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Temporally Marked Point Processes (TMPPs)

» Data = (noisy) observations of events generated by some complex process

* Each event refers to a single process (execution) instance and stores at least:
(1) a time-stamp and (2) a categorical attribute representing the type of the event

* Trace H = sequence of all events linked to a process instance (stores instance’s history)

H={eqey..,e,} e; = (a; t;)

* Marked Temporal Point Processes’ view

|

i 0 O O A | | |

! IS intra-event times may vary over a wider
. ?T ® T T: range of temporal scales

! 1 I . « s 0oy .

! (differently from “classic” time-series data)

Discrete events in
continuous time



Application contexts

* Business Process (or Workflow) Management events
* execution traces of a process, storing information on performed activities

 Medical events
* acute incidents, doctor’s visits, tests, diagnoses, and medications

e Consumer behavior
* purchasing patterns

e “Quantified self” data
* Wearable devices and apps to record eating, traveling, working, sleeping, waking

e Social media actions
* previous posts, shares, comments, messages,...

* Smart cities and mobility patterns
* trajectories, taxi/car/public transportation adoptions, etc.

* Smart industry
* Optimization of the production, predictive maintenance...



Goal

* General goal: Understand the structural and temporal dynamics of process traces
e can provide insights on the complex patterns that govern the process
* can be used to forecast future events

* Specific objectives:
* Data generation: Generate new realistic traces from scratch
* to have a surrogate of real data (due to privacy/scalability constraints), or for simulation analyses

* Predict future events: Given an incomplete trace (partial history of a process instance)

Hep =1{eq,...,en—1} with h<m

Make forecasts on the subsequent events (structured-prediction / conditional-generation task)



Approach: Learn a Probabilistic Generative Model

* Probability distribution to learn

P(en|H<p) = P(ap, tp|H<p)

e Possible decompositions

* Independence

P(ay, tp|Hop) = P(ay |Hop)P(Er|Hp)

* Time is context — dependent

P(ay, th|H<p) = P(ay |Hop)P(thlay, Heop)



Intermezzo: ML estimation

* Given asample X = { x1, x5, ..., X, }
* sampled from a true distribution P,

* Given a proposal distribution [Py parametrized by 6

* Find the parameter 0 that optimizes the likelihood:

é = argmangg (X)
= argmaxg [1; Po (%)
= argmaxg 2; log Py (x;)
= argmaxglE, p_log Pg(x)



Parameterized Models

* Three key elements for modeling contagion

Time Dependency

3V

Old carrier Recent carrier Observation

Topic Dependency

G. Manco, E. Ritacco and N. Barbieri, "A Factorization Approach for Survival Analysis on Diffusion Networks," IEEE TKDE (2019)



Auto-Regressive generative models

* Explicit probability model m
 factorized as a product of conditional P(H) = 1_[ P(en|H<p)
per-step distributions (chain rule) h=1

N . P(ep|H<n) = fo(sn)
* Conditional probs. are approximated sy, = RNN(en_1, Sp_1)

with an NN (usually an RNN)

 Learning: tractable maximume-likelihood (ML) training
* optimizes exact likelihood

* Inference:
* generates a suffix (or an entire sequence) via incremental auto-regression



Examples

* RMTPP, NeuralHawkes [Du et al 2016] [Mei 2017]
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Examples

« RMTPP, NeuralHawkes Multinomial Distribution
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Examples

e RMTPP, NeuralHawkes 2?77
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Model time as a random variable

density

Prob. between [t, t+dt) fr(t) ;:f(t|7—[c<t)
fr(t)dr

Likelihood of a timeline:  f*(t1) f*(t2) f*(t3) f*(t) S*(T)

Source: Gomez-Rodriguez, Valera: Learning with Temporal Point Processes, ICML2018



Intensity function

density
Prob. between [t, t+dt) fr() ::f(t|Hc<t)

N

t1 o ts3 tt+dt \ t=1T

\ ] S* (t)

|
a Prob. not before t
History, ¢

Intensity:
Probability between [t, t+dt) but not before t

crin e P(ESTSAYTSE)  F5(D)
A(¢) = lim At = S50

\* (t) It is a rate = # of events / unit of time

Source: Gomez-Rodriguez, Valera: Learning with Temporal Point Processes, ICML2018
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Intensity function

density
Prob. between [t, t+dt) fr() ::f(t|Hc<t)

N

t1 o ts3 tt+dt \ t=1T

\ ' ] S* (t)
a Prob. not before t
History, ¢

Intensity:
Probability between [t, t+dt) but not before t

(@) =2 (0)S* ()

\* (t) It is a rate = # of events / unit of time

Source: Gomez-Rodriguez, Valera: Learning with Temporal Point Processes, ICML2018
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Intensity function

density
Prob. between [t, t+dt) fr() ::f(t|Hc<t)

N

t1 o ts3 tt+dt \ t=1T

\ ' ] S* (t)
a Prob. not before t
History, ¢

Intensity:
Probability between [t, t+dt) but not before t

S*(t) = exp —f A*(t)du
0

\* (t) It is a rate = # of events / unit of time

Source: Gomez-Rodriguez, Valera: Learning with Temporal Point Processes, ICML2018
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Appropriate distributions for

parametric estimation
Name | s©® | i® | f®

Weibull exp(—atF) afth~1 aftPlexp(—ath)
Log-Logistic _ 1 palfe’™ Balt’
1+ (at)f 1+ (a0)f (1 + (at)P)?
_ logt +loga 1
Log-normal 1 cb( - ) ——exp <—ﬁ(logt | log a)z)

Exponential exp(—at) a aexp(—at)

Hawkes




Why it doesn’t work

* ML is consistent: in principle, it can learn any distribution, provided
that it is given infinite data and perfect mode space.

* Minimizing the ML is equivalent to minimize the Kullback-Leibler (KL)
divergence between the true distribution IP. and the parametric distribution

Pg
B-(x)
Py(x)

* However, in real settings (due to model mis-specification and finite
data), it tends to produce overgeneralized models.

KL|P.|Pg] = fPr(x) log dx



Why it doesn’t work

P
KL[P.|Py] = fpr(x) logpe((g;))

* When B.(x) > Pg(x), large regions of P, get low values in [Pg. Their
contribution in KL[IP,|[Pg] tends to infinity.

* However, when P.(x) < Pg(x) then x has a low (true) probability, but high

probability of being generated by the model. The contribution to KL[IP,|Pg]
tends to 0.

* [Arjovsky 2017]

dx

Source: [Theis at al 2016]



Example: activations on Twitter, Weibull
model

TPR

FPR
* Noisy temporal patterns, data collection bias



Latent generative models

Z
e Assume a stochastic generative process for observed data, ruled by
latent/hidden variables z X
* Can capture high-level structure in event sequences and multiple sources of
variability

* E.g.: for business process instances, z can capture variations due to context
factors, alternative process configurations/variants, organizational changes

z ~ Py(")

* Deep latent generative models: X A~ P@HZ)
* learn P(x|z) via a neural network: no assumption on distribution’s shape
* (Sequential) Variational Autoencoders

N. Sachdeva, G. Manco, E. Ritacco, V. Pudi, Sequential Variational Autoencoders for Collaborative Filtering. WSDM 2019
G. Manco, F. Pisani, E. Ritacco, N. Sachdeva, Modeling Temporal dependencies in diffusion Networks via Variational Autoencoders, 2020. Submitted.



Latent Generative Models

* Introduce a proposal distribution @, parameterized by ¢

* Approximate the likelihood with

log P(x) = E,q, [log Py (x|2)] — KL[Qy (2)|P(2)]
\ J
|
Evidence Lower Bound (ELBO)

* Optimize the ELBO with respect to ¢ and 6



Latent Generative Models

* Pros w.r.t. autoregressive models:

* More robust to overfitting (regularization effect of latent modeling)
 Useful latent representations (estimated via inference queries P(z|x))

* Con: Imprecise generated samples, mainly due to two sources:

 Still ML-oriented training
e combined to approximate (ELBO) optimization, and assumption on z’s prior/posterior



What happens if we use Discriminative
Learning instead?

* PATH: Predicting Activation Time Horizon
* Focuses on predicting the activation of (groups of) users within a time horizon
Th
* Focuses on specific users and predicts their behavior based on the effect of
the partial cascading behavior of specific users

e Captures cumulative history via the embedding

* PATH learns an embedding of the past event history via Recurrent
Neural Networks that also cater for the diffusion memory

* (the representation of) users that frequently become active in different
streams within a small time interval are closer

G. Manco, G. Pirro, E. Ritacco. 2018. Predicting Temporal Activation Patterns via Recurrent Neural Networks. ISMIS 2018.
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Why it works

* Checking is easier than generating
* Autoregressive models try to parameterize P,

* By contrast, discriminative models only compute «closeness» to examples
within P,
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Generative Adversarial Networks (GANSs)

* Model: a deterministic function Gg is learnt to transform random z into data

* no assumption on data/latent probability distributions i
* allows for sampling from Pg(x) efficiently
* can produce any distribution P(x) with powerful enough Gg [ GQ* ]
Lreall |Lgen
. N¥
* Learning as a two-player game D,

* Discriminator D Trained to optimally discriminate real data from generated samples
* Generator Gg : Trained to generate realistic samples fooling the discriminator

[Goodfellow et al. 2014]



s it better than ML?

* Discriminator Loss:

Lp(¢,6) = Ey-p,[log Dy (x)] + Ex-p,[log(1 — Dy)]
* Generator loss

LG (¢' Q) — LD (¢, H)

 Adversarial Game

md?x mgin S~ P, [log Dy (x)] T LBy py [log(l B qu)]




s it better than ML?

* Optimal discriminator:

Ly (¢, 6) = f b, () log D(x) + po () log(1 — D(x)) dx

* Maximizing the integrand with respect to D (x) gives

b (x)

D)= p e+ Py




s it better than ML?

Lp(D",0) = j b, (%) log D(x) + pe () log(1 — D(x)) dx

~ Pr(x) Fo(x)

— fpr_(x) log Pr(x)+Pg(x) +pe(x) log Pr(x)+Pg(x)
_ Kl _IP)r [P’9+IP>r] 4 KL [P9| Pg;rlPr] —2log?2

= 2JS|P.|[Pg] — 210g 2




s it better than ML?

L (D%, 0) = JS|P;|Pg]

* Minimizing with regards to 6 is equivalent to minimize the Jensen-
Shannon Divergence

1 1
JSIP|Pg] = EKL[PHP@] +§KL[P9|P1~]

KLD JSD

Source: [Theis at al 2016]



GAN learning scheme

Algorithm 1 Inference algorithm.

1 Initialize ¢ and 0
2 for number of epochs do

3 for £ steps do
4 Sample {i’él), e ,fém)} from Py;

Sample {z(1), ... 2} from P,;
Update ¢ by ascending its stochastic gradient:

Woge 3 s (2 () a1 35))

end for
Sample {iél), . ,izém)} from Py;
9 Update 6 by descending its stochastic gradient:

Vol S tog (1D, ()
1=1

10 end for
11 Return ¢ and 6.




GAN learning scheme

Algorithm 1 Inference algorithm.

* Critical: Backpropagation from © Tnitialize § and 9
samples ek e
4 Sample {x( ) ...,:Tcg,m)} from Py;

Sample {z(1), ... 2} from P,;
Update ¢ by ascending its stochastic gradient:

Woge 3 s (2 () a1 35))

end for
Sample | &y, ... ,izém)} from Py;

9 Update 6 by descending its stochastic gradient:

Vg— Zlog <1 — Dy (2 < (2)>)

10 end for
11 Return ¢ and 6.




Context: Conditional GAN

Real future events (to be predicted)
Y =epepiq, ..

Partial trace »
X E ‘7-[<h

Predicted events (suffix)

' Y=€p,epq, ...

Scalar score, quantifying confidence in both
* Y being realistic
Y matching context X

»

~Q

.
=



Basic seq2seq conditional Generator

t
| H n [ l
~ ~ ~  predicted "suffix
1 34 e |
Encoder | \ i \ . g
11" -"FF-3-"-"-~-~-—-—-—---
I I I [ N N ]
—) — — —r— Sg
I U U
e mmm—————- i ) e - < I I I
: partial «prefix» : = = é : é
| X = Hoy 1 2 3 B | @ Decoder
N e e e e e e e /

* Two components:
* RNN Encoder: maps a partial trace H_, into a condensed representation s,
* RNN Decoder: generates a suffix step-by-step, using sg as its initial state (or as an additional input for all steps)

e Advantages w.r.t. a single RNN
* Prefix as a whole has a semantics
* Correlations within the prefix can influence the prediction of the suffix



GAN learning scheme

Algorithm 1 Inference algorithm.

* Critical: BaCkprOpagatiOn from 1 Initialize ¢ and 0
samples S

. 4 Sample 47V .. # L from Py
 How do we sample events while omple ('), | fom 2y
. . 5 Sample {z(1), ..., W} from P,;
prese Vi ng baCkprOpagat|On ? 6 Update ¢ by ascending its stochastic gradient:
1 & : N
Vo 2 [loz (Do (7)) + 1os (1= Dy () )
7 end for
8 Sample {:iél) ..... i’ém)} from Py;
9 Update 6 by descending its stochastic gradient:
1 & G
Vo— ;log (1 ~ D, <x§,>>>

10 end for

11 Return ¢ and 6.




GAN for Sequence Data: Challenges (1)

* Samplet ~ Py (. |H)
* Need to make explicit the relationship with 6
* E.g., Weibull distribution can be reparameterized

Ifu~ U(0,1)
Thent = a(=logu)¥# ~ Weibull(a, §)

* Explicit dependency of t both @ and 3

* |ssue with generalized (neural-based) intensity function A*(t)



GAN for Sequence Data: Challenges (2)

fixed
G EEE—— D -
sequences Scalar
f

Sequence generation with an RNN decoder entails sampling from a discrete distribution:
at every time step the most probable event type is chosen from a softmax output.
loss gradients cannot backpropagate to the Generator!



Discrete Event Generation

scalar
Discriminator D /
/
Discrete event attributes a 1 : :
predicted for future events - ! 1
B A A Sampled labels
4 4 4

Assume possible event types are
represented by labels A, B, ... Softmax vectors
(per-step conditional

distributions)

o >
o >

o >

QO —
>
O@ —



Dealing with continuous inputs

e Use a softmax distribution as
input to the Discriminator

* No direct sampling channel

Discriminator




... but sequences of softmax vectors are easily

recognized
Real
sequence ||t] [©9] [Of [9F |O
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
Generated [Tos 1oz lox
sequence | 571100 loa
0.7 0.1
0.1 0.8 0.1
0 0.1 0.9

N\

easily tell them apart '

;

The GAN gets stuck in an
equilibrium that is not
good for the Generator

Discriminator can

 WGAN and/or adversarial training over abstract features
can reduce this risk
e Also using an (Approximated) Embedding layer to map

each events to a dense representation
* softmax components are used as weights for combining the

embedding vector of the corresponding event labels [Xu et al.,
ENMLP’17]




Approximated Embedding Layer (AEL)

Real
seguence

Generated
sequence

Embedding Layer

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0.9 0.1 0.1 0 0
0.1 0.9 0.1 0 0
0 0.7 0.1
0 0.1 0.8 0.1
0 0 0.1 0.9

0.81
0.74

0.81
0.82

0.82
0.10

0.82
0.02

0.59
0.40

0.53
0.38

0.57
0.42

0.63
0.47

0.18
0.10
Harsh time for
the discriminator
0.13
0.06



Activations on Twitter, Weibull model

1.0 A

0.8

0.6 A

TPR

0.4 1

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

FPR

* Noisy temporal patterns, data collection bias

G. Manco, L. Pontieri, F. Folino, E. Ritacco, Generative Adversarial Networks for temporal Point Processes, 2020. Submitted.



Conclusion and open issues

» Research goal: learn generative models for complex processes (regarded as
TMPPs)

* Two tasks: generate new traces, and predict future events for unfinished traces

 Limitations of ML-based approaches (autoregressive models, VAEs)

* GANSs for MMPs: basic scheme
* Generator G: RNN Generator, Seq2Seq Generator
e Discriminator D as a ranker/critic
* G passes to D differentiable approximations for the generated event sequences

* Open challenges (and other design choices)...



Research line:
summary

and Open
Issues

[0 Simulation (Policy

gradient)

¢ (Gumbel) softmax

e AEL

-

¢ Survival Models
e Parametric
e Non — Parametric
¢ RMSE models

.

e Autoregressive models
e S-VAE

e GAN —seq2seq

e Hybrid

Discrete Data

: Architectures
transformatiop

Goal:
Generative
Models for

TMPPs

Time Time

representation dependency

¢ Time is context free

* Time depends on
context
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Thank you

Questions?

giuseppe.manco@icar.cnr.it

Q @beman
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