Mining unconnected patterns in workflows

Abstract

General patterns of execution that have been frequently scheduled by a workflow management system provide the administrator with previously unknown, and potentially useful information, e.g., about the existence of unexpected causalities between subprocesses of a given workflow. This paper investigates the problem of mining unconnected patterns on the basis of some execution traces, i.e., of detecting sets of activities exhibiting no explicit dependency relationships that are frequently executed together. The problem is faced in the paper by proposing and analyzing two algorithms. One algorithm takes into account information about the structure of the control-flow graph only, while the other is a smart refinement where the knowledge of the frequencies of edges and activities in the traces at hand is also accounted for, by means of a sophisticated graphical analysis. Both algorithms have been implemented and integrated into a system prototype, which may profitably support the enactment phase of the workflow. The correctness of the two algorithms is formally proven, and several experiments are reported to evidence the ability of the graphical analysis to significantly improve the performances, by dramatically pruning the search space of candidate patterns.

Publication
Information Systems