
Predicting Temporal Activation Patterns via
Recurrent Neural Networks

Giuseppe Manco, Giuseppe Pirrò and Ettore Ritacco
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Abstract. We tackle the problem of predict whether a target user (or
group of users) will be active within an event stream before a time hori-
zon. Our solution, called PATH, leverages recurrent neural networks to
learn an embedding of the past events. The embedding allows to capture
influence and susceptibility between users and places closer (the repre-
sentation of) users that frequently get active in different event streams
within a small time interval. We conduct an experimental evaluation on
real world data and compare our approach with related work.

1 Introduction

There is an increasing amount of streaming data in the form of sequences of
events characterized by the time in which they occur and their mark. This gen-
eral model has instantiations in many contexts, from sequences of tweets char-
acterized by a (re)tweet time and identity of the (re)tweeter and/or the topic
of the tweet, to sequences of locations characterized by the time and location
of each check-in. We focus on influence-based activation networks, that is, event
sequences where the occurrence of an event can boost or prevent the occurrence
of another event. Understanding the structural properties of these networks can
provide insights on the complex patterns that govern the underlying evolution
process and help to forecast future events.

The problem of inferring the topical, temporal and network properties char-
acterizing an observed set of events is complicated by the fact that, typically,
the factors governing the influence of activations and their dependency from
times are hidden. Indeed, we only observe activation times (e.g. retweet time)
and related marks, while, activations can depend on several factors including
the stimulus provided by the ego-network of a user or his attention/propensity
towards specific themes.

The goal of this paper is to introduce PATH (Predict User Activation from a
Horizon), which focuses on scenarios where there is the need to predict whether
a target user (or group of users) will be active before a time horizon Th. PATH
can be used, for instance, in market campaigns where target users are the po-
tential influencers that if active, before Th, can contribute to further spread an
advertisement and trigger the activation of influencees that can be made aware
of a certain product/service. PATH learns an embedding of the past event his-
tory via Recurrent Neural Networks that also cater for the diffusion memory.



The embedding allows to capture influence and susceptibility between users and
places closer (the representation of) users that frequently get active in different
streams within a small time interval.

1.1 Related Work

A number of proposals have addressed the problem of modeling streams of events
via neural networks: (i) approaches like DeepCas [7] and DeepHawkes [2] tackle
the problem of predicting the length that a cascade will reach within a timeframe
or its incremental popularity; (ii) approaches like Du et al. [3] and Neural Hawkes
Process (NHP) [8] model and predict time event markers and time; (iii) Survival
Factorization (SF) [1] leverages influence and susceptibility for time and event
predictions. PATH adopts a different departure point from these approaches: it
focuses on predicting the activation of (groups of) users before a time horizon
instead of the exact activation time.

Differently from (i) PATH considers time and uses an embedding to capture
both influence and susceptibility between users and predict future activations.
Moreover, (i) focuses on the prediction of cumulative values only (e.g., cascade
size). Differently from (ii), we do not assume that time and event are independent
and capture their interdependencies via the embedding and cascade history.
Besides, (ii) focuses on predicting event types only (e.g., popular users), which
is not enough in the scenarios targeted by PATH (e.g., targeted market campaigns)
where one is interested in predicting the behavior of specific users instead of their
types. A for (iii), it fails in capturing the cumulative effect of history while PATH

captures by using an embedding.

The contributions of the paper are as follows: (i) PATH, a classification-based
approach based on recurrent neural networks allowing to model the likelihood
of observing an event as a combined result of the influence of other events; (ii)
an experimental evaluation and a comparison with related work.

The remainder of the paper is organized as follows. We introduce the problem in
Section 2. We present PATH in Section 3. We compare our approach with related
research in Section 4. We conclude and sketch future work in Section 5.

2 Problem Definition

We focus on network of individuals who react to solicitations along a timeline.
An activation network can be viewed as an instance of a marked point process
(e.g., information cascades) on the timeline, defined as a set H = {Hc}1≤c≤m.
Here, Hc={(ti, ui)}1≤i≤mc

represents a cascade where ui ∈ Uc is a user in a set
of all users that get active in the cascade Hc at time ti ∈ tc where tc is the
projection over the timestamps in Hc. We denote by U the set of users in all
cascades.

Given a cascade Hc, we denote by Hc
<t (resp. Hc

≤t) the set of events ei ∈ Hc

such that ti < t (resp., ti ≤ t). The terms tc<tand Uc
<t can be defined accordingly.



2.1 Modeling diffusion

We start from the observation that what is likely to happen in the future (viz.
which user will be active and when) depends on what happened in the past (viz.
the chain of previously active users). One important point to take into account
is the susceptibility of users, that is, the extent to which they are influenced by
specific previously activated users. Our model should be flexible enough to reflect
both exciting and inhibitory effects. While the former boosts the likelihood of
observing u active in c, the latter actually could prevent it to do so.

Given a cascade Hc, a timestamp t ≥ 0 and a user u 6∈ Uc
<t, the goal is to

obtain an estimate of the density function f(t, u|Hc
<t), which can be used to

model the following evolution scenario: given a cascade c and time horizon T c
h;

how likely is it that u will become active in c within T c
h?

The challenge, at this point, is how to concretely formulate the density f . We
can decouple its specification as follows:

f(t, u|Hc
<t) = g(t|u,Hc

<t) · h(u|Hc
<t), (2.1)

where the first component represents the likelihood that u becomes active within
t, givenHc

<t, and the second component represents the likelihood that u activates
(independent of the time) as a reaction to the current history.

The modeling of Hc
<t can include different pieces of information, among

which, the sequence of user activations, their activation times, the relative acti-
vation speed, and possibly the topic of the cascade. Nevertheless, our assump-
tion is that Hc

<t can also encode latent information including susceptibility and
influence between users that can be derived, for instance, from neighborhood
information in a networks (e.g., follower/followee relations in Twitter) or user
behaviors (e.g., users that retweet after a certain set of other influential users
(re)tweet). This is exactly what we want to unveil in our modeling.

2.2 Embedding history

We want to learn and embedding of users in a latent K-dimensional space such
that users in the same cascade are closer in the embedding, and users within
different cascades are distant.

The embedding is based on the idea of a virtual graph G = (V, E) where
(u, v) ∈ E if and only if there is a cascade c such that v ≺c u (viz. u precedes v
in the cascade c). Thus, the influence exerted by v on u represents the probability
that, any random walk on G starting from v, eventually touches u. By assuming
that αu,v represents such a probability, we factorize it as αu,v = su · av, where
S = [s1, . . . , sN ],A = [a1, . . . ,aN ] ∈ RN×K are the susceptibility and influence
matrices, respectively. Matrices are computed by relying on the standard network
architecture borrowed from the word2vec paradigm [9]:

ak = Weuk sk = Veuk

Here, u,v represents the one-hot encodings of u and v and k ∈ [1, ...,K]. The
matrices We,Ve represent the embeddings, obtained by minimizing an adapted



form of contrastive loss [4] that penalizes the distance of users within the same
cascades and the closeness of users in different cascades.

2.3 Capturing the diffusion memory

To encode temporal relationship within Hc
<t we use recurrent neural networks

(RNNs). An RNN is a recursive structure that, at the current step, gets as input
the previous network state (the outputs form the hidden units) along with the
current input to compute a new state. The following picture provides an overview
of a simple RNN cast to our context.

hkhk hk+1hk+1hk�1hk�1

time

f(tk, uk)f(tk, uk) f(tk+1, uk+1)f(tk+1, uk+1)

ekek ek+1ek+1

At each step k, we feed into the network an event (tk, uk) ∈ Hc that encodes
the current user (uk) and its activation time (tk). The learned hidden state (hk)
represents the non-linear dependency between these components and past events,
which can be used to model f(tk, uk|Hc

<tk
). In the following, we adopt the LSTM

instantiation of the RNN framework [5]. The idea of an LSTM unit is to reliably
transmitting important information many time steps into the future. At every
time step, the unit modifies the internal status by deciding which part to keep
or replace with new information coming from the current input. In the following
we shall use the shortcut hk = LSTM(zk,hk−1) to denote a basic functional
architecture that elaborates an input zk and outputs the updated state.

3 PATH: Predicting User Activation from a Horizon

We now introduce PATH (Predicting User Activation from a Horizon), which fo-
cuses on simplifying f(t, u|Hc

<t) as the binary response function I(t ≤ Th|u,Hc
<t)

that denotes whether u becomes active in c within Th. We focus on events
(tk, uk) ∈ Hc and consider as an additional feature the time delay δk = tk− tk−1
relative to the previous activation within the cascade. This allows us to capture
the property that cascades may have intrinsically different diffusion speeds caus-
ing some of them to concentrate users’ activations in a short timeframe while



others in a more extended interval. In what follows we consider a cascade Hc

enhanced with information about time delays, that is, Hc = {(tk, uk, δk)1≤k≤mc
.

Given a partially observed cascade Hc
<tl

(with tl < T c
h representing the timespan

of the observation window), our objective is to predict, for a given entity u 6∈ Uc
tl

,
whether u ∈ Uc

T c
h
. In order to uncover all the characteristics of the activations

within cascades, we consider a model built on all possible prefixes of the available
cascades.

In other words, for a given cascade c of length mc, we feed into the network
cascade prefixes starting from 2 elements until reaching mc− 1 elements. Notice
that, we do not consider the 1 element prefix, which we assume becomes “spon-
taneously” active. Moreover, we also add negative examples as follows: for each
u 6∈ Uc, we associate the cascades Hc

≤tj ∪{(tj , u, δj)} (with 1 ≤ j ≤ mc− 1) and

Hc∪{(T c
h, u, (T

c
h− tmc))} with negative labels. Again, the intuition is that, since

u is not active no partial cascade provides the sufficient intensity to activate u
within the given time horizon.

Adding negative examples in the data preparation represent an effective data
augmentation process, which enlarges the training data by inferring new inputs
in the training set. This is crucial to let the approach better fine tune separation
between active and inactive users, as well as better characterize the true activa-
tion time of active users. Let TC denote the set of all pairs 〈Hc

≤ti , yi〉 that can be
built as described above. Our idea is to exploit the embedding and LSTM tools
described in the previous section to solve the supervised problem at hand.

Figure 1 illustrates the basic architecture of the model where arrows represent
inputs and boxes the elements of the architecture. The input layer (bottom part)
takes as input the user for which we want to predict the activation (un) along
with information about already active users represented by triples of the form
of (uk, tk, δk) and the network history (hk) (recurrent layer in the figure).

Given a pair 〈Hc
≤ti , yi〉 ∈ TC with |Hc

≤ti |=n and by considering (tk, uk, δk) ∈
Hc
≤ti (with 1 ≤ k ≤ n), the architecture of the network can be captured by the

following equations:

ak =Weuk (3.1)

hk =LSTM ([ak, tk, δk],hk−1) (3.2)

ŷi =σ (Wohn) (3.3)

ỹi = exp

−
∥∥∥∥∥an −

n−1∑
k=1

ak

∥∥∥∥∥
2
 (3.4)

In the output layer, ŷi represents the probability that yi is positive, as pro-
vided by the network: that is, it encodes the probability that un becomes active
within tn; ỹi encodes the affinity between un and all users preceding it within
Hc
≤ti . The distance ‖an−

∑n−1
k=1 ak‖ plays a crucial role here: since the target user

is on the tail of the cascade, the embedding should emphasize the similarities
with the predecessors that trigger an activation, and by the converse minimize
the similarities with those ones which do not trigger it.
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Fig. 1: Overview of the architecture of PATH.

The loss is a combination of cross-entropy and the embedding loss previously
described:

L =
∑

〈H,y〉∈TC
|H|=n

{y (γ log(ŷ) + β log ỹ) + (1− y) (γ log(1− ŷ) + β log(1− ỹ))}
(3.5)

where γ and β are weights balancing cross-entropy and embedding.

4 Experiments

We validate our approach by analysing the algorithm on real-life datasets. In
particular, we analyse the capability of the algorithm at predicting the activation
time of users within an information cascade. The implementation we use in the
experiments can be found at https://github.com/gmanco/PATH.

4.1 Datasets

We evaluated PATH by exploiting two real-world datasets containing propaga-
tion cascades crawled from the timelines of Twitter1 and Flixster.2 In particu-
lar, Twitter includes ∼32K nodes with ∼9K cascades while Flixster includes

1 http://www.twitter.com/
2 http://www.flixster.com/



∼2K nodes with ∼5K cascades. The propagation mechanism on Twitter is ex-
pressed by retweeting, in other words a chain of repetitions and transmissions
of a tweet from a set of users to their neighbors in a recursive process. Each
activation corresponds to a retweet. An activation in Flixster happens when a
user rates a movie, while a cascade is composed by all the activations related to
the same movie.

The two datasets differ essentially for the following characteristics: Twitter
includes a larger number of users and shorter delays than Flixster. In addition,
retweets intuitively highlight two relevant aspects, namely the importance of
the topic and the single influence of the individual from which the retweet is
performed. By contrast, movie ratings are more likely to exhibit a cumulative
effect: popular movies are more likely to be considered than unpopular ones.

4.2 Evaluation Methodology.

We evaluate PATH against two baseline models, both relying on Survival Anal-
ysis [6]. The first instantiation implements a Cox proportional hazard model
(CoxPh in the following). We implement the model using the lifelines3 pack-
age and extract, for each event (tk, uk, δk) ∈ Hc, the following features: (1) size
of the prefix; (2) last activation time; (3) average delay for each active user so
far; (4) number of neighbors in the history, and (5) coverage percentage of them
within the history; (6) the activation time of the most recent neighbor, if any;
(7) correlation between the activation of the current user an its neighbors within
the history, computed in previous cascades. This model represents an intuitive
baseline where features are manually engineered and include a mix of external in-
formation (coming from the underlying network neighborhood) and information
derived from the cascade itself.

The second instantiation is given by the Survival Factorization (SF in the
following) framework described in [1]. The comparison is important since SF
relies on the same guiding ideas of PATH (influence and susceptibility) with the
substantial difference that there is no cumulative effect of Hc

<tk
, but instead an

influential user has to be detected for each activation.

To evaluate the approaches, we proceed as follows: given training and test
sets Ctrain and Ctest , we train the model on Ctrain and measure the accuracy of
the predictions on Ctest . The two sets are obtained by randomly splitting the
original dataset by ensuring that there is no overlap among the cascades of the
two sets, but there is no entity in the test that has not been observed in the
training. We used 70% of data for training and 30% for testing.

For the evaluation, we chronologically split each cascade c ∈ Ctest into c1
and c2 such that, for each u ∈ c1 and v ∈ c2, we have that u ≺c v. Next, we
pick a random subsample c3 ⊆ U − Uc. Then, given a target horizon T c

h, we
measure TP, FP, TN and FN by feeding the models on c1 and then predicting
the activation within T c

h for each element in c2 ∪ c3.

3 see http://lifelines.readthedocs.io for details.
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Fig. 2: ROC Curves for PATH,CoxPh and SF on Flixster.

The choice of T c
h can follow different strategies; Fixed horizon (Fixed horizon

(FH): setting Th
c as the maximum observed activation time T test

h = max{t|t ∈
tc, c ∈ Ctest}; Variable horizon (VH): varying T c

h from the smallest to the largest
activation time and computing the activation probabilities associated to each
possible value; Actual Time (AT): a particular case of the VH strategy, where
T c
h , Tu,c

h is relative to the true activation time in c of each user u ∈ c2 ∪ c3.
In the experiments, we plot the ROC and the F-Measure curves relative to

the above alternatives and report the AUC and F values. Notice that, for PATH,
the encoding of sequences as described in section 3 already presumes that users
are evaluated on intermediate timestamps prior to their actual activation. Thus,
VH and AT roughly coincide in this case. Since both CoxPh and SF are capable
of inferring, for each (u,H) pair, the probability Su(t|Hc), the comparison with
PATH is accomplished by computing 1− Su(t̃|Hc) where t̃ is the above described
horizon timestamp.

The parameter space for PATH was explored by grid-search, measuring the
loss on a on a separate portion of the training set by 5-fold cross-validation. In
the following we report 5 different instantiations, which differ from the number of
cells in the LSTM (32/64), the dimensionality of the embedding (32/64) and the
batch size in the training (128/256/512). Concerning SF, the number of factors
was set to 16 for both datasets.

4.3 Evaluation Results

Figure 2 and Figure 3 report the ROC curves for the experiments. We can ob-
serve that PATH consistently outperforms the baselines and in particular exhibits
a very good accuracy on all configurations. This is especially true on Flixster,
where by the converse SF does not seem capable of correctly correlating previous
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Fig. 3: ROC Curves for PATH,CoxPh and SF on Twitter.

activations times. The cumulative influence effect is evident here, as a natural
consequence of the underlying domain where cascading effects are more likely as
a consequence of a “word of mouth” process. On Twitter, where the activation
is more likely due to the influence of a single user (as testified by the good per-
formance of SF), PATH still achieves the best scores, thus proving the capability
of the recurrent layer to adapt the influence to a single user.

Figure 4 (a) and (b) display the F-measure curves for varying values of the
threshold on the probabilities. Here, we can observe that, contrary to the base-
lines, higher thresholds do not cause a significant drop of the recall. The only
exception is CoxPh (FH), which seems more stable on Flixster. This is a clear
sign that the probabilities associated with active and inactive users in PATH dif-
fer substantially, and in particular active events are associated with significantly
higher probabilities than inactive events.

5 Concluding Remarks and Future Work

We focused on the problem of predicting user activations in a given time horizon
and show that the embedding of the user activation history, where users that
become active on the same cascades are placed close, can be effectively learned
via recurrent neural networks.

Experiments performed on real datasets show the effectiveness of the ap-
proach in accurately predicting next activations. In particular, it emerged that
that focusing on a time horizon is more effective than predicting actual activa-
tion times, and that the proposed network architecture successfully captures the
resulting classification capabilities. The network is capable of summarizing both
cumulative and separate influential effects, and moreover can predict based on
the properties based on the history.
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Fig. 4: F-Measure curves for PATH,CoxPh and SF on both datasets.

It is natural to wonder whether it is possible to cast the intuitions behind
our approach in a generative setting, to predict both which user is likely to
become active, and the time segment upon which s/he will become active. It
is also natural to wonder whether the basic ideas of survival analysis can be
cast within our framework, and whether it is possible to recover the distinction
between influence and susceptibility in the embedding proposed in the model.
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