Learning Ideological Embeddings from Information Cascades

Corrado Monti, Francesco Bonchi Giuseppe Manco,

Cigdem Aslay,

ISI

ISI Foundation & ISI Global Science Foundation

Istituto di Calcolo e Reti ad Alte Prestazioni

• Many works in opinion modeling assume one axis

- Many works in opinion modeling assume one axis
- Often ill-defined too

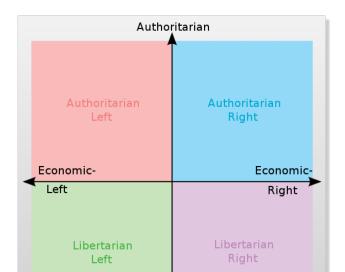
- Many works in opinion modeling assume one axis
- Often ill-defined too

- Many works in opinion modeling assume one axis
- Often ill-defined too

- Many works in opinion modeling assume one axis
- Often ill-defined too

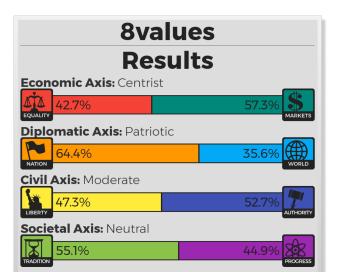
Idea: a multi-dimensional ideological space

Idea: a multi-dimensional ideological space



3

Idea: a multi-dimensional ideological space



Idea: a multi-dimensional ideological space

Idea: a multi-dimensional ideological space

• Which behavior might make this observable?

Idea: a multi-dimensional ideological space

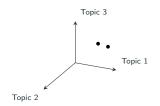
- Which behavior might make this observable?
- Spreading news on social media

Idea: a multi-dimensional ideological space

- Which behavior might make this observable?
- Spreading news on social media

- A graph of agents that spread news content
- They spread the same item if they are *ideologically aligned*



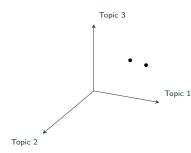


More in general

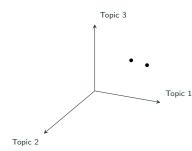
We model **actions** that produce **cascades** on a graph through **homophily**:

a node imitates a neighbor if they are similar in **ideological space**.

- How to build such a space?
- Let any researcher *define their axis*



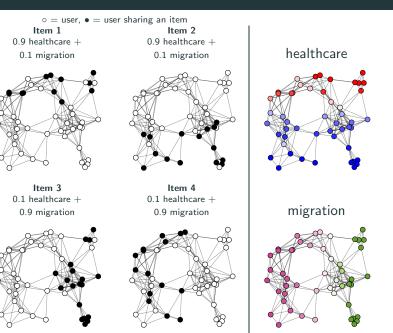
- How to build such a space?
- Let any researcher define their axis
- As input, each item must be tagged
 - a news can be "healthcare' or "migration"
 - Manually or LDA
 - Can be fuzzy
- Those define the axes of our space



An example

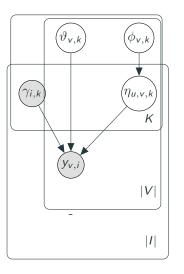
 $\circ =$ user, $\bullet =$ user sharing an item Item 2 Item 1 0.9 healthcare + 0.9 healthcare + 0.1 migration 0.1 migration Item 3 Item 4 0.1 healthcare + 0.1 healthcare +0.9 migration 0.9 migration

An example



Formalize these assumptions into a model

The model



- $\vartheta_{v,z} \in [0,1] \rightarrow \text{node interests}$
- $\phi_{\mathbf{v},z} \in [0,1] \rightarrow$ node polarities
- $\eta_{u,v,z} \in [0,1] \rightarrow \text{polarity alignment}$
- $\gamma_{i,z} \in [0,1] \rightarrow$ item topics
- $y \in \{0,1\} \rightarrow$ activation

• Likelihood of observed item *i* is $\Pr(\mathcal{D}_i | \Theta) =$

$$\prod_{u\in\mathcal{D}_i}\mathsf{Pr}(u\in\mathcal{D}_i|\Theta,\mathsf{F}_{i,u})\cdot\prod_{u\not\in\mathcal{D}_i}\left(1-\mathsf{Pr}(u\in\mathcal{D}_i|\Theta,\mathsf{F}_{i,u})\right)$$

where $F_{i,u}$ are potential activators

• Likelihood of observed item *i* is $\Pr(\mathcal{D}_i | \Theta) =$

$$\prod_{u\in\mathcal{D}_i} \Pr(u\in\mathcal{D}_i|\Theta,F_{i,u})\cdot\prod_{u\notin\mathcal{D}_i} (1-\Pr(u\in\mathcal{D}_i|\Theta,F_{i,u}))$$

where $F_{i,u}$ are potential activators

• Simplifying assumption:

 $1 - \Pr(u \in \mathcal{D}_i | \Theta, F_{i,u}) \approx \prod_{v \in F_{i,u}} (1 - \Pr(u \in \mathcal{D}_i | \Theta, v \in \mathcal{D}_i)),$ since we are looking for clusters of alignment

• Likelihood of observed item *i* is $\Pr(\mathcal{D}_i | \Theta) =$

$$\prod_{u \in \mathcal{D}_i} \mathsf{Pr}(u \in \mathcal{D}_i | \Theta, F_{i,u}) \cdot \prod_{u \not\in \mathcal{D}_i} (1 - \mathsf{Pr}(u \in \mathcal{D}_i | \Theta, F_{i,u}))$$

where $F_{i,u}$ are potential activators

• Simplifying assumption:

 $1 - \Pr(u \in \mathcal{D}_i | \Theta, F_{i,u}) \approx \prod_{v \in F_{i,u}} (1 - \Pr(u \in \mathcal{D}_i | \Theta, v \in \mathcal{D}_i)),$ since we are looking for clusters of alignment

- In this way, we obtain a scalable OGD algorithm:
 - Each potential activation $u \rightarrow v$ is an example
 - Positive or negative if succeeded or not

Input: G = (V, E); items $i \in \mathcal{I}$ with topics $\gamma_i \in \mathbb{R}^K$, activations $\mathcal{D}_i \subseteq V$. **Output:** Polarities ϕ_u and interests ϑ_u for all $u \in V$.

- 1 Initialize ϕ and ϑ as $|V| \times K$ matrices.
- 2 for number of epochs do
- 3 for $i \in \mathcal{I}$ do

5 6

- 4 for $v \in \mathcal{D}_i$ do
 - for $u \in \{u \in \mathcal{D}_i | (v, u) \in E\}$ do

Update ϕ, ϑ by ascending the gradient:

$$abla_{\phi,artheta} \log\left(\sum_k \gamma_{i,k} \cdot artheta_{u,k} \cdot p(u,v,k)
ight)$$

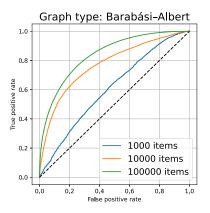
7for $u \in \text{SAMPLE}($ 8Update ϕ, ϑ b

or
$$u \in \text{SAMPLE}(\{u \notin D_i | (v, u) \in E\})$$
 do
Update ϕ, ϑ by ascending the gradient:

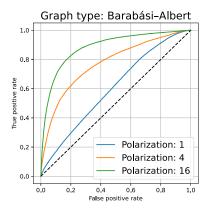
$$abla_{\phi,artheta} \log\left(1 - \sum_{k} \gamma_{i,k} \cdot artheta_{u,k} \cdot p(u,v,k)
ight)$$

Results: synthetic data

Num. items	AUC ROC	Avg. Prec.	
1000	0.607	0.543	
10000	0.773	0.733	
100000	0.840	0.815	



р	AUC ROC	Avg. Prec.
1	0.601	0.534
4	0.773	0.733
16	0.884	0.857

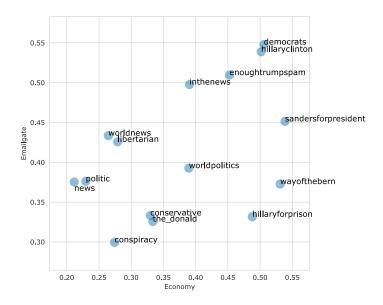


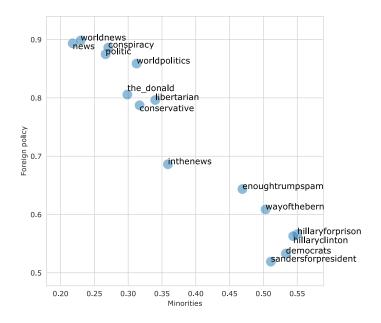
Results: real data & interpretability

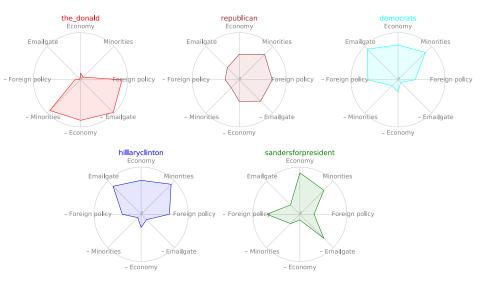
- Nodes: 50 political subreddits
- Action: posting a URL \rightarrow 22047 items
- Graph: complete
- 5 topics identified automatically with doc2vec
 - Economy, Emailgate, Foreign policy, Campaign, Minorities

Follows assumptions:

action spreads if nodes are ideologically aligned



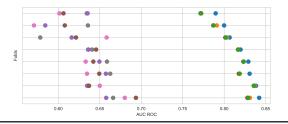




Results: real data & predictive power

Results: real data & predictive power

Reddit dataset:



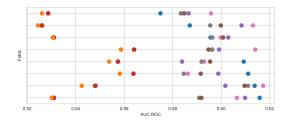
	Algorithm	AUC ROC	Difference	Avg. Precision	Time (s)
•	Our MIP model	0.820 ± 0.019	0.000 ± 0.000	0.777 ± 0.022	7.1
•	Barbera model	0.812 ± 0.022	-0.008 ± 0.005	0.790 ± 0.018	6.4
•	Original inf. + Topics	0.811 ± 0.022	-0.009 ± 0.006	0.781 ± 0.018	10.1
•	Original information	0.810 ± 0.022	-0.009 ± 0.006	0.785 ± 0.018	9.5
•	node2vec, d=128	0.639 ± 0.028	-0.180 ± 0.024	0.660 ± 0.033	11.6
•	node2vec + Topics, d=128	0.638 ± 0.028	-0.182 ± 0.016	0.650 ± 0.031	14.5
•	node2vec + Topics, d=11	0.634 ± 0.024	-0.186 ± 0.019	0.634 ± 0.033	8.7
٠	node2vec, d=11	0.633 ± 0.034	-0.186 ± 0.024	0.641 ± 0.036	7.3

Twitter dataset:

- Nodes: 738 users
- Items: 3624 retweets
- Topics: political hashtags
- Graph: retweet

Results: real data & predictive power

Twitter dataset:



	Algorithm	AUC ROC	Difference	Avg. Precision	Time (s)
•	Our MIP model	0.601 ± 0.015	0.000 ± 0.000	0.435 ± 0.013	83.1
•	node2vec, d=11	0.603 ± 0.011	0.003 ± 0.018	0.431 ± 0.010	480.5
•	node2vec + Topics, d=128	0.596 ± 0.007	-0.004 ± 0.014	0.427 ± 0.008	561.7
•	node2vec + Topics, d=11	0.599 ± 0.009	-0.002 ± 0.015	0.425 ± 0.009	485.3
•	node2vec, d=128	0.594 ± 0.009	-0.007 ± 0.014	0.425 ± 0.006	523.1
•	Original inf. + Topics	0.544 ± 0.016	-0.057 ± 0.016	0.391 ± 0.020	985.7
•	Original information	0.544 ± 0.016	-0.057 ± 0.016	0.391 ± 0.020	965.4
•	Barbera model	0.541 ± 0.015	-0.060 ± 0.015	0.387 ± 0.019	75.9

Conclusions

Conclusions

• Ideological embeddings

- Multidimensional, axes defined through items
- Interpretable
- Our model is
 - an interpretation of reality
 - a way to make **predictions**
- Algorithm combines interpretability, predictive power and scalability
- Probabilistic model can be valid tools for social science

Code & data:

https://github.com/corradomonti/ideological-embeddings

Thanks!

corrado.monti@isi.it