ware environment for statistical computing and graphics (R Core Team,

2014)) and Rialto (an extensible Business Analytics platform based

on Machine Learning techniques for models induction (Manco et al.,

2016)). Within this layer, the models are devised in two phases: first,
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by performing statistical analysis, data cleaning, manipulation and par-

titioning on the flattened table; second, by feeding cleansed partitions

are fed to the anomaly detection and algorithms which are implemented

in this layer as well.

For the case study described in this paper, the architecture was deployed on

a cluster of 8 virtual machines:

• A cluster management machine with Ambari and Hue.

• Two master nodes with HBase and Hive servers and other infrastruc-

ture servers (Oozie, Yarn, Zookeper).

• Five slave nodes containing actual data in their HDFS and performing

computations.

6. Related Work

Traditional maintenance is usually accomplished by devising a mathemat-

ical model of faults which can be exploited in order to diagnose asset status,

predict the asset abnormality and execute suitable maintenance actions. By

contrast, machine learning and data mining techniques which exploit log-

ging data for maintenance systems are becoming increasingly important,

since they can strengthen (Peng et al., 2010) or even replace model-based

approaches to detect faults and malfunctions (Katipamula and Brambley,

2005; Shin and Jun, 2015; Kauschke et al., 2015b; Peng et al., 2010). The

current literature mainly focuses on two aspects, namely, data manipula-

tion (Pereira et al., 2014; Kauschke et al., 2015a,c) and modeling (Rabatel
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Figure 12: System architecture.

et al., 2011; Holst et al., 2012; Kauschke et al., 2015a). In the former, the

proposed approaches are essentially focused on issues such as feature selec-

tion and engineering, filtering and cleaning which are capable of highlighting

discriminating properties characterising faults and anomalies. In the latter,

the approaches proposed are essentially based on classification and regres-

sion (Kauschke et al., 2015a; Petsche et al., 1995; Fink et al., 2013; Huang

et al., 2015), outlier detection (Holst et al., 2012), pattern discovery (Raba-

tel et al., 2011) and time series analysis (Pereira et al., 2014; Ulanova et al.,

2015). Table 6 summarizes the main features of the approaches in literature

and compares them to the features of our approach. We notice that, though

not relying on classification techniques, our approach lies in the family of

the one-class classification methods. Indeed, our approach creates a proba-

bilistic boundary surrounding the normal behaviors: each point, out of the

40



Approach Explanation Label Needed? Technique

Fink et al., 2013 No Yes Regression/Classification

Holst et al., 2012 No No Outlier detection - defines boundaries

of normality (only one normality

mode)

Huang et al., 2015 No Yes Classification

Kauschke et al., 2015a No Yes Classification

Pereira et al., 2014 No Yes A list of mining techniques (no

suggested selection strategy)

Petsche et al., 1995 No No Neural networks with autoeconding for

outlier detection (only one nomality

mode)

Rabatel et al., 2011 Yes Yes Outlier detection based on association

rules

Sipos et al., 2014 No Yes Classification

Ulanova et al., 2015 No Yes Regression/Time series

Wang et al., 2015 No Yes Association rules

Our approach Yes No Outlier detection - defines boundaries

of normality based on ensemble clustering

Table 4: Model comparison.

boundary, is considered outlier.

In general, methods based on classification (for instance, neural networks

(Petsche et al., 1995; Fink et al., 2013) or support vector machines (Huang

et al., 2015; Sipos et al., 2014)) are not well suited for the problem at hand,

due essentially to the strong imbalance that the problem exhibits. This is

also witnessed in (Pereira et al., 2014), where advanced techniques based on

one-class classification or semi-supervised learning are explored. The paper

deals with failures on train doors and develops an alerting system focus-

ing on the deterioration of door systems. The authors observe (as we did

in this paper) that warning events about abnormal working operations are
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not good predictors for system failures. Further, events are not i.i.d. (in-

dependent and identically distributed) observations and consequently their

correlation has to be taken into account when making predictions about fail-

ures. Based on these premises, the authors develop a system for classifying

anomalous open/close cycles within trains, based on the difference between

the inlet and outlet pressure in specific intervals of the cycle. Cycles and cy-

cle sequences are then classified as anomalous and as potential forthcoming

failures. Interestingly, the authors point out that, in their scenario, simple

methods based on interquartile range work better than semi-supervised and

unsupervised methods. Compared to our approach, the authors only focus

on sensors measuring pressure, whereas we devise a general strategy for ex-

tracting features from a general set of sensors and exploiting these features

for fault detection.

The approach (Holst et al., 2012) works on the same context of our case:

The focus is on visualizing and detecting anomalous events relative to sensors

from train devices. The approach relies on the capability of characterizing

each feature by means of an anomaly score. The latter can be roughly ex-

pressed as the amount of instances for which the value exhibited by a given

feature is more likely than the value exhibited by the instance at hand. A

homogeneous poisson process is exploited, which characterizes the rate of

occurrence of a given event: thus anomalous events are those events whose

frequency is significantly different from the expected one, according to the

estimated rate. The approach only considers event frequencies as features,

whereas it has been shown (Kauschke et al., 2015c) that several aggregate

features can be exploited to better characterise faults. In addition, it only
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provides insights about anomalous features, and does not explore correlation

of such features with actual faults. Similar ideas for outlier explanation were

investigated independently in (Angiulli et al., 2016).

In (Ulanova et al., 2015), the authors directly analyse time series from

signals and spot aging issues which characterize a degradation in performance

and ultimately a failure (Ulanova et al., 2015). Although degradation in

performance can be effectively exploited in defining maintenance policies, the

general issue of fault detection does not generally depends on degradation

and aging issues. For example, the effect of passenger load can cause faults

which are not necessarily triggered by deteriorated systems.

Anomaly detection methods were explored also by exploiting patterns of

co-occurrence relationships that characterize sensors. (Wang et al., 2015; Ra-

batel et al., 2011; Ao et al., 2015). In (Rabatel et al., 2011) for example, the

authors work on discretized values coming from sensor measurements and

other contextual information (such as itinerary, weather conditions, etc.).

Normal behavior is modeled by a set of sequential patterns which character-

ize the status of a journey. Then normal/anomalous behavior is represented

by the presence of patterns which comply with/contradict such a behavior.

Relating the notion of anomaly to the presence of patterns eases the task of

outlier explanation which is also the core of our approach. However, com-

pared to our approach, pattern mining is extremely sensitive to tuning based

on hyper-parameters. In this respect, our approach is fully automatic, in

that clusters of normal behaviors are detected and explanation is obtained

by scoring and separability.
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7. Conclusions and Future Work

In this paper we described the results of a research project aimed at

exploring machine learning techniques to detect failures. The particular ap-

plication scenario was that of door failures on metro trains. To this end, we

proposed a general framework for the failure detection problem based on an

abstract model of diagnostic data along with a formal problem statement.

Within this framework, we then defined techniques for data pre-processing,

fault prediction and fault explanation

By looking at the proposed approach in terms of each of the above tech-

niques, we can get some insight into both strengths and weaknesses:

• Diagnostic data were collected from a number of data sources stor-

ing historical events and sensor values concerning a one-year period.

These data suffered from a number of issues, like size, sparsity, bias,

burst effect and trust. Thus, suitable pre-processing techniques were

applied to mitigate their effect. In particular, diagnostic time series

were compressed in such a way that the behavior of a device in a given

time frame was effectively summarized through a number of suitable

statistics. One advantage of this approach is that, by mitigating the

noise/error issues, the quality of data is strongly improved. As a con-

sequence, learning algorithms are less sensitive to errors in individual

examples. We believe that the proposed approach is general enough to

address the irregular nature of diagnostic data in different application

scenarios.

• Failure prediction was performed by using outlier detection. Indeed, in
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the given application scenario, failures do not share common patterns

and, thus, traditional classification techniques perform poorly. How-

ever, the absence of a visible recurrent pattern is itself a very useful

information, provided that we are enough confident that unexpected

data are not noise points. Under this assumption, which is under-

pinned by our data manipulation approach, deviations from normality

can actually be deemed as a good indication of incipient failures.

• Fault explanation was achieved by providing a snapshot of the features

of the device which exhibit abnormal values. Such a snapshot is a

description where features that exhibit abnormal behavior, w.r.t. the

average activity of the normal working operation, are highlighted and

ranked. A snapshot is then an ordered list of abnormal features. How-

ever, as things stand at present, this does not provide a direct indication

to detect the components that are responsible for abnormal feature val-

ues. This task is actually in charge to the maintenance operator. Thus,

some work is still to be done in this respect.

Besides working on the improvement of fault explanation, we are currently

involved in other research directions, including:

• Combining our approach with classification techniques for detecting

also failures governed by systematic causes, which define anomalous

patterns. Currently, our approach works in situations where failures

are deviations from normal behavior, and disregards situations where

failures exhibit recurring patterns. Approaches based on deep learning

seem extremely promising in this respect, as the complexity of the net-
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work can in principle allow to capture both recurrent and unexpected

features.

• Study of real time solutions. We want to investigate how to define a

novel methodology in order to address the typical issues and constraints

of strict-time related problems.
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