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A Factorization Approach for Survival Analysis
on Diffusion Networks

Giuseppe Manco, Ettore Ritacco and Nicola Barbieri

Abstract—In this paper we propose a survival factorization framework that models information cascades by tying together social
influence patterns, topical structure and temporal dynamics. This is achieved through the introduction of a latent space which encodes:
(a) the relevance of an information cascade on a topic; (b) the topical authoritativeness and the susceptibility of each individual involved
in the information cascade, and (c) temporal topical patterns. By exploiting the cumulative properties of the survival function and of the
likelihood of the model on a given adoption log, which records the observed activation times of users and side-information for each
cascade, we show that the inference phase is linear in the number of users and in the number of adoptions. The evaluation on both
synthetic and real-world data shows the effectiveness of the model in detecting the interplay between topics and social influence
patterns, which ultimately provides high accuracy in predicting users activation times.

Index Terms—Social Influence, Information Diffusion, Social Network Analysis, Community Detection
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1 INTRODUCTION

Social network platforms provide sharing and reposting
functionalities that facilitate the diffusion of information

through the network, by enabling users to simultaneously
share information with their social peers and triggering a
cascade of adoptions. An information cascade is a social
process for adoptions, where the decision of each individual
depends on the decision of people who have adopted the
same content earlier. Such cascades have been identified in
settings such as blogging, e-mail, product recommendation,
and social Web platforms. The availability of large-scale,
time-resolved cascade data on the social Web allows the
study of interesting questions, such as: (i) How does in-
formation spread on networks? (ii) How far and fast does
information flow? (iii) What is the network structure upon
that allows the diffusion of information? (iv) How does the
network structure affect information flow (and viceversa)?
(v) How does the content being propagated affect the struc-
ture and shape of information cascades?

In this work we are mainly interested on the latter
research question. Understanding the structural, topical and
temporal dynamics of information cascades can provide
insights on the complex patterns that govern the informa-
tion propagation process and it can be used to forecast
future events. The problem of inferring the topical, temporal
and network properties that characterize an observed set of
information cascades is complicated by the fact that the dif-
fusion network, transmission rates and the topical structure
are hidden. In most cases of interests, we only observe users
activation times (e.g. the time at which a user re-shares a
tweet, purchases an item, etc.) and we are given some meta
information about the cascade (e.g. hashtags associated with
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a tweet, textual description for an item).
To infer the diffusion network and the topical structure

jointly, a natural approach is to model user’s activation
times as continuous random variables. Then, we can as-
sume that those variables are generated by a stochastic
process that depends on pairwise transmission rates λu,v
(which explains the influence exerted by user v on u) and
on the topical distribution of each information cascade.
A straightforward realization of such idea is to introduce
topical pairwise transmission rates λku,v , where k denotes
a topic index (see e.g. [30]). This approach has three main
drawbacks: it introduces a large number of parameters (and
hence prone to overfitting); the inference phase that does
not scale well; it may produce poor estimates if the episodes
of information propagation from v to u are limited.

To address these issues, in this paper we introduce a
stochastic model that factorizes pairwise transmission rates
in terms of general user authoritativeness and susceptibility
on a set of topics of interest. According to such a principle,
both the side-information and temporal dynamics observed
on a given information cascade are explained by 3 low-
dimensional latent factors that encode: (i) the topical au-
thority of each user Av,k, (ii) the topical susceptibility Su,k
and (iii) the relevance of side information w (e.g. hashtag)
on topic k, ϕw,k.

This framework draws from recent investigations [3],
[5], [24], which explain information propagation in terms of
authoritativeness and susceptibility. In particular, each user
exerts a degree of influence or susceptibility according to
a set of topics which also represent her interests. The par-
ticipation to an information cascade, referred in the next as
adoption or activation, can hence be explained as the effect of
such degrees of peers’ influence and user’s susceptibility on
the topic that best represents the content of the information
being propagated.

Notably, the computational complexity of the proposed
approach is linear in the number of users and in the size
of the adoption log (number of users who participated in
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the information cascade). The inference phase is based on
the above mentioned EM scheme for learning the model
parameters. By exploiting the properties of the underlying
propagation models, each iteration of the learning proce-
dure can be efficiently computed in at most three scans of
the adoption log.

The main contributions of this work can be summarized
as follows.

• We review previous studies on information diffusion
(Sec. 2) and briefly introduce a general framework
for modeling information diffusion cascade data via
survival analysis (Sec. 3.1).

• Next, we introduce a factorization model (Sec. 3.2)
that expresses topical pairwise transmission rates in
terms of user’s authority, susceptibility on topics of
interests, by coupling the topical content of a cascade
and the observed users activation times.

• We devise an expectation maximization algorithm
(Sec. 4) for learning the parameters of the model. By
fully exploiting the cumulative properties of the data
likelihood under the proposed model, each iteration
of the learning procedure can be efficiently computed
in at most three scans of the propagation log.

• We run an extensive evaluation (Sec. 5) on both
synthetic and real-world data. We assess the capabil-
ity of the model in detecting the interplay between
the topical structure and temporal dynamics, which
finally provides an accurate characterization of users’
behavior.

2 RELATED WORK

Starting from seminal studies [16], [21], [28], [33], the re-
search on information diffusion and influence propagation
has been mainly focused on determining how information
spreads across pairs of users, observing the social network
structure and the adoption log. A recent line of research [14],
[15] studies a different perspective, where the social net-
work is not given as input, and the problem is how to
uncover the hidden network structure starting from the log
of users activity. This problem is addressed by assuming that
infections follow a continuous-time independent cascade
model: active nodes try independently to activate inactive
peers and each node becomes active once the first parent
infects it. For example, in NetRate [14], if node u succeeds
in activating v, then the contagion of the latter happens after
an incubation period sampled from a chosen distribution.
The latter defines the conditional likelihood of transmission
between each pair of nodes and it actually depends on
the difference of their activation times. According to this
propagation model, the likelihood of a propagation cascade
can be formulated by applying standard survival analy-
sis [22], in terms of survival (which models the probability
that a node survives uninfected until a time T ) and hazard
functions (which models instantaneous infections). More
recent extensions of the diffusion process based on survival
analysis exploit non-parametric methods based on kernels
[11], or more sophisticated modeling through Poisson and
Hawkes processes [9], [19], [34].

A different line of research extends the diffusion process
discussed above by considering enhancements based on

features [29], or topics which characterize cascades [6], [10],
[17], [18], [30]. These models assume that the speed of the
diffusion process can depends on several factors, including
connections between nodes as well as other features char-
acterizing either the users or the cascades. In particular,
in the context of network reconstruction, the strength of
connections can depend on topical affinity between nodes
[10], [17], [30].

Recent works have also focused on alternative ways
of representing interactions between nodes, using latent-
dimensional embedding techniques. In [8] authors propose
a framework based on a heat diffusion process which projects
each node into a latent space where the proximity between a
pair of nodes reflects the proximity of their activations times
in the observed cascades. The embedding space models how
information diffuses and determines which users will be
contaminated by a particular content, given the identity
of the source node for the diffusion and the features that
characterize the information being diffused.

The approaches described so far do not explicitly con-
sider the diffusion process as a result of the interaction be-
tween influence and susceptibility. In [4], [6], the probability
of activation is modeled as the effect of the influence of
neighbor nodes within the cascades and/or the network.
Furthermore, the approaches [3], [31] propose factorization
techniques which associate two low-dimensional vectors to
each node, representing influence and susceptibility. The
propagation probability that one user forwards information
depends on the product of her activated neighbors’ influ-
ence vectors and her own susceptibility vector. The draw-
back of these approaches is that they only model cascades
in a discrete-time scenario.

Table 1 compares the approach proposed in this work
and some paradigmatic approaches mentioned above, by
considering the following dimensions: modeling of time
(continuous vs. discrete), whether they require as input
the underlying network, complexity of the inference phase,
modeling of side information, whether they are able to de-
tect clustering structure. By denoting withN ,M the number
of nodes and cascades, we can see that all methods based
on pairwise transmission rates suffer from the drawback
of quadratic complexity in the learning phase. Thus, they
do not scale to a large number of users and cascades. In
the experiments in Section 5 we use NetRate as baseline to
evaluate the capabilities of our approach.

By contrast, linear methods only model discrete time,
and they do not necessarily model side information. To the
best of our knowledge, our method is the only capable of
combining the advantages of linear complexity and com-
prehensive modeling of temporal dynamics.

3 MODELING INFORMATION DIFFUSION

3.1 Background

Notation. A cascade represents the propagation of a piece
of information (e.g. news, post, meme, etc.) over a set
of nodes (e.g., users of the system). We can specify each
cascade as the activation times of a set of nodes V with
cardinality N (i.e., |V| = N ). Formally, tc can be represented
as a N -dimensional vector tc = (t1(c), · · · , tN (c)), where
tu(c) ∈ [0, T c]∪{∞} represents the timestamp at which the
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Time Req. Network Inference Side Info Clustering
NetRate [14] contin. no O(N2) no no
MONET [29] contin. yes O(N2) nodes no
MMRate [30] contin. no O(N2) no cascades

CSDK [8] contin. no O(NM) cascades no
LIS [31] discrete no O(N2) no no
AIR [4] discrete yes O(N) cascades nodes

CCN [3] discrete yes O(N) no nodes
CWN [6] both no O(N) no nodes

Our method contin. no O(N) cascades cascades

TABLE 1: Comparison of the proposed method to the state of
the art.

node u becomes active on the cascade tc. For instance, if
each cascade refers to the propagation of a meme, tu(c) will
represent the timestamp at which user u re-posted meme c.
Without loss of generality, we can assume that each cascade
starts at timestamp 0; moreover, tu(c) =∞ encodes the fact
that the node u has not been infected during the observation
window [0, T c]. Let V+(c) denote the set of active nodes on
the cascade c (i.e., tu(c) 6= ∞), while V−(c) = V \ V+(c)
denotes the set of inactive nodes. The term Nc denotes the
size of V+(c).
Let wc denote side information on the cascade c. We
represent such information as a bag-of-words wc =
{w1, · · · , wlen(c)}, where each wi is a word from a dictio-
nary W and len(c) is the number of words associated with
the cascade c.
Finally, let C = {(t1,w1) · · · (tM ,wM )} denote a collection
of M cascades over V .

Propagation model. In our setting, we assume that (i) an
event can trigger further events in the future, within the
same cascade; (ii) events in different cascades are inde-
pendent from each other. That is, a node v can trigger
the activation of a node u on cascade c if and only if
tv(c) < tu(c). Hence, each cascade tc defines a directed-
acyclic graph, where paru(c) = {v ∈ V : tv(c) < tu(c)}. In
the following we will use the notation v ≺c u to represent
that v is a potential influencer for the activation of u within
the cascade c, i.e. v ∈ paru(c).

Similar to the Independent Cascade model [21], we
assume that nodes’ activations are binary (either active or
inactive), progressive ( an active node cannot turn inactive in
the future) and all the parents try to infect their child nodes
independently. Based on such assumptions, we can model
each cascade by expressing the likelihood of activation times
for active nodes and the likelihood that the adoption did not
happen by time T c for inactive nodes, according to a chosen
propagation model.

Survival analysis for diffusion cascades. Let T denote
a non-negative random variable representing the time of
occurrence on an event. We can assume that for each pair
of nodes (v, u) such that v triggered u’s activation within
the considered cascade c, there is a dependency between
the respective activation times. Following [14], we formalize
such dependency by introducing a conditional pairwise
transmission likelihood f (tu(c)|tv(c), λv,u) which depends
on the delay ∆c

u,v = tu(c) − tv(c) between activation times
and on the transmission rate λv,u. Then, the likelihood
of observing the activation times within a cascade can be

formulated by applying a survival analysis framework [14]:

Pr(tc|Θ) =
∏

u∈V−(c)

∏
v∈V+(c)

S(T c − tv(c);λv,u)·

∏
u∈V+(c)

∏
v≺cu

S(∆c
u,v;λv,u) ·

∑
v′≺cu

h(∆c
u,v′ ;λv′,u),

(1)

where the survival function S(t − t′;λ) = Pr(T ≥ t|t′, λ) =
1−
∫ t
t′ f(x|t′, λ)dx encodes the probability that an event does

not occur by time t and the hazard function h(t − t′|λ) =
f(t|t′,λ)
S(t−t′|λ) is the rate of instantaneous infection at time t.
Similarly, let W denote a random variable over words inW ;
we can consider wc as a collection of len(c) i.i.d draws from
a distribution Φ overW :

Pr(wc|Φ) =
∏
w∈wc

Pr(w|Φ). (2)

In the following we will build upon such a basic model
and propose a factorization technique for jointly modeling
temporal dynamics and side information that characterize
each cascade.

3.2 Factorization Model

We start from the idea that the temporal dynamics, govern-
ing the activations of each node within observed cascades,
depend on a set of hidden topics. The propagation of a piece
of information depends inherently on its content and on
pairwise transmission that are topic-dependent. The goal
of our framework is to jointly factorize activation times
and side information about each cascade to detect a finite
set of K topics (where K is given as input), representing
both a diffusion pattern and thematic information about the
content.

This setting presents two challenges. First, in many prac-
tical scenarios we observe only node activations within a
cascade, with no knowledge about what (or who) triggered
them. Secondly, we observe side information and activation
times of nodes within a set of cascades, but both the topical-
structure and the relationships between topics and pairwise
transmission rates are hidden.

To infer hidden topics and diffusion patterns we will
introduce a generative process. As aforesaid, C is governed
by a mixture of K underlying topics. Such a mixture is
specified by introducing binary random variables zc,k which
denote the membership of the cascade within each topic,
with the constraint

∑K
k=1 zc,k = 1. Let Z denote the overall

M × K hidden topic assignments matrix. We characterize
each topic k with the following 3 non-negative components:

• Au,k, the authority degree of node u (i.e. tendency of
triggering the activation of other nodes);

• Su,k, the susceptibility degree of node u (i.e., ten-
dency of being influenced by other nodes);

• ϕw,k, the relevance of word w.

Our factorization model is based on the assumption
that the pairwise transmission rates within topic k can be
factorized as a linear combination of users’ authority and
susceptibility components:

λv,u,k = Av,k · Su,k (3)
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Fig. 1: Graphical model of Survival Factorization.

The generation of a cascade unfolds as follows. First, we
pick a topic zc which specifies a topical-diffusion pattern,
by drawing upon a multinomial distribution over topics
Θ = {π1, . . . , πk}. Then, we adopt a Poisson language
model [25] to generate the side-information by drawing the
number of occurrences of each term w in the cascade c,
shorted as nw,c from a Poisson distribution governed by the
parameter set Φk = {ϕw,k}w∈W . Finally, the observed acti-
vation times within a cascade are generated according to a
survival model. A summary of the conditional dependencies
between latent and observed variables in our model is given
in Fig. 1 and discussed below.

The modeling of activation times for each node in the
cascade assumes that the delay between the influencer v
and the influenced u (tv(c) < tu(c)) is generated accord-
ingly to a Weibull distribution, whose scale parameter is the
transmission rate, while the shape ρ is fixed:

f(tu(c)|tv(c), λv,u,k) =Weib(∆c
u,v;λv,u,k, ρ). (4)

Here, Weib(t; ρ, λ) = ρλtρ−1e−λt
ρ

. Different choices of ρ
correspond to different assumptions about the hazard: the
hazard is rising if ρ > 1, constant if ρ = 1 (exponential
model), and declining if ρ < 1. The corresponding survival
and hazard functions are:

h(t;λ, ρ) = ρλtρ−1 , (5) S(t;λ, ρ) = e−λt
ρ

. (6)

As stated above, we only observe activation times but
not who triggered the activation. To model the hidden
influencer for the activation of each node uwithin a cascade,
we introduce latent binary variables ycu,v , with the constraint∑
v∈V y

c
u,v = 1. Let Y denote a M ×N ×N binary matrix,

where ycu,v = 1 represents the fact that node v triggered the
activation of node u in the cascade c. For each pair of users
u and v, the prior probability that ycu,v = 1 is governed by a
multinomial distribution Λ over all possible v’s.

In its general formulation, the model includes hyper-
parameters α, β, a, b,~c, ~d, where α and β are devised as
paramters of the Dirichlet distribution, and a, b and ~c, ~d
parameterize a Gamma distribution. These components can
model prior assumptions about the most likely values for
the parameters Θ,Λ,Φ,A and S. For example, one could
assume that the most active users are more likely to be

trigger activations and choose a β value that produces a
Λ skewed towards such users. In the rest of this section,
we simplify the model and devise uniform prior assump-
tions: for example, with reference to Λ, each each v has
equal chances of activating u. A more detailed treatment
of the whole model in a full bayesian setting is outlined in
section 4.1.
Given the status of the hidden variables Z and Y, we can
finally formalize the likelihood of observing the activation
times within a cascade c:

Pr(tc|Z,Y,A,S) =
∏
k

Pr(tc|Y,Ak,Sk)zc,k (7)

where:

Pr(tc|Y,Ak,Sk) =∏
u∈V−(c)

∏
v∈V+(c)

S(T c − tv(c);λv,u,k, ρ)

·
∏

u∈V+(c)

∏
v≺cu

h(∆c
u,v;λv,u,k, ρ)y

c
u,v · S(∆c

u,v;λv,u,k, ρ).

(8)
Finally, the overall likelihood of all cascades is

Pr({t1, · · · , tM}|Z,Y,A,S) =
M∏
c=1

Pr(tc|Z,Y,A,S) .

Compared to the modeling in eq. 1, the above model
exhibits two main differences. First, cascade are character-
ized by a topic which also governs the propagation rate.
Second, we explicitly model influencers by introducing the
Y matrix. In fact, eq. 7 is a refined extension of eq. 1, since
the latter can be obtained from the former by assuming
K = 1 and marginalizing over Y.

Likelihood of side-information. The probability of observ-
ing content wc under topic k is given by the probability of
observing the frequency count nw,c of each word. Within
the homogeneous Poisson model [25], this frequency under
topic k follows a Poisson distribution with parameter ϕw,k.
The latter is the expected number of occurrences of w in a
unit of time, and the time associated to the generation of
side-information wc is assumed to be |wc| = len(c). Thus,
according to this model, the likelihood of observing a bag-
of-words wc when the topic is k can be expressed as:

Pr(wc|Φk) =
∏
w

(|wc| · ϕw,k)nw,c exp{−|wc| · ϕw,k}
nw,c!

. (9)

Since each cascade is generated independently from each
other, the overall likelihood of side information over all cas-
cades, given hidden topic-assignment Z, can be expressed
as:

Pr({w1, · · · ,wM}|Φ,Z) =
M∏
c=1

∏
k

Pr(wc|Φk)zc,k .

4 INFERENCE AND PARAMETER ESTIMATION

Let Ξ = {A,S,Φ,Λ,Θ} denote the status of parameters of
the model. Given latent assignments Z and Y, the condi-
tional data likelihood is:

Pr(C|Z,Y,Ξ) = Pr({t1, · · · , tM}|Z,Y,Ξ)

· Pr({w1, · · · ,wM}|Z,Ξ) .
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Thus, the optimal values for Ξ can be obtained by optimiz-
ing the likelihood:

Pr(C,Ξ) =
∑
Z,Y

Pr(C|Z,Y,Ξ) Pr(Z,Y,Ξ) . (10)

Exact inference is intractable, and we have to resort to
heuristic optimization strategies. It turns out that the Ex-
pectation Maximization algorithm can be easily adapted for
estimating the optimal parameters. The log-likelihood of the
observed cascades can be written as

L(Ξ; C) = log
∑
Z,Y

Pr(C|Z,Y,Ξ) Pr(Z,Y|Ξ)

≥
∑
Z,Y

q(Z,Y) log
Pr(C,Z,Y|Ξ)

q(Z,Y)
= Q(q; C,Ξ),

where q is an arbitrary instrumental distribution over the
latent variables. It can be shown [7] that the lower bound is
tight for the exact posterior, i.e.,

arg max
q(Z,Y)

Q(q; C,Ξ) = Pr(Z,Y|C,Ξ).

Hence, the log-likelihood can be maximized iteratively in
the usual EM setting by computing the variational approxi-
mations given by the following two steps:

E step: estimate the posterior Pr(Z,Y|C,Ξ(n−1))
M step: exploit the posterior to solve

Ξ(n) = arg max
Ξ

∑
Z,Y

Pr(Z,Y|C,Ξ(n−1))

· log Pr(C,Z,Y,Ξ)

Both steps are tractable and the estimation produces closed
formulas. The details of the derivations can be found in
the appendix. In particular, for the E step the estimation
of Pr(Z,Y|C,Ξ(n)) can be decomposed into the specific
components, thus yielding

Pr(zc,k, y
c
u,v|tc,wc,Ξ) = ηkc,u,v · γc,k

where

ηkc,u,v =
h(∆c

u,v;λv,u,k, ρ)∑
v′≺cu h(∆c

u,v′ ;λv′,u,k, ρ)
, (11)

γc,k =
Pr(tc|Ak,Sk) Pr(wc|Φk)πk∑
k′ Pr(tc|Ak′ ,Sk′) Pr(wc|Φk′)πk′

. (12)

Here, γc,k represents the posterior probability that cascade
c is relative to topic k, and ηkc,u,v the posterior proba-
bility that the activation of u was triggered by v within
topic k. The component Pr(wc|Φk) is specified by equa-
tion 9, and Pr(tc|Ak,Sk) is obtained by marginalizing
Pr(tc|zc,Yc,A,S) in eq. 8 with respect to Y.

For the M step, by plugging η and γ into the expected
log-posterior we can solve the optimization step with re-
gards to all the available parameters. In particular, optimal
values for Θ and Φ can be obtained directly:

πk =
1

M

∑
c

γc,k (13) ϕw,k =

∑
c γc,knw,c∑
c γc,k|wc| (14)

Concerning A and S, the expected likelihood expresses an

Term Definition Term Definition

Ac,u,k

P
v�cu Av,k Sc,u,k

P
v�cu Sv,k

Ãc,u,k

P
v�cu tv(c)Av,k S̃c,u,k

P
v�cu tv(c)Sv,k

Ac,k

P
v2V+(c) Av,k Sc,k

P
v2V+(c) Sv,k

Ãc,k

P
v2V+(c) tv(c)Av,k S̃c,k

P
v2V+(c) tv(c)Sv,k

Rc,u,k

P
v2V+(c)

u�cv

(Ac,v,k)�1
Sk

P
v Sv,k

R̃c,v,k

P
u2V+(c)

v�cu

tu(c)
⇣

tu(c)Ac,u,k � Ãc.u,k

⌘�1

Lc,k

P
v2V+(c) log Sv,k

Table 2: Counters on the cascades.

Su,k =

P
c:u2V+(c) �c,k

P
c:u2V+(c) �c,k

⇣
tu(c)Ac,u,k � Ãc,u,k

⌘
+

P
c:u2V�(c) �c,k

⇣
T cAc,k � Ãc,k

⌘ (4.8)

Av,k =
A

(n�1)
v,k

P
c:v2V+(c) �c,kRc,v,k

P
c:v2V+(c) �c,k

n
S̃c,k � S̃c,v,k + T c(Sk � Sc,k)� tv(c)(Sk � Sc,v,k)

o (4.9)

log Pr(t
c|Ak, Sk) =Lc,k � (Sk � Sc,k)(T

c
Ac,k � Ãc,k)

+
X

u2V+(c)

n
log Ac,u,k � Su,k (tu(c)Ac,u,k � Ãc,u,k)

o
(4.10)

Figure 2: Optimized estimations for the exponential distribution. All equations rely on counters defined in table 7.

Exponential Distribution

Su,k =

P
c:u2V+(c) �c,k

P
c:u2V+(c) �c,k

⇣
tu(c)Ac,u,k � Ãc,u,k

⌘
+

P
c:u2V�(c) �c,k

⇣
T cAc,k � Ãc,k

⌘ (4.8)

Av,k =
A

(n�1)
v,k

P
c:v2V+(c) �c,kRc,v,k

P
c:v2V+(c) �c,k

n
S̃c,k � S̃c,v,k + T c(Sk � Sc,k)� tv(c)(Sk � Sc,v,k)

o (4.9)

log Pr(t
c|Ak, Sk) =Lc,k � (Sk � Sc,k)(T

c
Ac,k � Ãc,k)

+
X

u2V+(c)

n
log Ac,u,k � Su,k (tu(c)Ac,u,k � Ãc,u,k)

o
(4.10)

Rayleigh Distribution

Su,k =

P
c:u2V+(c) �c,k

P
c:u2V+(c) �c,k

⇣
tu(c)2Ac,u,k + Âc,u,k � 2tu(c)Ãc,u,k

⌘
+

P
c:u2V�(c) �c,k

⇣
T 2

c Ac,k + Âc,k � 2TcÃc,k

⌘ (4.11)

Av,k =
A

(n�1)
v,k

P
c:v2V+(c) �c,k

⇣
R̃c,v,k � R̂c,v,k

⌘

P
c:v2V+(c) �c,k

n
Ŝc,k � Ŝc,v,k + tv(c)2 (Sc,k � Sc,v,k)� 2tv(c)

⇣
S̃c,k � S̃c,v,k

⌘
+ (Tc � tv(c))2 (Sk � Sc,k)

o (4.12)

log Pr(t
c|Ak, Sk) =Lc,k � (Sk � Sc,k)

⇣
T

2
c Ac,k + Âc,k � 2TcÃc,k

⌘

+
X

u2V+(c)

n
log

⇣
tu(c)Ac,u,k � Ãc,u,k

⌘
�

⇣
tu(c)

2
Ac,u,k + Âc,u,k � 2tu(c)Ãc,u,k

⌘o
(4.13)

Figure 2: Optimized estimations for the exponential and the Rayleigh distributions. All equations rely on counters defined in table 2.

Term Definition Term Definition

Ac,u,k

P
v�cu Av,k Sc,u,k

P
v�cu Sv,k

Ãc,u,k

P
v�cu tv(c)Av,k S̃c,u,k

P
v�cu tv(c)Sv,k

Âc,u,k

P
v�cu tv(c)2Av,k Ŝc,u,k

P
v�cu tv(c)2Sv,k

Ac,k

P
v2V+(c) Av,k Sc,k

P
v2V+(c) Sv,k

Ãc,k

P
v2V+(c) tv(c)Av,k S̃c,k

P
v2V+(c) tv(c)Sv,k

Âc,k

P
v2V+(c) tv(c)2Av,k Ŝc,k

P
v2V+(c) tv(c)2Sv,k

Rc,u,k

P
v2V+(c)

u�cv

(Ac,v,k)�1
Sk

P
v Sv,k

R̂c,v,k

P
u2V+(c)

v�cu

⇣
tu(c)Ac,u,k � Ãc.u,k

⌘�1

Lc,k

P
v2V+(c) log Sv,k

R̃c,v,k

P
u2V+(c)

v�cu

tu(c)
⇣

tu(c)Ac,u,k � Ãc.u,k

⌘�1

TABLE 2: Counters on the cascades.

for example, assume that user v1 activates at time tv1 = 1,
user v2 at time tv2 = 100 and user u at time tu = 101.
Also, assume that Av1,k = 2, Av2,k = 1 and Su,k = 1. By
virtue of the definition of �, the influencer would be v1, but
the delay tu� tv1 would be extremely unlikely according to
the given parameters.

This bias does not hold for the Rayleigh distribution, for
which the �k

c,u,v includes the delay, �k
c,u,v =

Av,k�
c
u,vP

v�u Av,k�c
u,v

,
thus recovering the time dependency in the detection of the
influencer.

5. Experiments

In this section we report an experimental analysis aimed
at assessing the effectiveness of the proposed framework.
The evaluation is focused on the following aspects: (1)
Investigate the conditions upon which the proposed method
can actually detect authoritativeness and suceptibility from
propagation logs; (2) Evaluate proposed models under two
different prediction scenarios: (i) predicting which nodes
are more likely to become active given a partally observed
cascade and (ii) inferring the underlying propagation net-
work among nodes; (3) Assess the adequacy of the model

Table 3: Counters on the cascades.

S1 S2 S3 S4

Communities 9 7 11 6

Activations 215,608 275,633 171,501 313,972

Median activations/cascade 86 139 73 127

Median activations/user 220 276 173 314

Min activations/user 192 250 145 231

Table 4: Statistics for the synthesized cascades.

[9]: given a training and test sets Ctrain and Ctest of cascades,
we train the model on Ctrain and measure the accuracy of the
predictions on Ctest.

2 We chronologically split each cascade
c 2 Ctest into c1 and c2 (for each u 2 c1 and v 2 c2, tu(c) <
tv(c)) and pick a random subset c3 of vertices that did not
partecipate to corresponding cascade. We use c1 to predict
the most likely topic k by exploiting Eq. 4.3. Then, given a
target delay horizon T , for each user in c2 [ c3 we compute
�u = minv2c1 (Av,kSu,k)�1. The prediction on u is counted
as true positive (TP) if �u < T and u 2 c2; true negative
(TP) if �u > T and u 2 c3; false positive (FP) if �u < T and
u 2 c3; and false negative (FN) if �u > T and u 2 c2. By
varying the delay threshold T , we can evaluate the accuracy
in predicting the likelihood of activation of susceptible nodes
in the test set.

In our experiments we set a 90:10 training/test propor-
tion and vary the chronological split proportion from 50%
to 80%. The results of the experiments, reported in fig. 3,
show thathe proposed method is e↵ective in predicting ac-
tivation behaviour even when the propagation happens on
networks with an overlapping community structure. The
best performances are achieved on the network S3, despite
the fact that some communities are strongly interconnected.
A possible explanation is the higher number of communi-
ties exhibited by the dataset, which also makes the cascades
shorter and the co-occurrence of nodes less likely in cascades
where they are not susceptible/authoritative.

Cascade classification. In a second set of experiments,

2The two sets are obtained by randomly splitting the origi-
nal dataset by ensuring that there is no overlap among the
cascades of the two sets, but there is no vertex in the test
that has not been observed in the training.

TABLE 2: Counters on the cascades.

Su,k =

∑
c:u∈V+(c) γc,k

S̄u,k
(17)

where

S̄u,k =
∑

c:u∈V+(c)

γc,k

(
tu(c)Ac,u,k − Ãc,u,k

)

+
∑

c:u∈V−(c)

γc,k

(
T
c
Ac,k − Ãc,k

)

Av,k =
A

(n−1)
v,k

∑
c:v∈V+(c) γc,kRc,v,k∑

c:v∈V+(c) γc,kĀv,k,c
(18)

where

Āv,k,c = S̃c,k − S̃c,v,k + T
c
(Sk − Sc,k)− tv(c)(Sk − Sc,v,k)

log Pr(t
c|Ak,Sk) = Lc,k − (Sk − Sc,k)(T

c
Ac,k − Ãc,k)

+
∑

u∈V+(c)

{
logAc,u,k − Su,k (tu(c)Ac,u,k − Ãc,u,k)

}

(19)

Fig. 2: Optimized estimations for the exponential distribution.
All equations rely on counters defined in table 2.

interdependency which can be resolved by block coordinate
ascent optimization:

Su,k =

∑
c:u∈V+(c) γc,k∑M

c=1

∑
v≺cu γc,k · (∆c

u,v)
ρ ·Av,k

(15)

Av,k =

∑
c:v∈V+(c)

∑
u∈V+(c)
v≺cu

ηkc;u,v · γc,k∑
c:v∈V+(c)

∑
u γc,k · (∆c

u,v)
ρ · Su,k

(16)

We deliberately choose not to optimize the ρ parameter,
and to investigate the case ρ = 1. In such a case, in fact, the
above equations can be further simplified and are amenable
an efficient implementation as described in the following
section. Similar results also hold for the case ρ = 2.

Scaling up the estimation
When ρ = 1, the Weibull distribution simplifies to an

exponential distribution. In such a case, we can introduce
the counters described in table 2 and rewrite the update
equations for A and S as shown in figure 2. Notice that,
in this new formulation, ηku,v does not need to be explicitly
computed. In fact, it is decomposed within the update equa-
tion of Av,k, by resorting to a previous value of the same
variable and the Rc,u,k counter (see appendix for details).
Algorithm 1 describes the overall procedure for estimating
the parameters.
Theorem 1. Algorithm 1 has complexity O(

∑
cNc logNc +

nK(N +W +
∑
cNc)) time (where n is the total number
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Algorithm 1 Optimized Survival Factorization EM
Require: C, the number of latent features K
Ensure: matrices A, S and Φ
1: Randomly initialization for A, S, Φ;
2: Compute all counters of table 2;
3: n← 0
4: while Increment in Likelihood is negligible do
5: for all cascades c and topic k do
6: Compute γc,k exploiting log Pr(tc|Ak,Sk) as defined in Eq. 19;
7: end for
8: for all topic k do
9: Update πk according to Eq. 13;

10: for all users u do
11: Compute Su,k according to Eq. 17;
12: end for
13: Update all counters relative to S as defined in table 2;
14: for all users u do
15: Compute Au,k according to Eq. 18;
16: end for
17: Update counters relative to A as defined in table 2;
18: for all words w do
19: Compute φw,k according to Eq. 14;
20: end for
21: end for
22: n← n+ 1
23: end while

of iterations) and O(KN) space.

PROOF. See appendix.

4.1 Full Bayesian Inference

With reference of the general model depicted in fig. 1,
it is possible to devise a more general inference proce-
dure, based on the marginal distribution Pr(C|H), with
H = {α, β, a, b,~c, ~d}:

Pr(C|H) =

∫
Ξ

∑
Z,Y

Pr(C|Z,Y,Ξ) Pr(Z,Y,Ξ|H) dΞ

The marginal distribution is useful in several respects in-
cluding model comparison via Bayes factors, or more general
inference.

We choose to express priors for Θ and Λ by means of
Dirichlet distributions (parameterized by α and β, respec-
tively), Analogously, the priors relative to A,S and Φ are
expressed by Gamma distributions (parameterized by a, b
and ~c, ~d, respectively).

The conjugacy property (Gamma to both the Weibull
and the Poisson distributions, and Dirichlet to multinomial
distribution) allows us to approximate the above marginal
by exploiting collapsed Gibbs Sampling [7], based on the
Markov chain {Z,Y,A,S,Φ}. In fact, given a status of the
Markov chain, we can express the full conditionals in closed
form and hence device sampling based on such conditionals.

• Concerning A, we have

Au,k|Rest ∼ G
(∑

v

∑
c

zc,ky
c
u,v + a,

∑
c:u∈V+(c)

∑
v:u≺cv

zc,k(∆c
v,u)ρSv,k + b


(20)

• Concerning S,

Su,k|Rest ∼ G
(∑

v

∑
c

zc,ky
c
u,v + a,

M∑
c=1

zc,k
∑

c:v≺cu
Av,k(∆c

u,v)
ρ + b

) (21)

• Concerning φw,k we have

ϕw,k|Rest ∼ G
(∑

c

zc,k(len(c)− 1)

+
∑
c

zc,knw,c + cw,
∑
c:zc=k
w∈wc

|w|c + dw

 .

(22)

• Concerning zc,k, we have

Pr(zc,k|Rest) ∝ Pr(tc|Ak,Sk)

· Pr(wc|Φk) ·
∑
c′ 6=c

zc′,k + αk

 (23)

• Finally, concerning ycu,v , we have

Pr(ycu,v|zc,k,Rest) ∝ (∆c
u,v)

ρAv,kSu,k

·
∑
c′ 6=c

zc′,ky
c
u,v + βv

 .
(24)

Notice that, when sampling A and S, the parameters of the
Gamma distributions are amenable the same optimization
discussed in the previous section, for the cases ρ = 1, 2.
Thus, each sampling step can be computed linearly in the
size of the cascades and the number of nodes.

Finally, given a state of the Markov chain, it is possible
to devise a procedure for estimating the optimal hyper
parameters H, e.g. by resorting to the techniques described
in [26], [27].

5 EVALUATION

The following experimental evaluation aims at investigating
the following aspects:

1) Determine the conditions upon which the proposed
method can correctly detect authoritativeness and
susceptibility from propagation logs;

2) Evaluate the proposed models under two different
prediction scenarios: (i) given a partially observed
cascade, predict which nodes are more likely to
become active within a fixed time window and
(ii) inferring the underlying propagation network
among nodes;

3) Assess the adequacy of the model at fitting real-
world data and at identifying topical diffusion pat-
terns.

To perform such analyses we rely on both synthetic and
real data, as reported below. The implementation we used
in the experiments can be found at http://github.com/
gmanco/SurvivalFactorization.
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(a) µ = 0.001 (b) µ = 0.01 (c) µ = 0.05 (d) µ = 0.1

Fig. 3: Synthetic networks generated according to different
values of µ.

5.1 Synthetic data

The first set of experiments is conducted in a controlled
environment. We artificially generate the cascades by hy-
pothesizing a diffusion process and measure the goodness-
of-fit of the algorithm to the underlying process. The use
of synthetic data allows us to specify a ground truth, i.e.,
predefined structures that we aim at inferring.

We base the generation on the assumption (studied, e.g.,
in [32]) that vertices are connected and the diffusion of
information happens through the links of the underlying
network. Thus, to generate synthesized data, we proceed in
three steps. The first step is to generate networks with a
known community structure by varying connectivity struc-
ture of the network. To this aim, we borrow the synthetic
networks studied in [6].

The process of network generation is controlled by five
parameters: (i) number of nodes (1k); (ii) average in-degree
(10); (iii) maximum in-degree (150); (iv) min/max size of
each community (50/750); (v) percentage µ of overlapping
memberships (0.001, 0.01, 0.05, 0.1). This last parameter af-
fects the overall connectivity structure of the network, which
ranges from well-separated (but still connected) compo-
nents to strongly overlapping, as shown in fig. 3.

Given a network G = (V,E), we next generate syn-
thetic propagation cascades by simulating a propagation
process which spreads over E. The process generates |I|
propagation traces according to the following protocol.
The degree of authoritativeness and susceptibility of each
node in each community depend on its connectivity pat-
tern. If the node u belongs to community k the values
Au,k and Su,k are sampled from lognormal distributions
with means p · indegree(u)

maxv indegree(v) + (1 − p) · rand(0.1, 1) and

p · (1− outdegree(u)
maxv outdegree(v) ) + (1− p) · rand(0.1, 1) respectively.

For all the remaining communities h 6= k, the values for
Au,h and Su,h are randomly sampled within a uniform
range lower than Au,k (Su,k) by an order of magnitude.

The propagation cascades are generated exploiting A
and S: for each cascade to generate, we randomly sample
a topic k and a maximal propagation horizon Tmax. Then,
we sample an initial node v with probability proportional
to Av,k. From this node we start the subsequent diffusion
process. Given an active node u and a neighbor v, we
sample a hypothetical infection time tu,v using tv and the
rate Au,k ·Sv,k. Node v then becomes active if there exist an
influencer u such that tu,v < Tmax.

Finally, for each cascade we generate the content. For
each topic k, we generate ϕw,k randomly and then draw
word-frequencies according to the Poisson model and to

S1 S2 S3 S4

Communities 9 7 11 6
Activations 215,608 275,633 171,501 313,972
Median activations/cascade 86 139 73 127
Median activations/user 220 276 173 314
Min activations/user 192 250 145 231

TABLE 3: Statistics for the synthesized cascades.

the topic of the cascade. The size of the content is fixed
arbitrarily to 1024 words.

In the following experiments, we set p = 0.9, |I| = 2, 048
and run the generation of cascades on 4 networks, with
different degrees of overlapping. The main properties of the
synthesized data are summarized in Table 3.

Predicting activation times. The first experiment is meant
to evaluate the accuracy in estimating the activation times.
Given a training and test sets Ctrain and Ctest of cascades, we
train the model on Ctrain and measure the accuracy of the
predictions on Ctest.1 We chronologically split each cascade
c ∈ Ctest into c1 and c2 (for each u ∈ c1 and v ∈ c2, tu(c) <
tv(c)) and pick a random subset c3 of vertices that did not
participate to corresponding cascade. We use c1 to predict
the most likely topic k by exploiting Eq. 12. Then, for each
user in c2 ∪ c3 we compute δu = minv∈c1 (Av,kSu,k)

−1.
We set a 90:10 training/test proportion and vary the

chronological split proportion from 50% to 80%. Given a
target delay horizon H , the prediction on u is considered as:
true positive (TP) if δu < H and u ∈ c2; true negative (TN)
if δu > H and u ∈ c3; false positive (FP) if δu < H and
u ∈ c3; and false negative (FN) if δu > H and u ∈ c2. By
varying H , we can plot ROC and F curves.

The results of the experiments, reported in Fig. 4, show
that the proposed method is effective in predicting acti-
vation behavior even when the propagation happens on
networks with an overlapping community structure. The
best performances are achieved on the network S3, despite
the fact that some communities are strongly interconnected.
A possible explanation is the higher number of communities
in the dataset, which also makes cascades shorter and the
co-occurrence of nodes less likely in cascades where they
are not susceptible/authoritative.

Network reconstruction. The purpose of this experiment is
to evaluate whether connectivity patterns between users can
be inferred by the susceptibility and influence matrices. We
express the likelihood of the existence of the link u → v as
λu,v =

∑
k Su,k · Av,k. When reconstructing the network,

we consider all pairs of users which exhibit a connection as
positive examples. For the negative examples, we focus on
two-hops non-existing links [2].

We compare the proposed algorithm with the standard
NetRate benchmark [14] described in section 2. NetRate
learns a higher number of parameters ( O(N2), compared to
O(NK) for our model). Thus, it is in principle more prone
to overfitting. However, since the estimation in NetRate
is accomplished through global optimization, it does not

1. The two sets are obtained by randomly splitting the original
dataset by ensuring that there is no overlap among the cascades of the
two sets, but there is no vertex in the test that has not been observed in
the training.
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Fig. 4: Evaluation on the Synthetic Datasets. The rows report
splits from 50% to 80%. The columns report respectively AUC,
Precision/Recall, and F-measure/threshold on activation delay.

Roc Curve (Synthetic Data)

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

S_1 (9 Topics, AUC = 0.642)
S_2 (7 Topics, AUC = 0.653)
S_3 (11 Topics, AUC = 0.690)
S_4 (6 Topics, AUC = 0.709)
S_1 (Netrate, AUC = 0.798)
S_2 (Netrate, AUC = 0.823)
S_3 (Netrate, AUC = 0.794)
S_4 (Netrate, AUC = 0.809)

Fig. 5: Network reconstruction on Synthetic Datasets.

explicitly computes, for each activation, the most likely
influencer. As a consequence, it does not suffer from a
specific bias occurring with our model, where the most
likely influencer dominates the likelihood of links. This is
visible in fig. 5, where NetRate exhibits a higher accuracy in
predicting links. Notwithstanding, our model is still capable
of achieving sufficient accuracy in inferring the connectivity.

Cascade clustering. In this set of experiments, we evaluate
the capability of the algorithm at detecting the correct topic
for each cascade, based on the hypothesized survival fac-
torization model. Since the synthetic data contains ground
truth, it is possible to evaluate the true cascade assignments
with the assignments that can be obtained from the final
γc,k. We measure the quality of the discovered assignments

S1 S2 S3 S4

F-measure 0.74 0.70 0.80 0.74
ARI 0.61 0.56 0.64 0.58
NMI 0.55 0.43 0.64 0.38
χA 0.77 0.87 0.68 0.88
χS 0.64 0.49 0.24 0.54
χΦ 0.00045 0.0008 0.00097 0.001

TABLE 4: Evaluation of cascade clustering and matrix recon-
struction on synthetic data.

w.r.t. the known ground truth communities using the Ad-
justed Rand Index [20] (ARI), as well as the F-Measure
and the Normalized Mutual Information [1] (NMI). The
results are reported in Table 4. The algorithm achieves a
relatively good accuracy at separating cascades by topics.
Some topics tend to be mixed, probably as a result to the fact
that nodes are heavily connected. For example, for S1 we
observe 6 topics with regards to the 9 expected: the original
communities (3,5), (4,8) and (7,9) are mixed together.

Inference accuracy. To evaluate the effectiveness of the
learning algorithm, we compare the original A, S and Φ
matrices with those inferred. However, this setting presents
two issues, namely possible difference in scale and the
fact that the column components of these matrices can
be shuffled. We approach this problem by introducing a
measure which addresses both issues: given a matrix M
and its estimation M̃ , we define χM =

∑
k minh ‖M·,k −

αk,hM̃·,h‖2/‖M‖2, where each column k in the inferred
matrix M̃ is associated with the column h in the source
matrix M with minimal distance. 2 In this formulation the
term αk,h represents the scaling factor relative to columns
k and h, and it normalizes the differences to comparable
results. The optimal value for αk,h can be obtained by
solving arg minα ‖M·,k − αM̃·,h‖2 and thus yielding the
following closed formula for χ:

χM =
1

‖M‖2
∑
k

min
h

∑
u

M2
u,k −

(∑
uMu,kM̃u,h

)2

∑
u M̃

2
u,h


The values of χ for A, S and Φ are reported in Table 4.

The closest the values are to zero, the higher is the corre-
spondence between the matrices. These results show that
the estimation is faithful to the original values, with some
differences due to the occasional merging of topics.

Scalability. In the last set of experiments, we measure the
performance of algorithm. To this purpose, we generate
synthetic datasets following the same protocol described
above, but where the number of users and the number
of cascades differ. In particular, we adopt the parameter
µ = 0.01 and range the number of users from 1, 000 to

2. In principle two or more columns in the source matrix can be
associated with the same column h in the inferred matrix. Notice,
however, that by construction the source matrices we consider are
practically block-diagonal (with a block including a single column
and multiple rows). Thus, this situation can only happen if the target
column represents two or more topics: That is, when the target matrix
exhibits higher values on two or more topics, and there are no other
“pure” columns on those topics. We consider this a legit situation that
would nevertheless result in a larger distance between the target and
the source columns.
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N M Min/Med/Max Nc

1,000 907 5/64/195
5,000 3,279 5/148/335
10,000 5,696 5/128/341
50,000 57,438 5/132/1782
100,000 113,011 5/120/1949

TABLE 5: Synthetic data for increasing values of N and M .
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Fig. 6: Scalability analysis on synthetic.

100, 000, and the corresponding cascade sizes accordingly.
Table 5 reports the statistics for each generated datasets.
Figure 6, reports the running times for these datasets with
k = 16, as well as those for the first dataset, with varying
number of topics.

5.2 Real data

In this section, we assess the performances of the proposed
method on real data, from a quantitative and qualitative
perspective. First, we evaluate the accuracy of the model at
predicting when a user will retweet a post, and at inferring
the underlying network of diffusion (network reconstruc-
tion) on information cascades extracted from Twitter. Sec-
ondly, we analyze and discuss topical and diffusion patterns
inferred on the Memetracker dataset.

5.2.1 Twitter
The following analysis is based on a sample of real-world
propagation cascades crawled from the public timeline of
Twitter and studied in [3]. The propagation of information
on Twitter happens by retweet and in this dataset tracks the
propagation of URLs over the Twitter network during a pe-
riod of one month (July 2012). Each activation/adoption cor-
responds to the instance when a user tweets a certain URL.
Note that this dataset does not provide side-information
(e.g. hashtags associated to each tweet, or the actual URL
being shared). The relevant features of the dataset, called
Twitter-Large, can be observed in Fig. 7. We also select a
subset of the dataset by considering users who participated
in at least 15 cascades and retweet cascades that involved
at least 5 users. We refer to this dataset as Twitter-Small.
A summary of the properties of both datasets is shown in
Table 6.

Predicting activation times. We apply the testing protocol
detailed in Sec. 5.1 on the Twitter datasets for predicting
users retweet times, by varying the training/test chrono-
logical splits (from 50% to 80%). Results, reported in Fig.
8 and Fig. 9, show that the model achieves high accuracy
in predicting which are the users more likely to become

Twitter-Large Twitter-Small

Nodes 28,585 6,030
Edges 1,636,451 259,568
Activations 516,412 187,941
Cascades 8,541 3,983
Max Delay 2,380,651 2,141,136
Avg Delay 36,775 50,117
Median activations/cascade 18 17
Median activations/user 15 26
Min activations/cascade 1 7
Min activations/user 11 15

TABLE 6: Summary of the Twitter data used for evaluation.
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Fig. 7: Distributions within the Twitter-Large dataset.

active on each cascade within the prediction window. The
prediction accuracy is higher on Twitter-Small. This result
is compatible with the intuition that the inference works
better when the focus is on users who actively participate
into cascades. Finally, like in the case of synthesized data,
the accuracy is not affected by the size of the cascade used
for inferring the optimal topic.

Network reconstruction. We also report the results on net-
work reconstruction for real data. The results of this test
are shown in Fig. 10. The best AUC value on Twitter-small
is 0.7, obtained by by employing 4 topics, and it is 31%
improvement over the accuracy achieved by NetRate. While
NetRate took roughly 27 days to execute, our method con-
verges in about 6 minutes. Also, the effects of overfitting for
NetRate can be clearly seen, as the latter does not replicate
the positive results obtained on synthesized data. A large
number of users results in a too sparse influence matrix
and consequently a poor estimation of the connectivity
u → v, which instead can be more accurately reconstructed
by resorting to factorization.

On Twitter-Large the best AUC achieved is 0.595, by
employing 2 topics. The learning algorithm converges in
about 89 minutes. Due to time constraints it was not possible
to run NetRate over this dataset. The better AUC of Twitter-
Small over Twitter-Large can be explained by the more
active participation of users within cascades (see statistics
in Table 6 and fig. 7). These represent users which, albeit
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Fig. 8: Activation time prediction on Twitter-Large.
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Fig. 9: Activation time prediction on Twitter-Small.

Fig. 10: Evaluation on network reconstruction on Twitter-Large
(left) and Twitter-Small (right).

exhibiting following relationships do not retweet any infor-
mation. For these nodes the transmission rates are low, and
as a consequence the prediction is biased.

Analysis. That said, the learning process is still capable
of detecting a clear structure within the propagation pro-
cess. In fact, a closer look at the matrices produced by
the algorithm shows an evident block-diagonal structure.
Within figure 11, we cluster the nodes according to the topic
k corresponding to the highest value, and then plot the
matrices by permuting the rows accordingly. Interestingly,
each block exhibits a small number of authoritative users
compared to the susceptible ones.

Finally, fig. 12 report the learning times also for the real
datasets. We can see that on Twitter-Large, learning 64 topics
requires about 10 hours.

5.2.2 Memetracker

The evaluation on the Memetracker dataset [23] is aimed
at assessing the alignment between the topical and social
influence structure. This dataset tracks phrases and quotes
over online-news providers and blogs; textual variants of
the same phrase are clustered together and the dataset spec-
ifies each timestamp at which a particular blog mentioned
a phrase belonging to a phrase cluster. We consider each
phrase cluster as a separate cascade, the root-phrase as the
content being diffused and the hostname extracted from the
url of the blog as vertex identifier. In this case, an activation
within a information cascade represent the first timestamp
at which a given blog mentioned a phrase belonging to
the considered phrase cluster. The raw dataset was pre-
processed to filter out cascades with less than 10 activations
and with less than 10 words as content, and vertices that
belong to less than 10 cascades. This step resulted in a
dataset that contains 7k vertices and 28k cascades, while
the word dictionary contains 3.5k tokens, with an average
of 16 words for each cascade.

For the sake of presentation, we run the survival factor-
ization learning algorithm setting K = 8. Table 7 reports
the most relevant words for each topic, i.e. the words w
which exhibit the highest value of ϕw,k for each k, and our
interpretation of the topic is reported in the headings of the
table.

Next, we analyze each cascade and compute

• The most-likely topic as k̃c = arg maxk γc,k;
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TABLE 7: Most relevant terms for each topic on Memetracker.

• The most-likely cascade tree for each cascade T̃c by
computing the parent of each active node (excluding
the root) as par(u)c = arg maxv η

k̃c
c,u,v ;

Topic 1 (economy) Topic 2 (France/Germany)

businessweek.com
ft.com

pr−inside.com
prnewswire.co.uk

telegram.com

markets.chron.com
invertia.com

finanzas.com

money.canoe.ca

priceofoil.org

blogs.wsj.com
forexfactory.com

fr.biz.yahoo.com
finanzas.com

de.reuters.com
focus−fen.net

stjude.com.ve
tagblatt.ch

wellingtonhive.blogspot.com
presseportal.ch

tembam.wordpress.com
tagesspiegel.de

de.eonline.com

Topic 3 (presidential elections) Topic 4 (family)

cnjonline.com
freepressinternational.com

washingtonmonthly.com

electionfraudblog.com

blogrevolution.com

sj−r.com

democraticpartyofgeorgia.org

politicalsalsa.blogspot.com

mattjohnston.blogspot.com

mccaindemocrats.wordpress.com
washingtonindependent.com

pentictonherald.ca
theusreport.com

610cktb.com

retroskank.com

koreanpower999.wordpress.com

environmentalrepublican.blogspot.com

topix.net

justbarkingmad.com

factsoflife.wordpress.com

popcritics.com

mtv.co.uk

gamesarefun.com
celebglitz.com

tmrzoo.com

rss.computerandvideogames.com

dlife.com

Topic 5 (international crisis) Topic 6 (news in Spanish language)

us.oneworld.net
alertatotal.blogspot.com

breaktheterror.wordpress.com

timesofoman.comnews.balita.ph
earthside.com

stanvanhoucke.blogspot.com
swampland.blogs.time.com

abc.com.py
laurennroth.com
elnuevodiario.com.ni

laopiniondegranada.es

elmtreeforge.blogspot.com
howrah.org

ellitoral.com

eldigital.net
cooperativa.cl

Topic 7 (religion) Topic 8 (sport)

canadian−catholic.blogspot.com
inspiremagazine.org.uk

thepagansphinx.blogspot.com

breaktheterror.wordpress.com

stopwarblog.blogspot.com

all4jesus.wordpress.com

sermonaudio.com

uk.eurosport.yahoo.com
sportgate.de

smdailyjournal.com
news.cincinnati.com

sportal.com.au

ecanadanow.com

cricket.timesofindia.indiatimes.com
kltv.com

TABLE 8: Most influential hosts for each topic on Memetracker.

• For each cascade c the delay ∆c
u,v for each pair u, v such

that par(u)c = v, and compute the average delay over
cascades in each topic;
• The Wiener index for each cascade tree, and use this

information to compute the average Wiener index for a
topic k as w̄k = avgc: k̃c=k W (T̃c);
• The depth of each cascade tree, which is averaged

across cascades in the same topic to compute the av-
erage cascade topical depth.

The outcome of this analysis is summarized in Table 9.
The topic labeled as “sports” exhibits the shortest average
transmission delay, followed by “international crisis” and
“news in Spanish language”. In general, cascade trees are
shallow, which suggests that the propagation of information
is due to few influencers. The highest average Wiener index
is observed on the topic “religion”.

Finally, Table 8 shows the top influencers for each topic,
computed by counting the number of children of each node
in each cascade and aggregating this info at the topic level.
The top influential blogs are well aligned with the topical
structure shown in Table 7.
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Topic Average delay Avg Wiener index Avg depth

1 20.6h 1.73 1.77
2 22.8h 1.69 1.74
3 43.5h 1.82 1.93
4 21h 1.76 1.83
5 12.7h 1.80 1.92
6 12h 1.85 2.13
7 23.8h 1.89 2.20
8 7.8h 1.83 2.08

TABLE 9: Characterization of the cascade trees for each topic.

6 CONCLUSION

In this work we proposed a model for information diffusion
where adoptions can be explained in terms of susceptibility
and authoritativeness. The latter concepts can be expressed
as latent factors over a low-dimensional space representing
topical interests. We showed the adequacy of the resulting
probabilistic model both from a mathematical and an exper-
imental point of view.

The experiments show that the number of topics actu-
ally affects the fitness of the model. However, we did not
specifically cover the problem of detecting the optimal K .
As a matter of fact, this is an orthogonal issue which is
extensively covered in the literature and viable solutions
exist. For example, within the context of the EM algorithm
that we adopt here, a suitable solution consists in choosing
a reasonably high value for K and then allow an annihi-
lation procedure by choosing an appropriate prior for Θ,
as described in [12]. Besides the capability of automatically
detecting the optimal number of topics, this would have the
further advantage of robustness to random initialization: By
starting with an arbitrarily large number of components, it
would avoid the pitfalls of local maxima, since the whole
parameter space would be likely covered. Even the Gibbs
sampling scheme for Bayesian formulation can be easily
extended to a non-parametric setting by exploiting Dirichlet
Process Mixtures [13].

It is worth comparing the Survival Factorization ap-
proach proposed here with the CWN approach [6] discussed
in section 2. CWN tackles the problem of detecting social
communities when the social graph is not available, but
only cascades are available. Within CWN, each user has a
likelihood of belonging to a community, which can explain
its activations according to an influential user within the
community. Under this perspective, both CWN and Survival
Factorization approach the problem of social contagion with
similar tools but from different perspectives. The former
focuses on the user by modeling its susceptibility implicitly
as community membership. As such, it is not interested in
detecting whether each activation in a cascade refers to a
same topic. By contrast, the latter latter focuses specifically
on this aspect and measures each activation as the result of
both susceptibility and influence. It would be interesting to
see how these two approaches can be combined to model
both community membership and cascade topic.

Finally, within the model, we chose not to correlate the
content with the time delay in the propagation process.
As a matter of fact, the content can actually influence the
diffusion: Think e.g. of an hashtag relative to a earth-
quake. Clearly, combining susceptibility, authoritativeness

and strength of the content can help better characterize the
diffusion process and this should be taken into account in
the inference procedure.
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APPENDIX A
DERIVATION OF THE E AND M STEPS

A.1 Recap: The EM algorithm

The log-likelihood of the observed cascades can be written
as

log Pr(C,Ξ) =
∑
Z,Y

q(Z,Y) log Pr(C,Ξ)

=
∑
Z,Y

q(Z,Y)

{
log

Pr(C,Z,Y,Ξ)

Pr(Z,Y|C,Ξ)

}

=
∑
Z,Y

q(Z,Y)

{
log

Pr(C,Z,Y,Ξ)

q(Z,Y)

}

−
∑
Z,Y

q(Z,Y)

{
log

Pr(Z,Y|C,Ξ)

q(Z,Y)

}
=L(q; C,Ξ) + KL(q‖Pr(Z,Y|C,Ξ))

where q is an arbitrary instrumental distribution over the
latent variables Z,Y and

L(q; C,Ξ) =
∑
Z,Y

q(Z,Y) log Pr(C,Z,Y,Ξ)

−
∑
Z,Y

q(Z,Y) log q(Z,Y)

=Eq[log Pr(C,Z,Y,Ξ)] + H[q]

In practice, since the Kullback-Leibler divergence
KL(q‖p) ≥ 0 we have that log Pr(C|Ξ) ≥ L(q; C,Ξ)
The bound is tight for the exact posterior, due to the fact
that KL(p‖p) = 0. That is,

arg max
q(Z,Y)

L(q; C,Ξ) = Pr(Z,Y|C,Ξ)

and for that specific value we have log Pr(C|Ξ) =
L(q; C,Ξ). This suggests a simple iterative procedure for
estimating the optimal parameters in the usual EM setting,
by computing the variational approximations given by the
E and M steps:

E step: q(n)(Z,Y) = Pr(Z,Y|C,Ξ(n−1))
M step: Ξ(n) = arg maxΞ

∑
Z,Y q(n)(Z,Y) log Pr(C,Z,Y,Ξ)

It is easy to see that iterating between the above steps
produces a progressive improvement of the estimation of
the optimal parameters:

log Pr(C,Ξ(n))

= L(q(n+1); C,Ξ(n)) (by definition)

≤ L(q(n+1); C,Ξ(n+1)) (M step)

≤ L(q(n+2); C,Ξ(n+1)) (E step)

= log Pr(C,Ξ(n+1)) (by definition)

In the following we omit the (n) superscript when the
components to be updated are clear from the context.

A.2 Expected Likelihood

We can rewrite the above expressions by adopting an alter-
native notation. In the following, With an abuse of notation,
for a generic binary variable x the event x = 1 within a
probability function is simply denoted as x, e.g. p(x) de-
notes p(x = 1). Recall that Pr(tc|Z,Y,A,S) is defined as in
eq. 8 and Pr(wc|Φk) as in eq. 9. We also assume multinomial
distributions over Z and Y. However, we assume that the in
the initial setting, every user is equally a viable influencer.
That is to say, the prior relative to Y is uniform. Concerning
the prior Θ = {π1, . . . , πK} on Z, we have

Pr(Z|Θ) =
M∏
c=1

∏
k

Pr(zc,k|Θ) =
M∏
c=1

∏
k

π
zc,k
k (25)

Finally, we hypothesize no priors on A,S and Φ for the
moment. We shall analyze in details the effects of these
priors in a further section in the following.

Define

Q(Ξ; q, C) =
∑
Z,Y

q(Z,Y) log Pr(C,Z,Y,Ξ)

We can observe that

Q(Ξ; q, C) =
M∑
c=1

∑
k

q(zc,k) log πk

+
M∑
c=1

∑
u∈V+(c)

∑
v≺cu

∑
k

q(zc,k, y
c
u,v) log h(∆c

u,v;λv,u,k, ρ)

+
M∑
c=1

∑
u∈V+(c)

∑
v≺cu

∑
k

q(zc,k) logS(∆c
u,vλv,u,k, ρ)

+
M∑
c=1

∑
u∈V−(c)

∑
v∈V+(c)

∑
k

q(zc,k) logS(T c − tv(c);λv,u,k, ρ)

+
M∑
c=1

∑
w

∑
k

q(zc,k) {nw,c logϕw,k − |wc| · ϕw,k}

(26)

By exploiting definitions 5 and 6, we have:

Q(Ξ; q,C) =
M∑
c=1

∑
k

q(zc,k) log πk + (log ρ)
M∑
c=1

Nc

+(ρ− 1)
M∑
c=1

∑
u∈V+(c)

∑
v≺cu

∑
k

q(zc,k, y
c
u,v) · log ∆c

u,v

+
M∑
c=1

∑
u∈V+(c)

∑
v≺cu

∑
k

q(zc,k, y
c
u,v) · log λv,u,k

−
M∑
c=1

∑
u∈V+(c)

∑
v≺cu

∑
k

q(zc,k) · λv,u,k ·
(
∆c
u,v

)ρ
−

M∑
c=1

∑
u∈V−(c)

∑
v∈V+(c)

∑
k

q(zc,k)λv,u,k (T c − tv(c))ρ

+
M∑
c=1

∑
w

∑
k

q(zc,k) {nw,c logϕw,k − |wc| · ϕw,k}

(27)
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A.3 E step

As shown to eq. 26, q(X,Y) (and consequently
Pr(Z,Y|C,Ξ)) can be decomposed into the specific activa-
tions. In particular, for each cascade c and pair of users u, v
with v ≺c u, the E step consists in estimating the following:

q(zc,k) = Pr(zc,k|tc,wc,Ξ(n−1))

q(zc,k, y
c
u,v) = Pr(zc,k, y

c
u,v|tc,wc,Ξ(n−1))

= Pr(zc,k|tc,wc,Ξ(n−1)) · Pr(ycu,v|zc,k, tc,Ξ(n−1))

Hence, we need to estimate the quantities Pr(zc,k|tc,wc,Ξ)
and Pr(ycu,v|zc,k, tc,Ξ). For the former, we have:

Pr(zc,k|tc,wc,Ξ) =
Pr(tc|Ak,Sk) · Pr(wc|Φk) · Pr(zc,k|Θ)∑
k̃ Pr

(
tc|Ak̃,Sk̃

)
· Pr

(
wc|Φk̃

)
· Pr

(
zc,k̃|Θ

)
In the above formula we have Pr(zc,k|Θ) = πk, Pr (wc|Φk)
defined as in eq. 9 and Pr (tc|Ak,Sk) obtained by marginal-
izing Pr(tc|Y,Ak,Sk) in eq. 8 with respect to Y:

Pr(tc|Ak,Sk) =
∑
Y

Pr(tc|Y,Ak,Sk)

=
∏

u∈V−(c)

∏
v∈V+(c)

S(T c − tv(c);λv,u,k, ρ)

·
∏

u∈V+(c)

∏
v≺cu

S(∆c
u,v;λv,u,k, ρ)

∑
v≺cu

h(∆c
u,v;λv,u,k, ρ)

(28)

Concerning Pr(ycu,v|zc,k, tc,Ξ), we can observe the follow-
ing:

Pr(y
c
u,v|zc,k, t

c
,Ξ) =

Pr(tc|ycu,v,Ak,Sk)
∑
ṽ Pr(tc|ycu,ṽ,Ak,Sk)

=
h(∆c

u,v ;λv,u,k, ρ)∑
v′≺cu h(∆c

u,v′ ;λv′,u,k, ρ)

·
∏
v′≺cu S(∆c

u,v′λv′,u,k, ρ)∏
v′≺cu S(∆c

u,v′λv′,u,k, ρ)

·

∏
w∈V+(c)
w 6=u

∑
v≺cw h(∆c

w,v;λv,w,k, ρ)

∏
w∈V+(c)
w 6=u

∑
v≺cw h(∆c

w,v;λv,w,k, ρ)

·
∏
v′≺cw S(∆c

w,v′λv′,w,k, ρ)∏
v′≺cw S(∆c

w,v′λv′,w,k, ρ)

=
h(∆c

u,v ;λv,u,k, ρ)∑
v′≺cu h(∆c

u,v′ ;λv′,u,k, ρ)

A.4 M Step

Let us denote q(zc,k) by γc,k and Pr(ycu,v|zc,k, tc,Ξ) by
ηkc,u,v . By exploiting the definition λu,v,k = Av,k · Su,k we
can hence revrite the likelihood as

Q(Ξ;γ,η, C) =
M∑
c=1

∑
k

γc,k log πk + (log ρ)
M∑
c=1

Nc

+ (ρ− 1)
M∑
c=1

∑
u∈V+(c)

∑
k

γc,k
∑
v≺cu

ηkc,u,v · log ∆c
u,v

+
M∑
c=1

∑
u∈V+(c)

∑
k

γc,k
∑
v≺cu

ηkc,u,v · (logAv,k + logSu,k)

−
M∑
c=1

∑
u∈V+(c)

∑
v≺cu

∑
k

γc,k ·Av,k · Su,k ·
(
∆c
u,v

)ρ
−

M∑
c=1

∑
k

γc,k
∑

u∈V−(c)

∑
v∈V+(c)

Av,k · Su,k (T c − tv(c))ρ

+
M∑
c=1

∑
w

∑
k

γc,k {nw,c logϕw,k − |wc| · ϕw,k}

(29)

Optimizing Q(Ξ;γ,η, C) for πk under the constraint∑
k πk = 1 yields the following:

πk =
1

M

M∑
c=1

γc,k (30)

Concerning S and A, the we need to resort to block coordi-
nate ascent optimization. In particular, given A, we can opti-
mize with respect to S. First of all, we can observe that, for a
given u and k, it holds that

∑
c:u∈V+(c)

∑
v≺cu ηc;u,v · γc,k =∑

c:u∈V+(c) γc,k by definition of ηkc,u,v . Consequently, we
have:

Su,k =

∑
c:u∈V+(c) γc,k

S̄u,k
(31)

where:

S̄u,k =
∑

c:u∈V+(c)

∑
v≺cu

γc,k ·Av,k ·
(
∆c
u,v

)ρ
+

∑
c:u∈V−(c)

∑
v∈V+(c)

γc,k ·Av,k (T c − tv(c))ρ
(32)

Also, given S, we can optimize for A to obtain

Av,k =

∑
c:v∈V+(c) γc,k

∑
u∈V+(c)
v≺cu

ηkc,u,v∑
c:v∈V+(c) γc,kĀv,k,c

(33)

where:

Āv,k,c =
∑

u:v≺cu
Su,k ·

(
∆c
u,v

)ρ
+

∑
u∈V−(c)

Su,k (T c − tv(c))ρ

(34)
Finally, optimizing with respect to Φ yields:

ϕw,k =

∑M
c=1 γc,knw,c∑M
c=1 γc,k|wc|

(35)

A.5 Priors

The model can be further refined by assuming some priors
on the parameters A,S and Φ. Concerning Θ, we assume
that each user is equally likely to be influenced and/or
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Exponential Distribution

Su,k =

P
c:u2V+(c) �c,k

P
c:u2V+(c) �c,k

⇣
tu(c)Ac,u,k � Ãc,u,k

⌘
+

P
c:u2V�(c) �c,k

⇣
T cAc,k � Ãc,k

⌘ (4.8)

Av,k =
A

(n�1)
v,k

P
c:v2V+(c) �c,kRc,v,k

P
c:v2V+(c) �c,k

n
S̃c,k � S̃c,v,k + T c(Sk � Sc,k)� tv(c)(Sk � Sc,v,k)

o (4.9)

log Pr(t
c|Ak, Sk) =Lc,k � (Sk � Sc,k)(T

c
Ac,k � Ãc,k)

+
X

u2V+(c)

n
log Ac,u,k � Su,k (tu(c)Ac,u,k � Ãc,u,k)

o
(4.10)

Rayleigh Distribution

Su,k =

P
c:u2V+(c) �c,k

P
c:u2V+(c) �c,k

⇣
tu(c)2Ac,u,k + Âc,u,k � 2tu(c)Ãc,u,k

⌘
+

P
c:u2V�(c) �c,k

⇣
T 2

c Ac,k + Âc,k � 2TcÃc,k

⌘ (4.11)

Av,k =
A

(n�1)
v,k

P
c:v2V+(c) �c,k

⇣
R̃c,v,k � R̂c,v,k

⌘

P
c:v2V+(c) �c,k

n
Ŝc,k � Ŝc,v,k + tv(c)2 (Sc,k � Sc,v,k)� 2tv(c)

⇣
S̃c,k � S̃c,v,k

⌘
+ (Tc � tv(c))2 (Sk � Sc,k)

o (4.12)

log Pr(t
c|Ak, Sk) =Lc,k � (Sk � Sc,k)

⇣
T

2
c Ac,k + Âc,k � 2TcÃc,k

⌘

+
X

u2V+(c)

n
log

⇣
tu(c)Ac,u,k � Ãc,u,k

⌘
�

⇣
tu(c)

2
Ac,u,k + Âc,u,k � 2tu(c)Ãc,u,k

⌘o
(4.13)

Figure 2: Optimized estimations for the exponential and the Rayleigh distributions. All equations rely on counters defined in table 2.

Term Definition Term Definition

Ac,u,k

P
v�cu Av,k Sc,u,k

P
v�cu Sv,k

Ãc,u,k

P
v�cu tv(c)Av,k S̃c,u,k

P
v�cu tv(c)Sv,k

Âc,u,k

P
v�cu tv(c)2Av,k Ŝc,u,k

P
v�cu tv(c)2Sv,k

Ac,k

P
v2V+(c) Av,k Sc,k

P
v2V+(c) Sv,k

Ãc,k

P
v2V+(c) tv(c)Av,k S̃c,k

P
v2V+(c) tv(c)Sv,k

Âc,k

P
v2V+(c) tv(c)2Av,k Ŝc,k

P
v2V+(c) tv(c)2Sv,k

Rc,u,k

P
v2V+(c)

u�cv

(Ac,v,k)�1
Sk

P
v Sv,k

R̂c,v,k

P
u2V+(c)

v�cu

⇣
tu(c)Ac,u,k � Ãc.u,k

⌘�1

Lc,k

P
v2V+(c) log Sv,k

R̃c,v,k

P
u2V+(c)

v�cu

tu(c)
⇣

tu(c)Ac,u,k � Ãc.u,k

⌘�1

TABLE 2: Counters on the cascades.

for example, assume that user v1 activates at time tv1 = 1,
user v2 at time tv2 = 100 and user u at time tu = 101.
Also, assume that Av1,k = 2, Av2,k = 1 and Su,k = 1. By
virtue of the definition of ⌘, the influencer would be v1, but
the delay tu� tv1 would be extremely unlikely according to
the given parameters.

This bias does not hold for the Rayleigh distribution, for
which the ⌘k

c,u,v includes the delay, ⌘k
c,u,v =

Av,k�
c
u,vP

v�u Av,k�c
u,v

,
thus recovering the time dependency in the detection of the
influencer.

5. Experiments

In this section we report an experimental analysis aimed
at assessing the effectiveness of the proposed framework.
The evaluation is focused on the following aspects: (1)
Investigate the conditions upon which the proposed method
can actually detect authoritativeness and suceptibility from
propagation logs; (2) Evaluate proposed models under two
different prediction scenarios: (i) predicting which nodes
are more likely to become active given a partally observed
cascade and (ii) inferring the underlying propagation net-
work among nodes; (3) Assess the adequacy of the model

TABLE 10: Counters on the cascades.

influence. This is modeled by assuming an exponential
prior with rate N (or, equivalently, a Gamma prior with
parameters 1 and N ):

Pr(Av,k) = exp {−N ·Av,k + logN}
Pr(Su,k) = exp {−N ·Au,k + logN} (36)

Concerning Φ, we want that the expected frequency of each
term to be 0, unless different evidence. This means that∑
k ϕw,k should be less than one. We ensure this condition

by adopting a gamma prior with shape 2 and rate 2K2 + 2:

Pr(ϕw,k) = (2K2 + 2) · ϕw,k · e−(2K2+2)ϕw,k (37)

We deliberately choose not to optimize the ρ parameter,
and to investigate two particular cases, namely ρ = 1 and
ρ = 2. In both cases, the above equations can be further
simplified and are amenable an efficient implementation as
described in the following section.

A.6 Scaling up the estimation
When ρ = 1 or ρ = 2 the Weibull distribution simplifies into
to an exponential distribution or the Rayleigh distribution,
respectively. In such a case, we can introduce the counters
described in table 10 and rewrite the updated equations
by relying on such counters. We analyze the two cases
separately.

A.6.1 Exponential distribution
When ρ = 1, the term h(∆c

u,v;λv,u,k, ρ) simplifies to Av,k ·
Su,k. As as consequence, the term ηkc,u,v can be rewritten as
ηkc,u,v = Av,k/Ac,u,k. Then, we can can state the following.
Theorem 2. Equations 31 and 32 can be rewritten as

Su,k =

∑
c:u∈V+(c) γc,k

S̄u,k

S̄u,k =
∑

c:u∈V+(c)

γc,k
(
tu(c)Ac,u,k − Ãc,u,k

)
+

∑
c:u∈V−(c)

γc,k
(
T cAc,k − Ãc,k

)
(38)

by exploiting the counters defined in 10.

PROOF. We can observe that:

∑
c:u∈V+(c)

∑
v≺cu

γc,k ·∆c
u,v ·Av,k =

∑
c:u∈V+(c)

γc,k
∑
v≺cu

(tu(c)− tv(c))Av,k =

∑
c:u∈V+(c)

γc,k
(
tu(c)Ac,u,k − Ãc,u,k

)

and

∑
c:u∈V−(c)

∑
v∈V−(c)

γc,k ·∆c
u,v ·Av,k =

∑
c:u∈V−(c)

γc,k
∑

v∈V−(c)

(T c − tv(c))Av,k =

∑
c:u∈V−(c)

γc,k
(
T cAc,k − Ãc,k

)

By plugging the above results in 31 we obtain the claim.

Theorem 3. Equation 33 can be rewritten as

Av,k =
A′v,k

∑
c:v∈V+(c) γc,kRc,v,k∑

c:v∈V+(c) γc,kĀv,k

Āv,k = S̃c,k − S̃c,v,k + T c(Sk − Sc,k)

− tv(c)(Sk − Sc,v,k)

(39)

by exploiting the counters defined in 10 and assuming
that A′v,k is computed in the preceding step.

PROOF. First of all, Notice that, in this new formulation,
ηku,v does not need to be explicitly computed. In fact, it
is decomposed within the update equation of Av,k, by
resorting to a previous value of the same variable (denoted
as A(n−1)

u,k in the formula) and the Rc,u,k counter:

∑
c:v∈V+(c)

∑
u∈V+(c)
v≺cu

ηc;u,v · γc,k

=
∑

c:v∈V+(c)

γc,k
∑

u∈V+(c)
v≺cu

A′v,k
(
A′c,u,k

)−1

= A′v,k
∑

c:v∈V+(c)

γc,kRc,v,k
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Further,

∑
c:v∈V+(c)

∑
u:v≺cu

γc,k ·∆c
u,v · Su,k

+
∑

c:v∈V+(c)

∑
u∈V−(c)

γc,k · (T c − tv(c)) · Su,k

=
∑

c:v∈V+(c)

γc,k
∑

u:v≺cu
(tu(c)− tv(c))Su,k

+
∑

c:v∈V+(c)

∑
u∈V−(c)

γc,k · (T c − tv(c)) · Su,k

=
∑

c:v∈V+(c)

γc,k
∑

u:v≺cu
tu(c)Su,k −

∑
c:v∈V+(c)

γc,ktv(c)
∑

u:v≺cu
Su,k

+
∑

c:v∈V+(c)

γc,k
∑

u∈V−(c)

T cSu,k −
∑

c:v∈V+(c)

γc,ktv(c)
∑

u∈V−(c)

Su,k

=
∑

c:v∈V+(c)

γc,k(S̃c,k − S̃c,v,k)−
∑

c:v∈V+(c)

γc,ktv(c)(Sc,k − Sc,v,k)

+
∑

c:v∈V+(c)

γc,kT
c(Sk − Sc,k)−

∑
c:v∈V+(c)

γc,ktv(c)(Sk − Sc,k)

=
∑

c:v∈V+(c)

γc,k
{
S̃c,k − S̃c,v,k + T c(Sk − Sc,k)− tv(c)(Sk − Sc,v,k)

}

By plugging the above results in 33 we obtain the claim.

Theorem 4. The logarithm of Pr(tc|Ak,Sk) as defined in eq.
28 can be expressed as

log Pr(tc|Ak,Sk) = Lc,k

− (Sk − Sc,k)(T cAc,k − Ãc,k)

+
∑

u∈V+(c)

{logAc,u,k

−Su,k (tu(c)Ac,u,k − Ãc,u,k)
}

(40)

by exploiting the counters defined in 10.

PROOF. We can observe the following:

log Pr(tc|Ak,Sk) =
∑

u∈V+(c)

logSu,k +
∑

u∈V+(c)

log

(∑
v≺cu

Av,k

)
−

∑
u∈V+(c)

Su,k
∑
v≺cu

∆c
u,v ·Av,k

−
∑

u∈V−(c)

Su,k
∑

v∈V+(c)

(T c − tv(c)) ·Av,k

=Lc,k +
∑

u∈V+(c)

logAc,u,k

−
∑

u∈V+(c)

Su,k
∑
v≺cu

(tu(c)− tv(c)) ·Av,k

−
∑

u∈V−(c)

Su,k
∑

v∈V+(c)

(T c − tv(c)) ·Av,k

=Lc,k +
∑

u∈V+(c)

logAc,u,k

−
∑

u∈V+(c)

Su,k (tu(c)Ac,u,k − Ãc,u,k)

−(Sk − Sc,k)(T cAc,k − Ãc,k)

A.6.2 Rayleigh Distribution

Similar results can be obtained for the case ρ = 2. We start
by noticing that, in this case, the EM algorithm relies on the
following key components:

Su,k =

∑
c:u∈V+(c) γc,k

S̄u,k
(41)

S̄u,k =
∑

c:u∈V+(c)

∑
v≺cu

γc,k · (∆c
u,v)

2 ·Av,k

+
∑

c:u∈V−(c)

∑
v≺cu

γc,k · (T c − tv(c))2 ·Av,k

Av,k =

∑
c:u∈V+(c)

∑
u∈V+(c)
v≺cu

ηkc;u,v · γc,k
Āv,k

(42)

Āv,k =
∑

c:v∈V+(c)

∑
u:v≺cu

γc,k · (∆c
u,v)

2 · Su,k

+
∑

c:v∈V+(c)

∑
u∈V −(c)

γc,k · (Tc − tv(c))2 · Su,k

Pr(tc|Ak,Sk) =
∏

u∈V−(c)

∏
v∈V+(c)

e−Av,k·Su,k·(T
c−tv(c)2)

·
∏

u∈V+(c)

∏
v≺cu

e−Av,k·Su,k·(∆
c
u,v)2 ∑

v≺cu
2Av,k · Su,k ·∆c

u,v

(43)

The following results hold.
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Theorem 5. Equation 31 can be rewritten as

Su,k =

∑
c:u∈V+(c) γc,k

S̄u,k

S̄u,k =
∑

c:u∈V+(c)

γc,k
(
tu(c)2Ac,u,k + Âc,u,k

−2tu(c)Ãc,u,k
)

+
∑

c:u∈V−(c)

γc,k
(
T 2
c Ac,k + Âc,k − 2TcÃc,k

)
(44)

by exploiting the counters defined in 10.

PROOF. We can observe that

∑
c:u∈V+(c)

∑
v≺cu

γc,k · [tu(c)− tv(c)]2 ·Av,k

=
∑

c:u∈V+(c)

γc,k
∑
v≺cu

[tu(c)2 + tv(c)
2 − 2tu(c)tv(c)] ·Av,k

=
∑

c:u∈V+(c)

γc,k · tu(c)2
∑
v≺cu

Av,k

+
∑

c:u∈V+(c)

γc,k
∑
v≺cu

tv(c)
2Av,k

− 2
∑

c:u∈V+(c)

γc,k · tu(c)
∑
v≺cu

tv(c)Av,k

=
∑

c:u∈V+(c)

γc,k
(
tu(c)2 ·Ac,u,k + Âc,u,k − 2tu(c) · Ãc,u,k

)
.

Analogously

∑
c:u∈V−(c)

∑
v∈V +(c)

γc,k · (T c − tv(c))2 ·Av,k

=
∑

c:u∈V−(c)

γc,k
(

(T c)2 ·Ac,k + Âc,k − 2T cÃc,k
)

By replacing the formulas in the denominator of eq. 41 we
obtain the claim.

Theorem 6. Equation 33 can be rewritten as

Av,k =
A′v,k

∑
c:v∈V+(c) γc,k

(
R̃c,v,k − R̂c,v,k

)
∑
c:v∈V+(c) γc,kĀv,k,c

Āv,k,c =
(
Ŝc,k − Ŝc,v,k

)
+ tv(c)

2 (Sc,k − Sc,v,k)

− 2tv(c)
(
S̃c,k − S̃c,v,k

)
+
(
T 2
c + tv(c)

2 − 2Tctv(c)
)

(Sk − Sc,k)

(45)

where A′v,k is the value computed in the preceding step,
and by exploiting the counters defined in 10.

PROOF. For the denominator, we have:

∑
c:v∈V+(c)

∑
u:v≺u

γc,k · (tu(c)− tv(c))2 · Su,k

=
∑

c:v∈V+(c)

∑
u:v≺u

γc,k · tu(c)2Su,k

+
∑

c:v∈V+(c)

∑
u:v≺u

γc,k · tv(c)2Su,k

− 2
∑

c:v∈V+(c)

∑
u:v≺u

γc,k · tu(c)tv(c) · Su,k

=
∑

c:v∈V+(c)

γc,k
∑
u:v≺u

tu(c)2Su,k

+
∑

c:v∈V+(c)

γc,k · tv(c)2
∑
u:v≺u

Su,k

− 2
∑

c:v∈V+(c)

γc,k · tv(c)
∑
u:v≺u

tu(c)Su,k

=
∑

c:v∈V+(c)

γc,k
{(
Ŝc,k − Ŝc,v,k

)
+ tv(c)

2 (Sc,k − Sc,v,k)

−2tv(c)
(
S̃c,k − S̃c,v,k

)}
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and

∑
c:v∈V+(c)

∑
u∈V −(c)

γc,k · (Tc − tv(c))2 · Su,k

=
∑

c:v∈V+(c)

∑
u∈V −(c)

γc,k · T 2
c Su,k

+
∑

c:v∈V+(c)

∑
u∈V −(c)

γc,k · tv(c)2Su,k

− 2
∑

c:v∈V+(c)

∑
u∈V −(c)

γc,k · tv(c)Tc · Su,k

=
∑

c:v∈V+(c)

γc,kT
2
c

∑
u∈V −(c)

Su,k

+
∑

c:v∈V+(c)

γc,ktv(c)
2

∑
u∈V −(c)

Su,k

− 2
∑

c:v∈V+(c)

γc,kTctv(c)
∑

u∈V −(c)

Su,k

=
∑

c:v∈V+(c)

γc,k
{(
T 2
c + tv(c)

2 − 2Tctv(c)
)

(Sk − Sc,k)
}

Also, for the numerator, we have:

∑
c:v∈V+(c)

∑
u∈V+(c)
v≺cu

ηkc;u,v · γc,k =

∑
c:v∈V+(c)

γc,k
∑

u∈V+(c)
v≺cu

Av,k∆c
u,v∑

v≺uAv,k∆c
u,v

=

∑
c:v∈V+(c)

γc,kAv,k
∑

u∈V+(c)
v≺cu

tu(c)− tv(c)
tu(c)Ac,u,k − Ãc.u,k

=

∑
c:v∈V+(c)

γc,kAv,k


∑

u∈V+(c)
v≺cu

tu(c)
(
tu(c)Ac,u,k − Ãc.u,k

)−1

−tv(c)
∑

u∈V+(c)
v≺cu

(
tu(c)Ac,u,k − Ãc.u,k

)−1

 =

∑
c:v∈V+(c)

γc,kAv,k
(
R̃c,v,k − R̂c,v,k

)

By replacing the respective components in eq. 42 we obtain
the claim.

We also notice that ηkc,u,v can be simplified into:

ηkc,u,v =
Av,k∆c

u,v∑
v≺uAv,k∆c

u,v

(46)

Pr(tc|Ak,Sk) = exp{llk(tc|Ak,Sk)} (47)

Theorem 7. The logarithm of Pr(tc|Ak,Sk) as defined in eq.

28 can be expressed as

log Pr(tc|Ak,Sk) = Nc log 2 + Lc,k

+
∑

u∈V+(c)

log
(
tu(c)Ac,u,k − Ãc,u,k

)
−

∑
u∈V+(c)

Su,k
{
tu(c)2Ac,u,k + Âc,u,k

−2tu(c)Ãc,u,k
}

− Sk
(
T 2
c Ac,k + Âc,k − 2TcÃc,k

)

(48)

by exploiting the counters defined in 10.

PROOF. By analyzing eq. 43, we observe that

log Pr(tc|Ak,Sk) = Nc log 2

+
∑

u∈V+(c)

log

(∑
v≺cu

∆c
u,vAv,kSu,k

)
−

∑
u∈V+(c)

∑
v≺cu

(∆c
u,v)

2 ·Av,kSu,k

−
∑

u∈V−(c)

∑
v∈V+(c)

(T c − tv(c))2 ·Av,kSu,k

Within the equation, the second row expands as follows:

∑
u∈V+(c)

log

(∑
v≺cu

(tu(c)− tv(c))Av,kSu,k
)

=

∑
u∈V+(c)

logSu,k + log

(
tu(c)

∑
v≺cu

Av,k−

∑
u∈V+(c)

∑
v≺cu

tv(c)Av,k

 =

Lc,k +
∑

u∈V+(c)

log
(
tu(c)Ac,u,k − Ãc,u,k

)

Concerning the third row, we observe:∑
u∈V+(c)

∑
v≺cu

(tu(c)− tv(c))2 ·Av,kSu,k =

∑
u∈V+(c)

∑
v≺cu

(tu(c)2Av,kSu,k + tv(c)
2Av,kSu,k

− 2tu(c)tv(c)Av,kSu,k) =∑
u∈V+(c)

Su,k
{
tu(c)2Ac,u,k + Âc,u,k − 2tu(c)Ãc,u,k

}
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Finally, for the fourth row we have:∑
u∈V−(c)

∑
v∈V+(c)

(Tc − tv(c))2 ·Av,kSu,k =

∑
u∈V−(c)

Su,k
∑

v∈V+(c)

(T 2
c Av,k + tv(c)

2Av,k − 2Tctv(c)Av,k) =

Sk
(
T 2
c Ac,k + Âc,k − 2TcÃc,k

)
Putting all together proves the claim.

A.6.3 Complexity result

Algorithm 2 Optimized Survival Factorization EM
Require: C, the number of latent features K
Ensure: matrices A, S and Φ
1: Randomly initialization for A, S, Φ;
2: Compute all counters of table 10;
3: n← 0
4: while Increment in Likelihood is negligible do
5: for all cascades c and topic k do
6: Compute γc,k exploiting log Pr(tc|Ak,Sk) as defined in Eq. 19

(exponential) or Eq. 48 (Rayleigh);
7: end for
8: for all topic k do
9: Update πk according to Eq. 13;

10: for all users u do
11: Compute Su,k according to Eq. 17 (exponential) or Eq. 44

(Rayleigh);
12: end for
13: Update all counters relative to S as defined in table 10;
14: for all users u do
15: Compute Au,k according to Eq. 18 (exponential) or Eq. 45

(Rayleigh);
16: end for
17: Update counters relative to A as defined in table 10;
18: for all words w do
19: Compute φw,k according to Eq. 14;
20: end for
21: end for
22: n← n+ 1
23: end while

The general scheme of the algorithm is shown in figure 2.
For this algorithm, we can finally state the main complexity
result.
Theorem 8. Algorithm 2 has complexity O(

∑
cNc logNc +

nK(N +W +
∑
cNc)) time (where n is the total number

of iterations) and O(KN) space.

PROOF. The crucial steps of the algorithm are in line 1
and 10-17. First of all, let us consider the counters of table
10. Each of them can be computed through at least two
scans over the set C of cascades, by considering that when
cascades are sorted counters can be computed incrementally
for adjacent nodes. This ensures that steps 2,13 and 17 can
be computed in K

∑
cNc. Also, notice that a further scan

over C allows to incrementally compute, for each u within a
cascade, the contributions to equations 19, 18 and 17: for the
latter, the second term in the denominator can be obtained
by considering the difference between the sum over all
cascades and the sum over the cascades that contain u.
Thus, updating A, S and Φ only requires a loop over all the
elements of the matrices, provided that all the counters and
the terms of the equations are conveniently accumulated as
the cascades are iterated.

The major difference between the two instantiations is
the underlying definition of the ηkc,u,v parameter. Within
the exponential distribution, this is expressed as ηkc,u,v =

Av,k∑
v≺u Av,k

. Since ηkc,u,v represents the probability that node
v influences the activation of u within c, the above formu-
lation resolves in a “winner takes all” situation. That is,
the element with the higher degree of authoritativeness is
deemed as the influencer, no matter the time delay. Thus for
example, assume that user v1 activates at time tv1 = 1, user
v2 at time tv2 = 100 and user u at time tu = 101. Also,
assume that Av1,k = 2, Av2,k = 1 and Su,k = 1. By virtue of
the definition of η, the influencer would be v1, but the delay
tu− tv1 would be extremely unlikely according to the given
parameters.

This bias does not hold for the Rayleigh distribution, for
which the ηkc,u,v includes the delay, ηkc,u,v =

Av,k∆c
u,v∑

v≺u Av,k∆c
u,v

,
thus recovering the time dependency in the detection of the
influencer.


